aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/common/transpose.cl
blob: 5b4c68ca1053a56bb7ccfcbaf311198bbf4e0afc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/*
 * Copyright (c) 2017-2021, 2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#define PARTIAL_STORE_M0 VEC_SIZE_LEFTOVER_X
#define PARTIAL_STORE_N0 VEC_SIZE_LEFTOVER_Y

#include "helpers.h"
#include "repeat.h"

#if defined(DATA_TYPE_IN_BYTES) && defined(VEC_SIZE_X) && defined(VEC_SIZE_LEFTOVER_X) && defined(VEC_SIZE_Y) && defined(VEC_SIZE_LEFTOVER_Y)

#if VEC_SIZE_X == 1
#if VEC_SIZE_Y == 1
#define TRANSPOSED_U(val) \
    {                     \
        u0                \
    }
#elif VEC_SIZE_Y == 2
#define TRANSPOSED_U(val) \
    {                     \
        u0, u1            \
    }
#elif VEC_SIZE_Y == 3
#define TRANSPOSED_U(val) \
    {                     \
        u0, u1, u2        \
    }
#elif VEC_SIZE_Y == 4
#define TRANSPOSED_U(val) \
    {                     \
        u0, u1, u2, u3    \
    }
#elif VEC_SIZE_Y == 8
#define TRANSPOSED_U(val)              \
    {                                  \
        u0, u1, u2, u3, u4, u5, u6, u7 \
    }
#elif VEC_SIZE_Y == 16
#define TRANSPOSED_U(val)                        \
    {                                            \
        u0, u1, u2, u3, u4, u5, u6, u7,          \
        u8, u9, u10, u11, u12, u13, u14, u15 \
    }
#endif /* switch VEC_SIZE_Y */
#else  // VEC_SIZE_X == 1
#if VEC_SIZE_Y == 1
#define TRANSPOSED_U(val) \
    {                     \
        u0.val            \
    }
#elif VEC_SIZE_Y == 2
#define TRANSPOSED_U(val) \
    {                     \
        u0.val, u1.val    \
    }
#elif VEC_SIZE_Y == 3
#define TRANSPOSED_U(val)      \
    {                          \
        u0.val, u1.val, u2.val \
    }
#elif VEC_SIZE_Y == 4
#define TRANSPOSED_U(val)              \
    {                                  \
        u0.val, u1.val, u2.val, u3.val \
    }
#elif VEC_SIZE_Y == 8
#define TRANSPOSED_U(val)                                              \
    {                                                                  \
        u0.val, u1.val, u2.val, u3.val, u4.val, u5.val, u6.val, u7.val \
    }
#elif VEC_SIZE_Y == 16
#define TRANSPOSED_U(val)                                                        \
    {                                                                            \
        u0.val, u1.val, u2.val, u3.val, u4.val, u5.val, u6.val, u7.val,          \
        u8.val, u9.val, u10.val, u11.val, u12.val, u13.val, u14.val, u15.val \
    }
#endif /* switch VEC_SIZE_Y */
#endif // VEC_SIZE_X == 1

#if DATA_TYPE_IN_BYTES == 4
#define DATA_TYPE uint
#elif DATA_TYPE_IN_BYTES == 2
#define DATA_TYPE ushort
#elif DATA_TYPE_IN_BYTES == 1
#define DATA_TYPE uchar
#else /* switch DATA_TYPE_IN_BYTES */
#error DATA_TYPE_IN_BYTES not supported for transpose
#endif /* switch DATA_TYPE_IN_BYTES */

/** This OpenCL kernel computes the matrix transposition of input matrix
 *
 * @note The number of bytes of the data type need to be passed at compile time using -DDATA_TYPE_IN_BYTES. DATA_TYPE_IN_BYTES can be:
 *  -# -DDATA_TYPE_IN_BYTES=1 for transposing U8 or S8 matrices
 *  -# -DDATA_TYPE_IN_BYTES=2 for transposing U16, S16 or FP16 matrices
 *  -# -DDATA_TYPE_IN_BYTES=4 for transposing U32, S32 or FP32 matrices
 *  -# -DVEC_SIZE_X is the number of elements processed in X dimension
 *  -# -DVEC_SIZE_LEFTOVER_X is the leftover size in the X dimension; x_dimension % VEC_SIZE_X
 *  -# -DVEC_SIZE_Y is the number of elements processed in Y dimension
 *  -# -DVEC_SIZE_LEFTOVER_Y is the leftover size in the Y dimension; y_dimension % VEC_SIZE_Y
 *
 *
 * @param[in]  src_ptr                           Pointer to the source matrix. Supported data types: All
 * @param[in]  src_stride_x                      Stride of the source matrix in X dimension (in bytes)
 * @param[in]  src_step_x                        src_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  src_stride_y                      Stride of the source matrix in Y dimension (in bytes)
 * @param[in]  src_step_y                        src_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  src_stride_z                      Stride of the source matrix in Z dimension (in bytes)
 * @param[in]  src_step_z                        src_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  src_offset_first_element_in_bytes The offset of the first element in the source matrix
 * @param[out] dst_ptr                           Pointer to the destination matrix Supported data type: same as src_ptr
 * @param[in]  dst_stride_x                      Stride of the destination matrix in X dimension (in bytes)
 * @param[in]  dst_step_x                        dst_gx_stride_x * number of elements along X processed per workitem(in bytes)
 * @param[in]  dst_stride_y                      Stride of the destination matrix in Y dimension (in bytes)
 * @param[in]  dst_step_y                        dst_gx_stride_y * number of elements along Y processed per workitem(in bytes)
 * @param[in]  dst_stride_z                      Stride of the destination matrix in Z dimension (in bytes)
 * @param[in]  dst_step_z                        dst_gx_stride_z * number of elements along Z processed per workitem(in bytes)
 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the destination matrix
 */
__kernel void transpose(TENSOR3D_DECLARATION(src),
                        TENSOR3D_DECLARATION(dst))
{
    uint x_offs = max((int)(get_global_id(0) * VEC_SIZE_X - (VEC_SIZE_X - VEC_SIZE_LEFTOVER_X) % VEC_SIZE_X), 0);
    uint y_offs = max((int)(get_global_id(1) * VEC_SIZE_Y - (VEC_SIZE_Y - VEC_SIZE_LEFTOVER_Y) % VEC_SIZE_Y), 0);
    uint z_offs = get_global_id(2);

    // Compute addresses
    __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + x_offs * DATA_TYPE_IN_BYTES + y_offs * src_stride_y + z_offs * src_stride_z;
    __global uchar *dst_addr = dst_ptr + dst_offset_first_element_in_bytes + y_offs * DATA_TYPE_IN_BYTES + x_offs * dst_stride_y + z_offs * dst_stride_z;

    // Load the NxM block at (x, y)
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u0 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)src_addr);
#if VEC_SIZE_Y > 1
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u1 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + src_stride_y));
#endif /* VEC_SIZE_Y > 1 */
#if VEC_SIZE_Y > 2
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u2 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 2 * src_stride_y));
#endif /* VEC_SIZE_Y > 2 */
#if VEC_SIZE_Y > 3
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u3 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 3 * src_stride_y));
#endif /* VEC_SIZE_Y > 3 */
#if VEC_SIZE_Y > 4
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u4 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 4 * src_stride_y));
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u5 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 5 * src_stride_y));
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u6 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 6 * src_stride_y));
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u7 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 7 * src_stride_y));
#endif /* VEC_SIZE_Y > 4 */
#if VEC_SIZE_Y > 8
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u8 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 8 * src_stride_y));
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u9 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 9 * src_stride_y));
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u10 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 10 * src_stride_y));
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u11 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 11 * src_stride_y));
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u12 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 12 * src_stride_y));
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u13 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 13 * src_stride_y));
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u14 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 14 * src_stride_y));
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
    u15 = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)(src_addr + 15 * src_stride_y));
#endif /* VEC_SIZE_Y > 8 */

    //Create transposed vectors
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    t0 = TRANSPOSED_U(s0);
#if VEC_SIZE_X > 1
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    t1 = TRANSPOSED_U(s1);
#endif /* VEC_SIZE_X > 1 */
#if VEC_SIZE_X > 2
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    t2 = TRANSPOSED_U(s2);
#endif /* VEC_SIZE_X > 2 */
#if VEC_SIZE_X > 3
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    t3 = TRANSPOSED_U(s3);
#endif /* VEC_SIZE_X > 3 */
#if VEC_SIZE_X > 4
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    t4 = TRANSPOSED_U(s4);
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    t5 = TRANSPOSED_U(s5);
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    t6 = TRANSPOSED_U(s6);
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    t7 = TRANSPOSED_U(s7);
#endif /* VEC_SIZE_X > 4 */
#if VEC_SIZE_X > 8
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    t8 = TRANSPOSED_U(s8);
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    t9 = TRANSPOSED_U(s9);
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    tA = TRANSPOSED_U(sA);
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    tB = TRANSPOSED_U(sB);
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    tC = TRANSPOSED_U(sC);
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    tD = TRANSPOSED_U(sD);
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    tE = TRANSPOSED_U(sE);
    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_Y)
    tF = TRANSPOSED_U(sF);
#endif /* VEC_SIZE_X > 8 */

    // Store the block at (y, x)
    REPEAT_VAR_INIT_TO_CONST(VEC_SIZE_X, uint, zout, 0); //uint zout0=0,zout1=0,zout2=0,... zout7=0;
    STORE_BLOCK_BOUNDARY_AWARE(VEC_SIZE_X, VEC_SIZE_Y, DATA_TYPE, t, (__global uchar *)dst_addr, dst_stride_y, zout, VEC_SIZE_LEFTOVER_X, VEC_SIZE_LEFTOVER_Y, VEC_SIZE_LEFTOVER_X != 0
                               && get_global_id(0) == 0,
                               VEC_SIZE_LEFTOVER_Y != 0 && get_global_id(1) == 0);
}

#endif // defined(DATA_TYPE_IN_BYTES) && defined(VEC_SIZE_X) && defined(VEC_SIZE_LEFTOVER_X) && defined(VEC_SIZE_Y) && defined(VEC_SIZE_LEFTOVER_Y)