aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/nhwc/batchnormalization_layer.cl
blob: cb2da1bd99fcba8a427368d6b2c5699194ece9d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/*
 * Copyright (c) 2017-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"

#define ADD_OP(a, b) ((a) + (b))
#define SUB_OP(a, b) ((a) - (b))
#define MUL_OP(a, b) ((a) * (b))
#define INVSQRT_OP(a) rsqrt((a))
#define SQCVT_SAT(a) (a)

#if defined(VEC_SIZE) && defined(DATA_TYPE) && defined(ACTIVATION_TYPE)
#include "activation_float_helpers.h"

/** Apply batch normalization on tensors with NHWC format.
 *
 * @note It is possible to select the activation function to apply using -DACTIVATION_TYPE e.g. -DACTIVATION_TYPE=relu
 * @note A, B variables required by some activation functions are set using -DA_VAL= and -DB_VAL= respectively
 *
 * @param[in]  input_ptr                            Pointer to the first source tensor. Supported data types: F16/F32
 * @param[in]  input_stride_x                       Stride of the first source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the first source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the first source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the first source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 * @param[in]  mean_ptr                             Pointer to the mean source tensor. Supported data types: same as @p input_ptr
 * @param[in]  mean_stride_x                        Stride of the mean source tensor in X dimension (in bytes)
 * @param[in]  mean_step_x                          mean_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  mean_offset_first_element_in_bytes   The offset of the first element in the mean source tensor
 * @param[in]  var_ptr                              Pointer to the var tensor. Supported data types: same as @p input_ptr
 * @param[in]  var_stride_x                         Stride of the var tensor in X dimension (in bytes)
 * @param[in]  var_step_x                           var_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  var_offset_first_element_in_bytes    The offset of the first element in the var source tensor
 * @param[in]  beta_ptr                             Pointer to the beta source tensor. Supported data types: same as @p input_ptr
 * @param[in]  beta_stride_x                        Stride of the beta source tensor in X dimension (in bytes)
 * @param[in]  beta_step_x                          beta_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  beta_offset_first_element_in_bytes   The offset of the first element in the beta source tensor
 * @param[in]  gamma_ptr                            Pointer to the gamma source tensor. Supported data types: same as @p input_ptr
 * @param[in]  gamma_stride_x                       Stride of the gamma source tensor in X dimension (in bytes)
 * @param[in]  gamma_step_x                         gamma_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  gamma_offset_first_element_in_bytes  The offset of the first element in the gamma source tensor
 * @param[in]  epsilon                              Epsilon parameter in the batch normalization equation
 */
__kernel void batchnormalization_layer_nhwc(TENSOR3D_DECLARATION(input),
#ifndef IN_PLACE
                                            TENSOR3D_DECLARATION(output),
#endif /* not IN_PLACE */
                                            VECTOR_DECLARATION(mean),
                                            VECTOR_DECLARATION(var),
#ifndef USE_DEFAULT_BETA
                                            VECTOR_DECLARATION(beta),
#endif /* USE_DEFAULT_BETA */
#ifndef USE_DEFAULT_GAMMA
                                            VECTOR_DECLARATION(gamma),
#endif /* USE_DEFAULT_GAMMA */
                                            float epsilon)
{
    uint x_offs = max((int)(get_global_id(0) * VEC_SIZE * sizeof(DATA_TYPE) - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE * sizeof(DATA_TYPE)), 0);

    __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs + get_global_id(1) * input_stride_y + get_global_id(2) * input_stride_z;
#ifdef IN_PLACE
    __global uchar *output_addr = input_ptr;
#else  /* IN_PLACE */
    __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs + get_global_id(1) * output_stride_y + get_global_id(2) * output_stride_z;
#endif /* IN_PLACE */
    __global uchar *mean_addr = mean_ptr + mean_offset_first_element_in_bytes + x_offs;
    __global uchar *var_addr  = var_ptr + var_offset_first_element_in_bytes + x_offs;
#ifndef USE_DEFAULT_BETA
    __global uchar *beta_addr = beta_ptr + beta_offset_first_element_in_bytes + x_offs;
#endif /* USE_DEFAULT_BETA */
#ifndef USE_DEFAULT_GAMMA
    __global uchar *gamma_addr = gamma_ptr + gamma_offset_first_element_in_bytes + x_offs;
#endif /* USE_DEFAULT_GAMMA */

    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    data = 0;
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    denominator = 0;
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    numerator = 0;
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    x_bar = 0;
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    res0 = 0;

    data        = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr);
    denominator = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)var_addr);
    denominator = INVSQRT_OP(ADD_OP(denominator, ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE))SQCVT_SAT(epsilon))));

    // Calculate x bar and store results
    numerator = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)mean_addr);
    numerator = SUB_OP(data, numerator);
    x_bar     = MUL_OP(numerator, denominator);

#ifndef USE_DEFAULT_GAMMA
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    gamma_vec = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)gamma_addr);

    res0 = MUL_OP(gamma_vec, x_bar);
#else  /* USE_DEFAULT_GAMMA */
    // gamma is equal to 1, no need to perform multiplications
    res0 = x_bar;
#endif /* USE_DEFAULT_GAMMA */

#ifndef USE_DEFAULT_BETA
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
    beta_vec = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)beta_addr);
    // beta is not zero, hence we need to perform the addition
    res0 = ADD_OP(res0, beta_vec);
#endif /* USE_DEFAULT_BETA */

    res0 = ACTIVATION(ACTIVATION_TYPE, DATA_TYPE, VEC_SIZE, res0, A_VAL, B_VAL);

    STORE_VECTOR_SELECT(res, DATA_TYPE, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0)
}
#endif /* defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DATA_TYPE)*/