aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/runtime/IScheduler.h
blob: 29135f42c0255a4ef14865c4e75af553dd843be7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*
 * Copyright (c) 2017-2020 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ARM_COMPUTE_ISCHEDULER_H
#define ARM_COMPUTE_ISCHEDULER_H

#include "arm_compute/core/CPP/CPPTypes.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/experimental/Types.h"

#include <functional>
#include <limits>

namespace arm_compute
{
class ICPPKernel;
class ITensor;

/** Scheduler interface to run kernels */
class IScheduler
{
public:
    /** Strategies available to split a workload */
    enum class StrategyHint
    {
        STATIC,  /**< Split the workload evenly among the threads */
        DYNAMIC, /**< Split the workload dynamically using a bucket system */
    };

    /** When arm_compute::ISchedular::Hints::_split_dimension is initialized with this value
     * then the schedular is free to break down the problem space over as many dimensions
     * as it wishes
     */
    static constexpr unsigned int split_dimensions_all = std::numeric_limits<unsigned>::max();

    /** Scheduler hints
     *
     * Collection of preferences set by the function regarding how to split a given workload
     */
    class Hints
    {
    public:
        /** Constructor
         *
         * @param[in] split_dimension Dimension along which to split the kernel's execution window.
         * @param[in] strategy        (Optional) Split strategy.
         * @param[in] threshold       (Optional) Dynamic scheduling capping threshold.
         */
        Hints(unsigned int split_dimension, StrategyHint strategy = StrategyHint::STATIC, int threshold = 0)
            : _split_dimension(split_dimension), _strategy(strategy), _threshold(threshold)
        {
        }
        /** Set the split_dimension hint
         *
         * @param[in] split_dimension Dimension along which to split the kernel's execution window.
         *
         * @return the Hints object
         */
        Hints &set_split_dimension(unsigned int split_dimension)
        {
            _split_dimension = split_dimension;
            return *this;
        }
        /** Return the prefered split dimension
         *
         * @return The split dimension
         */
        unsigned int split_dimension() const
        {
            return _split_dimension;
        }

        /** Set the strategy hint
         *
         * @param[in] strategy Prefered strategy to use to split the workload
         *
         * @return the Hints object
         */
        Hints &set_strategy(StrategyHint strategy)
        {
            _strategy = strategy;
            return *this;
        }
        /** Return the prefered strategy to use to split workload.
         *
         * @return The strategy
         */
        StrategyHint strategy() const
        {
            return _strategy;
        }
        /** Return the granule capping threshold to be used by dynamic scheduling.
         *
         * @return The capping threshold
         */
        int threshold() const
        {
            return _threshold;
        }

    private:
        unsigned int _split_dimension;
        StrategyHint _strategy;
        int          _threshold;
    };
    /** Signature for the workloads to execute */
    using Workload = std::function<void(const ThreadInfo &)>;
    /** Default constructor. */
    IScheduler();

    /** Destructor. */
    virtual ~IScheduler() = default;

    /** Sets the number of threads the scheduler will use to run the kernels.
     *
     * @param[in] num_threads If set to 0, then one thread per CPU core available on the system will be used, otherwise the number of threads specified.
     */
    virtual void set_num_threads(unsigned int num_threads) = 0;

    /** Returns the number of threads that the SingleThreadScheduler has in his pool.
     *
     * @return Number of threads available in SingleThreadScheduler.
     */
    virtual unsigned int num_threads() const = 0;

    /** Runs the kernel in the same thread as the caller synchronously.
     *
     * @param[in] kernel Kernel to execute.
     * @param[in] hints  Hints for the scheduler.
     */
    virtual void schedule(ICPPKernel *kernel, const Hints &hints) = 0;

    /** Runs the kernel in the same thread as the caller synchronously.
     *
     * @param[in] kernel  Kernel to execute.
     * @param[in] hints   Hints for the scheduler.
     * @param[in] inputs  Vector containing the input tensors.
     * @param[in] outputs Vector containing the output tensors.
     */
    virtual void schedule_op(ICPPKernel *kernel, const Hints &hints, const InputTensorMap &inputs, const OutputTensorMap &outputs) = 0;

    /** Execute all the passed workloads
     *
     * @note there is no guarantee regarding the order in which the workloads will be executed or whether or not they will be executed in parallel.
     *
     * @param[in] workloads Array of workloads to run
     * @param[in] tag       String that can be used by profiling tools to identify the workloads run by the scheduler (Can be null).
     */
    virtual void run_tagged_workloads(std::vector<Workload> &workloads, const char *tag);

    /** Get CPU info.
     *
     * @return CPU info.
     */
    CPUInfo &cpu_info();
    /** Get a hint for the best possible number of execution threads
     *
     * @warning In case we can't work out the best number of threads,
     *          std::thread::hardware_concurrency() is returned else 1 in case of bare metal builds
     *
     * @return Best possible number of execution threads to use
     */
    unsigned int num_threads_hint() const;

protected:
    /** Execute all the passed workloads
     *
     * @note there is no guarantee regarding the order in which the workloads will be executed or whether or not they will be executed in parallel.
     *
     * @param[in] workloads Array of workloads to run
     */
    virtual void run_workloads(std::vector<Workload> &workloads) = 0;
    CPUInfo _cpu_info;

private:
    unsigned int _num_threads_hint = {};
};
} // namespace arm_compute
#endif /* ARM_COMPUTE_ISCHEDULER_H */