aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/direct_convolution.cl
blob: c5444cd7cc90abd9daf68fa55f61e6d9c41e4998 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*
 * Copyright (c) 2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "activation_float_helpers.h"
#include "helpers.h"
#include "helpers_asymm.h"
#include "tile_helpers.h"

//! @cond Doxygen_Suppress
/** OpenCL kernel to compute the direct convolution.
 *
 * @note Data layout supported: NHWC
 * @note Data type supported: F32/F16/QASYMM8/QASYMM8_SIGNED
 * @note The data type must be passed at compile time using -DDATA_TYPE (e.g. -DDATA_TYPE=half)
 * @note The accumulation data type must be passed at compile time using -DACC_DATA_TYPE (e.g. -DDATA_TYPE_PROMOTED=half)
 * @note The convolution padding (left and top) must be passed at compile time using -DPAD_LEFT and -DPAD_TOP (e.g. -DPAD_LEFT=2, -DPAD_TOP=2)
 * @note The convolution strides must be passed at compile time using -DSTRIDE and -DPAD_TOP (e.g. -DPAD_LEFT=2, -DPAD_TOP=2)
 * @note The spatial dimensions of the weights must be passed at compile time using -DWEI_WIDTH and -DWEI_HEIGHT (e.g. -DWEI_WIDTH=9, -DWEI_HEIGHT=9)
 * @note The spatial dimensions of the source tensor must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT (e.g. -DSRC_WIDTH=96, -DSRC_HEIGHT=64)
 * @note The spatial dimensions of the destination tensor must be passed at compile time using -DDST_WIDTH and -DDST_HEIGHT (e.g. -DDST_WIDTH=96, -DDST_HEIGHT=64)
 * @note The channels of the source tensor must be passed at compile time using -DSRC_CHANNELS (e.g. -DSRC_CHANNELS=64)
 * @note The channels of the destination tensor must be passed at compile time using -DDST_CHANNELS (e.g. -DDDST_CHANNELS=64)
 * @note The tensor type ("BUFFER" or "IMAGE") of the source tensor must be passed at compile time using -DSRC_TENSOR_TYPE (e.g. -DSRC_TENSOR_TYPE=BUFFER)
 * @note The tensor type ("BUFFER" or "IMAGE") of the weights tensor must be passed at compile time using -DWEI_TENSOR_TYPE (e.g. -DWEI_TENSOR_TYPE=BUFFER)
 * @note The tensor type ("BUFFER" or "IMAGE") of the destination tensor must be passed at compile time using -DDST_TENSOR_TYPE (e.g. -DDST_TENSOR_TYPE=BUFFER)
 * @note The data type of the source tensor must be passed at compile time using -DSRC_DATA_TYPE (e.g. -DSRC_DATA_TYPE=float)
 * @note The data type of the weights tensor must be passed at compile time using -DWEI_DATA_TYPE (e.g. -DWEI_DATA_TYPE=float)
 * @note The data type of the destination tensor must be passed at compile time using -DDST_DATA_TYPE (e.g. -DDST_DATA_TYPE=float)
 * @note The data type of the accumulators must be passed at compile time using -DACC_DATA_TYPE (e.g. -DACC_DATA_TYPE=float)
 * @note The number of M0 rows (width*height) to process must be passed at compile time using -DM0 (e.g. -DM0=2)
 * @note The number of N0 output channels to process must be passed at compile time using -DN0 (e.g. -DN0=2)
 * @note The number of K0 inner accumulations must be passed at compile time using -DK0 (e.g. -DK0=2)
 * @note The size of the partial store block in x must be passed at compile time using -DPARTIAL_N0 (e.g. -DPARTIAL_N0=1)
 * @note The zero value must be passed at compile time using -DZERO_VALUE (e.g. -DZERO_VALUE=0)
 * @note Only the following configurations of M0, N0 and K0 are currently supported:
 *  - M0 = 1, 2, 3, 4, 5, .... n
 *  - N0 = 2, 3, 4, 8, 16
 *  - K0 = 2, 3, 4, 8, 16 (only 4, 8 and 16 if WEI_TENSOR_TYPE=IMAGE)
 *
 *@note In case of QASYMM8/QASYMM8_SIGNED, the following extra information must be passed at compile time:
 * - -DIS_QUANTIZED
 * - The destination quantization multiplier e.g. -DDST_MULTIPLIER=1234
 * - The destination quantization shift e.g. -DDST_SHIFT=4
 * - The destination offset e.g. -DDST_OFFSET=4
 * - The source offset e.g. -DSRC_OFFSET=4
 * - The weights offset e.g. -DWEI_OFFSET=4
 * - The quantized zero value e.g. -DZERO_VALUE=4
 *
 * @param[in]  src_ptr                           Pointer to the source tensor. Supported data type: F16/F32/QASYMM8
 * @param[in]  src_stride_x                      Stride of the source tensor in X dimension (in bytes)
 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                      Stride of the source tensor in Y dimension (in bytes)
 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source tensor in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_stride_w                      Stride of the source tensor in W dimension (in bytes)
 * @param[in]  src_step_w                        src_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source tensor
 * @param[out] dst_ptr                           Pointer to the destination tensor. Supported data type: same as @p src_ptr
 * @param[in]  dst_stride_x                      Stride of the destination tensor in X dimension (in bytes)
 * @param[in]  dst_step_x                        dst_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
 * @param[in]  dst_step_y                        dst_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  dst_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
 * @param[in]  dst_step_z                        dst_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_stride_w                      Stride of the destination tensor in W dimension (in bytes)
 * @param[in]  dst_step_w                        dst_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
 * @param[in]  wei_ptr                           Pointer to the weights tensor. Supported data type: same as @p src_ptr
 * @param[in]  wei_stride_x                      Stride of the weights tensor in X dimension (in bytes)
 * @param[in]  wei_step_x                        wei_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  wei_stride_y                      Stride of the weights tensor in Y dimension (in bytes)
 * @param[in]  wei_step_y                        wei_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  wei_stride_z                      Stride of the weights tensor in Z dimension (in bytes)
 * @param[in]  wei_step_z                        wei_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  wei_stride_w                      Stride of the weights tensor in W dimension (in bytes)
 * @param[in]  wei_step_w                        wei_stride_w * number of elements along W processed per workitem(in bytes)
 * @param[in]  wei_offset_first_element_in_bytes The offset of the first element in the bias matrix
 * @param[in]  bia_ptr                           (Optional) Pointer to the bias tensor Supported data type: same as @p src_ptr (if F32/F16) or S32 (if QASYMM8/QASYMM8_SIGNED)
 * @param[in]  bia_stride_x                      (Optional) Stride of the bias tensor in X dimension (in bytes)
 * @param[in]  bia_step_x                        (Optional) bia_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  bia_offset_first_element_in_bytes (Optional) The offset of the first element in the bias matrix
 */
//! @endcond
__kernel void direct_convolution_nhwc(
    TENSOR4D(src, SRC_TENSOR_TYPE),
    TENSOR4D(dst, DST_TENSOR_TYPE),
    TENSOR4D(wei, WEI_TENSOR_TYPE)
#if defined(HAS_BIAS)
    ,
    VECTOR_DECLARATION(bia)
#endif // defined(HAS_BIAS)
)
{
    // All the tensor dimensions are passed at compile time.
    // In case of dynamic tensor support, the following dimensions should be passed as function argument.
#define _IWEI_WIDTH WEI_WIDTH
#define _IWEI_HEIGHT WEI_HEIGHT
#define _ISRC_WIDTH SRC_WIDTH
#define _ISRC_HEIGHT SRC_HEIGHT
#define _ISRC_CHANNELS SRC_CHANNELS
#define _IDST_WIDTH DST_WIDTH
#define _IDST_HEIGHT DST_HEIGHT
#define _IDST_CHANNELS DST_CHANNELS
#define _IY_MULTIPLIER (_IWEI_WIDTH * _IWEI_HEIGHT)

    // If quantized, the output tile has to be quantized first before being stored to global memory
#if defined(IS_QUANTIZED)
#define _IOUTPUT_TILE cq
#else // defined(IS_QUANTIZED)
#define _IOUTPUT_TILE c
#endif // defined(IS_QUANTIZED)

    const int cout = GET_SPATIAL_IDX(0, N0, PARTIAL_N0); // OFM
    const int mout = GET_SPATIAL_IDX(1, M0, 0);          // WIDTH x HEIGHT
    const int bout = GET_SPATIAL_IDX(2, 1, 0);           // BATCH SIZE IDX

    // .v    = access the whole vector (OpenCL vector)
    // .s[x] = access the vector element at position x (scalar access)
    TILE(int, M0, 1, xi);
    TILE(int, M0, 1, yi);

    // Convert the linear index to coordinate
    LOOP_UNROLLING(int, i, 0, 1, M0,
    {
        xi[i].v = ((mout + i) % _IDST_WIDTH) * STRIDE_X;
        yi[i].v = ((mout + i) / _IDST_WIDTH) * STRIDE_Y;
        xi[i].v -= PAD_LEFT;
        yi[i].v -= PAD_TOP;
    })

    // Initialize the accumulators
    TILE(ACC_DATA_TYPE, M0, N0, c);

    LOOP_UNROLLING(int, i, 0, 1, M0,
    {
        c[i].v = 0;
    })

    for(int i = 0; i < (_IWEI_WIDTH * _IWEI_HEIGHT); ++i)
    {
        int ck = 0;
        int xk = i % _IWEI_WIDTH;
        int yk = i / _IWEI_WIDTH;

        int k = 0;
        for(; k <= (_ISRC_CHANNELS - K0); k += K0)
        {
            TILE(SRC_DATA_TYPE, M0, K0, a);
            TILE(WEI_DATA_TYPE, N0, K0, b);

            LOOP_UNROLLING(int, i, 0, 1, M0,
            {
                a[i].v = ZERO_VALUE;
            })

            // Load tile from the src tensor
            T_LOAD_NHWC_INDIRECT(SRC_DATA_TYPE, M0, K0, SRC_TENSOR_TYPE, src, bout, yk, xk, ck, _ISRC_WIDTH, _ISRC_HEIGHT, src_stride_y, xi, yi, a);

            // Load tile from the weights tensor
            T_LOAD(WEI_DATA_TYPE, N0, K0, WEI_TENSOR_TYPE, wei, ck, cout * _IY_MULTIPLIER + i, _IY_MULTIPLIER, wei_stride_y, b);

            // Compute the matrix multiplication between two tiles
            T_MMUL(SRC_DATA_TYPE, WEI_DATA_TYPE, ACC_DATA_TYPE, M0, N0, K0, NT, T, a, b, c);

            // Apply the offset correction (correction usually needed for asymmetric quantized computation)
            // The computation is not performed if both SRC_OFFSET and WEI_OFFSET are zero
            T_OFFSET_CORRECTION(ACC_DATA_TYPE, M0, N0, K0, SRC_OFFSET, WEI_OFFSET, a, b, c);

            ck += K0;
        }

        // We voluntarily use SRC_CHANNELS rather than _DSRC_CHANNELS
        // This #if directive should be removed in case of dynamic tensor support
#if((SRC_CHANNELS % K0) != 0)
        // Left-over accumulations
        for(; k < _ISRC_CHANNELS; ++k)
        {
            TILE(SRC_DATA_TYPE, M0, 1, a);
            TILE(WEI_DATA_TYPE, N0, 1, b);

            LOOP_UNROLLING(int, i, 0, 1, M0,
            {
                a[i].v = ZERO_VALUE;
            })

            // Load tile from the src tensor
            T_LOAD_NHWC_INDIRECT(SRC_DATA_TYPE, M0, 1, SRC_TENSOR_TYPE, src, bout, yk, xk, ck, _ISRC_WIDTH, _ISRC_HEIGHT, src_stride_y, xi, yi, a);

            // Load tile from the weights tensor
            // The T_LOAD for the left-over elements can only use BUFFER because we load one element per iteration
            T_LOAD(WEI_DATA_TYPE, N0, 1, BUFFER, wei, ck, cout * _IY_MULTIPLIER + i, _IY_MULTIPLIER, wei_stride_y, b);

            // Compute the matrix multiplication between two tiles
            T_MMUL(SRC_DATA_TYPE, WEI_DATA_TYPE, ACC_DATA_TYPE, M0, N0, 1, NT, T, a, b, c);

            // Apply the offset correction (operation usually needed for asymmetric quantized computation)
            // The computation is not performed if both SRC_OFFSET and WEI_OFFSET are zero
            T_OFFSET_CORRECTION(ACC_DATA_TYPE, M0, N0, 1, SRC_OFFSET, WEI_OFFSET, a, b, c);

            ++ck;
        }
#endif // ((SRC_CHANNELS % K0) != 0)
    }

    // Offset correction required for the quantized asymmetric computation
    // The computation is not performed if both SRC_OFFSET and WEI_OFFSET are zero
    T_ADD_CONSTANT(ACC_DATA_TYPE, M0, N0, c, (_IWEI_WIDTH * _IWEI_HEIGHT * _ISRC_CHANNELS * SRC_OFFSET * WEI_OFFSET), c);

#if defined(HAS_BIAS)
    TILE(BIA_DATA_TYPE, 1, N0, bias0);

    T_LOAD(BIA_DATA_TYPE, 1, N0, BUFFER, bia, cout, 0, 1, 0, bias0);

    // c = c + bias[broadcasted]
    T_ADD_BROADCAST_X(ACC_DATA_TYPE, M0, N0, c, bias0, c);

#endif // HAS_BIAS

    TILE(uint, M0, 1, dst_indirect_y);

    // Calculate the destination indirect Y
    LOOP_UNROLLING(int, i, 0, 1, M0,
    {
        dst_indirect_y[i].v = (uint)min(mout + i, (int)(_IDST_WIDTH * _IDST_HEIGHT) - 1);
        dst_indirect_y[i].v += bout * (int)(_IDST_WIDTH * _IDST_HEIGHT);
    })

    bool x_cond = PARTIAL_N0 != 0 && get_global_id(0) == 0;

#if defined(IS_QUANTIZED)

    TILE(DST_DATA_TYPE, M0, N0, cq);

    // Quantize the tile
    T_QUANTIZE8_ASYMMETRIC(ACC_DATA_TYPE, DST_DATA_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, c, cq);
#endif // defined(IS_QUANTIZED)

    // Apply activation
    T_ACTIVATION(DST_DATA_TYPE, M0, N0, ACTIVATION_TYPE, A_VAL, B_VAL, _IOUTPUT_TILE, _IOUTPUT_TILE);

    // _IOUTPUT_TILE: c = fp32/fp16, cq=qasymm8
    // Store the tile in reverse order so the invalid values are overwritten with the valid ones
    T_STORE_INDIRECT_WIDTH_SELECT(DST_DATA_TYPE, M0, N0, PARTIAL_N0, DST_TENSOR_TYPE, dst, cout, dst_stride_y, x_cond, _IOUTPUT_TILE, dst_indirect_y);

#undef _IWEI_WIDTH
#undef _IWEI_HEIGHT
#undef _ISRC_WIDTH
#undef _ISRC_HEIGHT
#undef _ISRC_CHANNELS
#undef _IDST_WIDTH
#undef _IDST_HEIGHT
#undef _IDST_CHANNELS
#undef _IY_MULTIPLIER
}