aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/common/mat_mul.cl
blob: 7c74e9d07bc2b8d9658c62c86b6b93600eb07b3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*
 * Copyright (c) 2023 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#include "helpers.h"
#include "tile_helpers.h"

#if defined(MAT_MUL_NATIVE_NT_NT)
/** This OpenCL kernel performs the batch matrix multiplication (BatchMatMul): LHS non-transposed, RHS non-transposed - buffer only
 *
 * @note the "batch" here expresses the number of matrix multiplications to run in parallel. However, it
 *       should NOT be confused with the batch size of the model. For NHWC the "batch" is the "H" dimension
 * @note The block's dimensions used for the LHS and RHS matrices (M0, N0 and K0) must be passed at compile time using -DN0, -DM0 and -DK0 (e.g. -DN0=8, -DM0=4, -DK0=4).
 * @note The dimension K must be passed at compile time using -DK (e.g. -DK=6)
 * @note Only the following configurations of M0, N0 and K0 are currently supported:
 *  - M0 > 0
 *  - N0 = 1, 2, 3, 4, 8, 16
 *  - K0 = 1, 2, 3, 4, 8, 16
 * @note Values > 8 for M0 are not expected to be efficient
 *
 * @param[in]  lhs_ptr                           Pointer to the lhs matrix. Supported data types: F32/F16
 * @param[in]  lhs_stride_y                      Stride of the lhs matrix in Y (2nd) dimension (in bytes)
 * @param[in]  lhs_stride_z                      Stride of the lhs tensor in Z (3rd) dimension (in bytes)
 * @param[in]  lhs_w                             The width of the lhs tensor
 * @param[in]  lhs_h                             The height of the lhs tensor
 * @param[in]  lhs_n                             Number of the matrices (buffers) in the batch
 * @param[in]  lhs_offset_first_element_in_bytes The offset of the first element in the lhs matrix
 * @param[in]  rhs_ptr                           Pointer to the rhs matrix. Supported data types: F32/F16
 * @param[in]  rhs_stride_y                      Stride of the rhs matrix in Y (2nd) dimension (in bytes)
 * @param[in]  rhs_stride_z                      Stride of the rhs tensor in Z (3rd) dimension (in bytes)
 * @param[in]  rhs_w                             The width of the rhs tensor
 * @param[in]  rhs_h                             The height of the rhs tensor
 * @param[in]  rhs_n                             Number of the matrices (buffers) in the batch
 * @param[in]  rhs_offset_first_element_in_bytes The offset of the first element in the rhs matrix
 * @param[out] dst_ptr                           Pointer to the dst matrix. Supported data types: F32/F16
 * @param[in]  dst_stride_y                      Stride of the dst matrix in Y (2nd) dimension (in bytes)
 * @param[in]  dst_stride_z                      Stride of the dst tensor in Z (3rd) dimension (in bytes)
 * @param[in]  dst_w                             The width of the dst tensor
 * @param[in]  dst_h                             The height of the dst tensor
 * @param[in]  dst_n                             Number of the matrices (buffers) in the batch
 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the dst matrix
 */
__kernel void mat_mul_native_nt_nt(
    TENSOR3D_T(lhs, BUFFER),
    TENSOR3D_T(rhs, BUFFER),
    TENSOR3D_T(dst, BUFFER))
{
    const uint x = GET_SPATIAL_IDX(0, N0, PARTIAL_STORE_N0);
    const uint y = GET_SPATIAL_IDX(1, M0, PARTIAL_STORE_M0);
    const uint z = GET_SPATIAL_IDX(2, 1, 0);

    // Compute LHS/RHS/DST matrix address
    lhs_offset_first_element_in_bytes += y * lhs_stride_y + z * lhs_stride_z;
    rhs_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + z * rhs_stride_z;
    dst_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + y * dst_stride_y + z * dst_stride_z;

    // Initialize the accumulators
    TILE(DATA_TYPE, M0, N0, acc);

    LOOP_UNROLLING(int, i, 0, 1, M0,
    {
        acc[i].v = 0.f;
    })

    int k;
    for(k = 0; k <= K - K0; k += K0)
    {
        TILE(DATA_TYPE, M0, K0, a);
        TILE(DATA_TYPE, K0, N0, b);

        LOOP_UNROLLING(int, i, 0, 1, M0,
        {
            a[i].v = 0.f;
        })

        LOOP_UNROLLING(int, i, 0, 1, K0,
        {
            b[i].v = 0.f;
        })

        // Load tile from the lhs/rhs tensors
        T_LOAD(DATA_TYPE, M0, K0, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a);
        T_LOAD(DATA_TYPE, K0, N0, BUFFER, rhs, 0, 0, 1, rhs_stride_y, b);

        T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, K0, NT, NT, a, b, acc);

        lhs_offset_first_element_in_bytes += K0 * sizeof(DATA_TYPE);
        rhs_offset_first_element_in_bytes += K0 * rhs_stride_y;
    }

#ifdef K % K0 != 0
    for(; k < K; ++k)
    {
        TILE(DATA_TYPE, M0, 1, a);
        TILE(DATA_TYPE, 1, N0, b);

        LOOP_UNROLLING(int, i, 0, 1, M0,
        {
            a[i].v = 0.f;
        })

        LOOP_UNROLLING(int, i, 0, 1, 1,
        {
            b[i].v = 0.f;
        })

        // Load tile from the lhs/rhs tensors
        T_LOAD(DATA_TYPE, M0, 1, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a);
        T_LOAD(DATA_TYPE, 1, N0, BUFFER, rhs, 0, 0, 1, rhs_stride_y, b);

        T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, 1, NT, NT, a, b, acc);

        lhs_offset_first_element_in_bytes += 1 * sizeof(DATA_TYPE);
        rhs_offset_first_element_in_bytes += 1 * rhs_stride_y;
    }
#endif // K % K0 != 0

    const bool x_cond = PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0;
    const bool y_cond = PARTIAL_STORE_M0 != 0 && get_global_id(1) == 0;

    TILE(int, M0, 1, indirect_buffer);
    LOOP_UNROLLING(int, _i, 0, 1, M0,
    {
        indirect_buffer[_i].v = min(_i, select(M0 - 1, PARTIAL_STORE_M0 - 1, y_cond));
    });

    T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, dst, 0, dst_stride_y, x_cond, acc, indirect_buffer);
}
#endif // defined(MAT_MUL_NATIVE_NT_NT)

#if defined(MAT_MUL_NATIVE_NT_T)
/** This OpenCL kernel performs the batch matrix multiplication (BatchMatMul): LHS non-transposed, RHS transposed - buffer only
 *
 * @note the "batch" here expresses the number of matrix multiplications to run in parallel. However, it
 *       should NOT be confused with the batch size of the model. For NHWC the "batch" is the "H" dimension
 * @note The block's dimensions used for the LHS and RHS matrices (M0, N0 and K0) must be passed at compile time using -DN0, -DM0 and -DK0 (e.g. -DN0=8, -DM0=4, -DK0=4).
 * @note The dimension K must be passed at compile time using -DK (e.g. -DK=6)
 * @note Only the following configurations of M0, N0 and K0 are currently supported:
 *  - M0 > 0
 *  - N0 = 1, 2, 3, 4, 8, 16
 *  - K0 = 1, 2, 3, 4, 8, 16
 * @note Values > 8 for M0, N0 and K0 are not expected to be efficient
 *
 * @param[in]  lhs_ptr                           Pointer to the lhs matrix. Supported data types: F32/F16
 * @param[in]  lhs_stride_y                      Stride of the lhs matrix in Y (2nd) dimension (in bytes)
 * @param[in]  lhs_stride_z                      Stride of the lhs tensor in Z (3rd) dimension (in bytes)
 * @param[in]  lhs_w                             The width of the lhs tensor
 * @param[in]  lhs_h                             The height of the lhs tensor
 * @param[in]  lhs_n                             Number of the matrices (buffers) in the batch
 * @param[in]  lhs_offset_first_element_in_bytes The offset of the first element in the lhs matrix
 * @param[in]  rhs_ptr                           Pointer to the rhs matrix. Supported data types: F32/F16
 * @param[in]  rhs_stride_y                      Stride of the rhs matrix in Y (2nd) dimension (in bytes)
 * @param[in]  rhs_stride_z                      Stride of the rhs tensor in Z (3rd) dimension (in bytes)
 * @param[in]  rhs_w                             The width of the rhs tensor
 * @param[in]  rhs_h                             The height of the rhs tensor
 * @param[in]  rhs_n                             Number of the matrices (buffers) in the batch
 * @param[in]  rhs_offset_first_element_in_bytes The offset of the first element in the rhs matrix
 * @param[out] dst_ptr                           Pointer to the dst matrix. Supported data types: F32/F16
 * @param[in]  dst_stride_y                      Stride of the dst matrix in Y (2nd) dimension (in bytes)
 * @param[in]  dst_stride_z                      Stride of the dst tensor in Z (3rd) dimension (in bytes)
 * @param[in]  dst_w                             The width of the dst tensor
 * @param[in]  dst_h                             The height of the dst tensor
 * @param[in]  dst_n                             Number of the matrices (buffers) in the batch
 * @param[in]  dst_offset_first_element_in_bytes The offset of the first element in the dst matrix
 */
__kernel void mat_mul_native_nt_t(TENSOR3D_T(lhs, BUFFER),
                                  TENSOR3D_T(rhs, BUFFER),
                                  TENSOR3D_T(dst, BUFFER))

{
    const uint x = GET_SPATIAL_IDX(0, N0, PARTIAL_STORE_N0);
    const uint y = GET_SPATIAL_IDX(1, M0, PARTIAL_STORE_M0);
    const uint z = GET_SPATIAL_IDX(2, 1, 0);

    // Compute LHS/RHS/DST matrix address
    lhs_offset_first_element_in_bytes += y * lhs_stride_y + z * lhs_stride_z;
    rhs_offset_first_element_in_bytes += x * rhs_stride_y + z * rhs_stride_z;
    dst_offset_first_element_in_bytes += x * sizeof(DATA_TYPE) + y * dst_stride_y + z * dst_stride_z;

    // Initialize the accumulators
    TILE(DATA_TYPE, M0, N0, acc);

    LOOP_UNROLLING(int, i, 0, 1, M0,
    {
        acc[i].v = 0.f;
    })

    int k;
    for(k = 0; k <= K - K0; k += K0)
    {
        TILE(DATA_TYPE, M0, K0, a);
        TILE(DATA_TYPE, N0, K0, b);

        LOOP_UNROLLING(int, i, 0, 1, M0,
        {
            a[i].v = 0.f;
        })

        LOOP_UNROLLING(int, i, 0, 1, N0,
        {
            b[i].v = 0.f;
        })

        // Load tile from the lhs/rhs tensors
        T_LOAD(DATA_TYPE, M0, K0, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a);
        T_LOAD(DATA_TYPE, N0, K0, BUFFER, rhs, 0, 0, 1, rhs_stride_y, b);

#if GPU_ARCH == GPU_ARCH_MIDGARD
        // This part is written to decrease the number of loop unrollings caused
        // by T_MMUL. The NT/NT version is partly vectorized and uses less number
        // of loop unrollings, and code behaves as expected. Although this is not
        // a performant solution for the specified architecture, it is necessary
        // to overcome some limitations.
        TILE(DATA_TYPE, K0, N0, bt);
        LOOP_UNROLLING(int, i, 0, 1, N0,
        {
            LOOP_UNROLLING(int, j, 0, 1, K0,
            {
                bt[j].s[i] = b[i].s[j];
            })
        })
        T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, K0, NT, NT, a, bt, acc);
#else // GPU_ARCH == GPU_ARCH_MIDGARD
        T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, K0, NT, T, a, b, acc);
#endif // GPU_ARCH == GPU_ARCH_MIDGARD

        lhs_offset_first_element_in_bytes += K0 * sizeof(DATA_TYPE);
        rhs_offset_first_element_in_bytes += K0 * sizeof(DATA_TYPE);
    }

#if K % K0 != 0
    /* Leftover Loop */
    for(; k < K; ++k)
    {
        TILE(DATA_TYPE, M0, 1, a);
        TILE(DATA_TYPE, N0, 1, b);

        LOOP_UNROLLING(int, i, 0, 1, M0,
        {
            a[i].v = 0.f;
        })

        LOOP_UNROLLING(int, i, 0, 1, N0,
        {
            b[i].v = 0.f;
        })

        // Load tile from the lhs/rhs tensors
        T_LOAD(DATA_TYPE, M0, 1, BUFFER, lhs, 0, 0, 1, lhs_stride_y, a);
        T_LOAD(DATA_TYPE, N0, 1, BUFFER, rhs, 0, 0, 1, rhs_stride_y, b);

#if GPU_ARCH == GPU_ARCH_MIDGARD
        // See the main loop for the explanation of this part
        TILE(DATA_TYPE, 1, N0, bt);
        LOOP_UNROLLING(int, i, 0, 1, N0,
        {
            bt[0].s[i] = b[i].s[0];
        })
        T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, 1, NT, NT, a, bt, acc);
#else // GPU_ARCH == GPU_ARCH_MIDGARD
        T_MMUL(DATA_TYPE, DATA_TYPE, DATA_TYPE, M0, N0, 1, NT, T, a, b, acc);
#endif // GPU_ARCH == GPU_ARCH_MIDGARD

        lhs_offset_first_element_in_bytes += 1 * sizeof(DATA_TYPE);
        rhs_offset_first_element_in_bytes += 1 * sizeof(DATA_TYPE);
    }
#endif // K % K0 != 0

    const bool x_cond = PARTIAL_STORE_N0 != 0 && get_global_id(0) == 0;
    const bool y_cond = PARTIAL_STORE_M0 != 0 && get_global_id(1) == 0;

    TILE(int, M0, 1, indirect_buffer);
    LOOP_UNROLLING(int, _i, 0, 1, M0,
    {
        indirect_buffer[_i].v = min(_i, select(M0 - 1, PARTIAL_STORE_M0 - 1, y_cond));
    });

    T_STORE_INDIRECT_WIDTH_SELECT(DATA_TYPE, M0, N0, PARTIAL_STORE_N0, BUFFER, dst, 0, dst_stride_y, x_cond, acc, indirect_buffer);
}
#endif // defined(MAT_MUL_NATIVE_NT_T)