aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/l2_normalize.cl
blob: fbe3406239eebebbfccfafc36e5130c1a5b7de99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
/*
 * Copyright (c) 2016-2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"

#if defined(VEC_SIZE_X) && defined(VEC_SIZE_LEFTOVER_X)
/** This kernel performs l2 normalization on x-axis
 *
 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE_X=size. e.g. -DVEC_SIZE_X=16
 * @note The leftover size in the X dimension shoud be given as preprocessor argument using -DVEC_SIZE_LEFTOVER_X is; x_dimension % VEC_SIZE_X. e.g. -DVEC_SIZE_LEFTOVER_X=1
 *
 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along X processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[in]  sum_ptr                              Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  sum_stride_x                         Stride of the source tensor in X dimension (in bytes)
 * @param[in]  sum_step_x                           sum_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  sum_stride_y                         Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  sum_step_y                           sum_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  sum_offset_first_element_in_bytes    The offset of the first element in the source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 * @param[in]  epsilon                              Epsilon value
 */
__kernel void l2_normalize_x(
    IMAGE_DECLARATION(input),
    IMAGE_DECLARATION(sum),
    IMAGE_DECLARATION(output),
    DATA_TYPE epsilon)
{
    // Offset computation
    const uint x_offs = max((int)(get_global_id(0) * VEC_SIZE_X - (VEC_SIZE_X - VEC_SIZE_LEFTOVER_X) % VEC_SIZE_X), 0);

    // Address computation
    __global uchar *input_addr  = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y;
    __global uchar *sum_addr    = sum_ptr + sum_offset_first_element_in_bytes + get_global_id(1) * sum_stride_y;
    __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * output_stride_y;

    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    in = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)input_addr);

    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    normalize_value = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X))rsqrt(fmax(*((__global DATA_TYPE *)sum_addr), epsilon));

    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    data0 = in * normalize_value;

    STORE_VECTOR_SELECT(data, DATA_TYPE, output_addr, VEC_SIZE_X, VEC_SIZE_LEFTOVER_X, VEC_SIZE_LEFTOVER_X != 0 && get_global_id(0) == 0);
}

/** This kernel performs l2 normalization on y-axis.
 *
 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE_X=size. e.g. -DVEC_SIZE_X=16
 * @note The leftover size in the X dimension shoud be given as preprocessor argument using -DVEC_SIZE_LEFTOVER_X is; x_dimension % VEC_SIZE_X. e.g. -DVEC_SIZE_LEFTOVER_X=1
 *
 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[in]  sum_ptr                              Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  sum_stride_x                         Stride of the source tensor in X dimension (in bytes)
 * @param[in]  sum_step_x                           sum_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  sum_stride_y                         Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  sum_step_y                           sum_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  sum_offset_first_element_in_bytes    The offset of the first element in the source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 * @param[in]  epsilon                              Epsilon value
 */
__kernel void l2_normalize_y(
    IMAGE_DECLARATION(input),
    IMAGE_DECLARATION(sum),
    IMAGE_DECLARATION(output),
    DATA_TYPE epsilon)
{
    // Offset computation
    const uint x_offs = max((int)(get_global_id(0) * VEC_SIZE_X - (VEC_SIZE_X - VEC_SIZE_LEFTOVER_X) % VEC_SIZE_X), 0);

    // Address computation
    __global uchar *input_addr  = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y;
    __global uchar *sum_addr    = sum_ptr + sum_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE);
    __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * output_stride_y;

    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    in = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)input_addr);
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    sums = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)sum_addr);

    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    normalize_value = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X))rsqrt(fmax(sums, epsilon));

    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    data0 = in * normalize_value;

    STORE_VECTOR_SELECT(data, DATA_TYPE, output_addr, VEC_SIZE_X, VEC_SIZE_LEFTOVER_X, VEC_SIZE_LEFTOVER_X != 0 && get_global_id(0) == 0);
}

/** This kernel performs l2 normalization on z-axis.
 *
 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE_X=size. e.g. -DVEC_SIZE_X=16
 * @note The leftover size in the X dimension shoud be given as preprocessor argument using -DVEC_SIZE_LEFTOVER_X is; x_dimension % VEC_SIZE_X. e.g. -DVEC_SIZE_LEFTOVER_X=1
 *
 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
 * @param[in]  input_step_x                         input_stride_x * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
 * @param[in]  sum_ptr                              Pointer to the source tensor. Supported data types: F16/F32
 * @param[in]  sum_stride_x                         Stride of the source tensor in X dimension (in bytes)
 * @param[in]  sum_step_x                           sum_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  sum_stride_y                         Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  sum_step_y                           sum_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  sum_stride_z                         Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  sum_step_z                           sum_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  sum_offset_first_element_in_bytes    The offset of the first element in the source tensor
 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
 * @param[in]  epsilon                              Epsilon value
 */
__kernel void l2_normalize_z(
    TENSOR3D_DECLARATION(input),
    TENSOR3D_DECLARATION(sum),
    TENSOR3D_DECLARATION(output),
    DATA_TYPE epsilon)
{
    // Offset computation
    const uint x_offs = max((int)(get_global_id(0) * VEC_SIZE_X - (VEC_SIZE_X - VEC_SIZE_LEFTOVER_X) % VEC_SIZE_X), 0);

    // Address computation
    __global uchar *input_addr  = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y + get_global_id(2) * input_stride_z;
    __global uchar *sum_addr    = sum_ptr + sum_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * sum_stride_y;
    __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * output_stride_y + get_global_id(2) * output_stride_z;

    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    in = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)input_addr);
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    sums = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)sum_addr);

    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    data0 = in * ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X))(rsqrt(fmax(sums, epsilon))));

    STORE_VECTOR_SELECT(data, DATA_TYPE, output_addr, VEC_SIZE_X, VEC_SIZE_LEFTOVER_X, VEC_SIZE_LEFTOVER_X != 0 && get_global_id(0) == 0);
}
#endif // defined(VEC_SIZE_X) && defined(VEC_SIZE_LEFTOVER_X)