aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/graph/backends/FunctionHelpers.h
blob: 4a3f001671f80c73bbc6ecd0dcc333bbd2548366 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
/*
 * Copyright (c) 2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef __ARM_COMPUTE_GRAPH_BACKENDS_DETAIL_FUNCTION_HELPERS_H__
#define __ARM_COMPUTE_GRAPH_BACKENDS_DETAIL_FUNCTION_HELPERS_H__

#include "arm_compute/graph/Logger.h"
#include "arm_compute/graph/Tensor.h"
#include "arm_compute/graph/TypePrinter.h"
#include "arm_compute/graph/Types.h"
#include "arm_compute/graph/backends/Utils.h"
#include "arm_compute/graph/nodes/Nodes.h"

#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensorInfo.h"
#include "arm_compute/core/utils/misc/Cast.h"

namespace arm_compute
{
namespace graph
{
namespace backends
{
namespace detail
{
/** Returns backing tensor of a given tensor
 *
 * @tparam TargetInfo Target information
 *
 * @param[in] tensor Tensor to extract the backing tensor from
 *
 * @return Backing tensor if present else nullptr
 */
template <typename TargetInfo>
typename TargetInfo::TensorType *get_backing_tensor(arm_compute::graph::Tensor *tensor)
{
    typename TargetInfo::TensorType *backing_tensor = nullptr;
    if(tensor != nullptr)
    {
        ARM_COMPUTE_ERROR_ON(tensor->desc().target != TargetInfo::TargetType);
        // Get backing tensor handle
        ITensorHandle *tensor_handle = tensor->handle();
        // Get backing tensor
        backing_tensor = (tensor_handle != nullptr) ? arm_compute::utils::cast::polymorphic_cast<typename TargetInfo::TensorType *>(&tensor_handle->tensor()) : nullptr;
    }

    return backing_tensor;
}

template <typename TargetInfo>
void validate_node(const INode &node, size_t num_expected_inputs, size_t num_expected_outputs)
{
    ARM_COMPUTE_LOG_GRAPH_VERBOSE("Creating " << node.type()
                                  << " Target : " << TargetInfo::TargetType
                                  << " ID : " << node.id()
                                  << " Name: " << node.name()
                                  << std::endl);

    ARM_COMPUTE_ERROR_ON(TargetInfo::TargetType != node.assigned_target());
    ARM_COMPUTE_ERROR_ON(node.num_inputs() != num_expected_inputs);
    ARM_COMPUTE_ERROR_ON(node.num_outputs() != num_expected_outputs);
}

/** Creates a backend activation layer function
 *
 * @tparam ActivationLayerFunction Backend activation function
 * @tparam TargetInfo              Target-specific information
 *
 * @param[in] node Node to create the backend function for
 *
 * @return Backend activation layer function
 */
template <typename ActivationLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_activation_layer(ActivationLayerNode &node)
{
    validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input    = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *output   = get_backing_tensor<TargetInfo>(node.output(0));
    const ActivationLayerInfo        act_info = node.activation_info();

    // Create function
    auto func = support::cpp14::make_unique<ActivationLayerFunction>();
    func->configure(input, output, act_info);

    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Shape: " << input->info()->tensor_shape()
                               << " Activation function: " << act_info.activation()
                               << " a: " << act_info.a()
                               << " b: " << act_info.b()
                               << " InPlace : " << is_in_place_operation(input, output)
                               << std::endl);

    return std::move(func);
}

/** Create a backend batch normalization layer function
 *
 * @tparam BatchNormalizationLayerFunction Backend batch normalization function
 * @tparam TargetInfo                      Target-specific information
 *
 * @param[in] node Node to create the backend function for
 *
 * @return Backend batch normalization layer function
 */
template <typename BatchNormalizationLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_batch_normalization_layer(BatchNormalizationLayerNode &node)
{
    validate_node<TargetInfo>(node, 5 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input     = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *mean      = get_backing_tensor<TargetInfo>(node.input(1));
    typename TargetInfo::TensorType *var       = get_backing_tensor<TargetInfo>(node.input(2));
    typename TargetInfo::TensorType *beta      = get_backing_tensor<TargetInfo>(node.input(3));
    typename TargetInfo::TensorType *gamma     = get_backing_tensor<TargetInfo>(node.input(4));
    typename TargetInfo::TensorType *output    = get_backing_tensor<TargetInfo>(node.output(0));
    const float                      epsilon   = node.epsilon();
    const ActivationLayerInfo        fused_act = node.fused_activation();

    // Create and configure function
    auto func = support::cpp14::make_unique<BatchNormalizationLayerFunction>();
    func->configure(input, output, mean, var, beta, gamma, epsilon, fused_act);

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Shape: " << input->info()->tensor_shape()
                               << " Epsilon: " << epsilon << " "
                               << (fused_act.enabled() ? to_string(fused_act.activation()) : "")
                               << " InPlace : " << is_in_place_operation(input, output)
                               << std::endl);

    return std::move(func);
}

/** Create a backend channel shuffle layer function
 *
 * @tparam ChannelShuffleLayerFunction Backend channel shuffle function
 * @tparam TargetInfo                  Target-specific information
 *
 * @param[in] node Node to create the backend function for
 *
 * @return Backend channel shuffle layer function
 */
template <typename ChannelShuffleLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_channel_shuffle_layer(ChannelShuffleLayerNode &node)
{
    validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input      = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *output     = get_backing_tensor<TargetInfo>(node.output(0));
    const unsigned int               num_groups = node.num_groups();

    // Create function
    auto func = support::cpp14::make_unique<ChannelShuffleLayerFunction>();
    func->configure(input, output, num_groups);

    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Shape: " << input->info()->tensor_shape()
                               << " Num groups: " << num_groups
                               << std::endl);

    return std::move(func);
}

/** Create a backend layer concatenate function
 *
 * @tparam ConcatenateLayerFunction Backend concatenate function
 * @tparam TargetInfo               Target-specific information
 *
 * @param[in] node Node to create the backend function for
 *
 * @return Backend concatenate layer function
 */
template <typename ConcatenateLayerFunction, typename TargetInfo>
std::unique_ptr<arm_compute::IFunction> create_concatenate_layer(ConcatenateLayerNode &node)
{
    ARM_COMPUTE_LOG_GRAPH_VERBOSE("Creating Concatenate node with ID : " << node.id() << " and Name: " << node.name() << std::endl);
    ARM_COMPUTE_ERROR_ON(node.num_outputs() != 1);

    // Return nullptr if depth concatenate is switched off
    if(!node.is_enabled())
    {
        return nullptr;
    }

    // Extract IO and info
    std::vector<typename TargetInfo::TensorType *> inputs;
    for(unsigned int i = 0; i < node.num_inputs(); ++i)
    {
        inputs.push_back(get_backing_tensor<TargetInfo>(node.input(i)));
    }
    typename TargetInfo::TensorType *output      = get_backing_tensor<TargetInfo>(node.output(0));
    const DataLayoutDimension        concat_axis = node.concatenation_axis();

    // Create and configure function
    auto func = support::cpp14::make_unique<ConcatenateLayerFunction>();
    func->configure(inputs, output, concat_axis);

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << output->info()->data_type()
                               << " Shape: " << output->info()->tensor_shape()
                               << " Num Inputs: " << inputs.size()
                               << " Axis: " << concat_axis
                               << std::endl);

    return std::move(func);
}

/** Create a backend convolution layer function
 *
 * @tparam ConvolutionLayerFunctions Backend convolution functions
 * @tparam TargetInfo              Target-specific information
 *
 * @param[in] node Node to create the backend function for
 * @param[in] ctx  Graph context
 *
 * @return Backend convolution layer function
 */
template <typename ConvolutionLayerFunctions, typename TargetInfo>
std::unique_ptr<IFunction> create_convolution_layer(ConvolutionLayerNode &node, GraphContext &ctx)
{
    validate_node<TargetInfo>(node, 3 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input   = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *weights = get_backing_tensor<TargetInfo>(node.input(1));
    typename TargetInfo::TensorType *biases  = get_backing_tensor<TargetInfo>(node.input(2));
    typename TargetInfo::TensorType *output  = get_backing_tensor<TargetInfo>(node.output(0));

    if(is_data_type_quantized_asymmetric(input->info()->data_type()))
    {
        biases->info()->set_data_type(DataType::S32);
    }

    const PadStrideInfo     conv_info      = node.convolution_info();
    const unsigned int      num_groups     = node.num_groups();
    const ConvolutionMethod conv_algorithm = node.convolution_method();
    const bool              fast_math      = node.fast_math_hint() == FastMathHint::Enabled;

    // Create and configure function (we assume that functions have been validated before creation)
    std::shared_ptr<IMemoryManager> mm = get_memory_manager(ctx, TargetInfo::TargetType);
    std::unique_ptr<IFunction>      func;
    std::string                     func_name;

    if(conv_algorithm == ConvolutionMethod::Winograd)
    {
        ARM_COMPUTE_ERROR_ON_MSG(num_groups != 1, "WinogradConvolutionLayer does not support grouping!");
        std::tie(func, func_name) = create_named_memory_managed_function<typename ConvolutionLayerFunctions::WinogradConvolutionLayer>(
                                        std::string("WinogradConvolutionLayer"), mm,
                                        input, weights, biases, output, conv_info, ActivationLayerInfo(), fast_math);
    }
    else if(conv_algorithm == ConvolutionMethod::Direct)
    {
        ARM_COMPUTE_ERROR_ON_MSG(num_groups != 1, "DirectConvolutionLayer does not support grouping!");
        std::tie(func, func_name) = create_named_function<typename ConvolutionLayerFunctions::DirectConvolutionLayer>(
                                        std::string("DirectConvolutionLayer"),
                                        input, weights, biases, output, conv_info);
    }
    else if(conv_algorithm == ConvolutionMethod::GEMM)
    {
        std::tie(func, func_name) = create_named_memory_managed_function<typename ConvolutionLayerFunctions::GEMMConvolutionLayer>(
                                        std::string("GEMMConvolutionLayer"), mm,
                                        input, weights, biases, output, conv_info,
                                        WeightsInfo(), Size2D(1U, 1U), ActivationLayerInfo(), num_groups);
    }
    else
    {
        std::tie(func, func_name) = create_named_memory_managed_function<typename ConvolutionLayerFunctions::GenericConvolutionLayer>(
                                        std::string("GenericConvolutionLayer"), mm,
                                        input, weights, biases, output, conv_info,
                                        WeightsInfo(), Size2D(1U, 1U), ActivationLayerInfo(), fast_math, num_groups);
    }

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << func_name
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Groups: " << num_groups
                               << " Input QuantInfo: " << input->info()->quantization_info()
                               << " Weights QuantInfo: " << weights->info()->quantization_info()
                               << " Input shape: " << input->info()->tensor_shape()
                               << " Weights shape: " << weights->info()->tensor_shape()
                               << " Output shape: " << output->info()->tensor_shape()
                               << std::endl);
    return func;
}

/** Create a backend deconvolution layer function
 *
 * @tparam DeconvolutionLayerFunction Backend deconvolution function
 * @tparam TargetInfo                 Target-specific information
 *
 * @param[in] node Node to create the backend function for
 * @param[in] ctx  Graph context
 *
 * @return Backend deconvolution layer function
 */
template <typename DeconvolutionLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_deconvolution_layer(DeconvolutionLayerNode &node, GraphContext &ctx)
{
    validate_node<TargetInfo>(node, 3 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input   = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *weights = get_backing_tensor<TargetInfo>(node.input(1));
    typename TargetInfo::TensorType *biases  = get_backing_tensor<TargetInfo>(node.input(2));
    typename TargetInfo::TensorType *output  = get_backing_tensor<TargetInfo>(node.output(0));

    const PadStrideInfo deconv_info  = node.deconvolution_info();
    const Size2D        inner_border = node.inner_border();

    // Create and configure function (we assume that functions have been validated before creation)
    std::shared_ptr<IMemoryManager> mm = get_memory_manager(ctx, TargetInfo::TargetType);
    std::unique_ptr<IFunction>      func;

    std::tie(func, std::ignore) = create_named_memory_managed_function<DeconvolutionLayerFunction>(
                                      std::string(), mm,
                                      input, weights, biases, output, deconv_info, inner_border.x(), inner_border.y());

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Input shape: " << input->info()->tensor_shape()
                               << " Weights shape: " << weights->info()->tensor_shape()
                               << " Output shape: " << output->info()->tensor_shape()
                               << std::endl);
    return func;
}

/** Create a backend layer depth-wise convolution function
 *
 * @tparam DepthwiseConvolutionLayerFunctions Backend depthwise convolution function
 * @tparam TargetInfo                         Target-specific information
 *
 * @param[in] node Node to create the backend function for
 *
 * @return Backend depth-wise convolution layer function
 */
template <typename DepthwiseConvolutionLayerFunctions, typename TargetInfo>
std::unique_ptr<IFunction> create_depthwise_convolution_layer(DepthwiseConvolutionLayerNode &node)
{
    validate_node<TargetInfo>(node, 3 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input   = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *weights = get_backing_tensor<TargetInfo>(node.input(1));
    typename TargetInfo::TensorType *biases  = get_backing_tensor<TargetInfo>(node.input(2));
    typename TargetInfo::TensorType *output  = get_backing_tensor<TargetInfo>(node.output(0));

    if(is_data_type_quantized_asymmetric(input->info()->data_type()))
    {
        biases->info()->set_data_type(DataType::S32);
    }

    const PadStrideInfo              conv_info     = node.convolution_info();
    const DepthwiseConvolutionMethod dwc_algorithm = node.depthwise_convolution_method();

    // Create and configure function (we assume that functions have been validated before creation)
    std::unique_ptr<IFunction> func;
    std::string                func_name;
    if(dwc_algorithm == DepthwiseConvolutionMethod::Optimized3x3)
    {
        std::tie(func, func_name) = create_named_function<typename DepthwiseConvolutionLayerFunctions::DepthwiseConvolutionLayer3x3>(
                                        std::string("DepthwiseConvolutionLayer3x3"),
                                        input, weights, biases, output, conv_info);
    }
    else
    {
        std::tie(func, func_name) = create_named_function<typename DepthwiseConvolutionLayerFunctions::GenericDepthwiseConvolutionLayer>(
                                        std::string("DepthwiseConvolutionLayer"),
                                        input, weights, biases, output, conv_info);
    }

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << func_name
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Input QuantInfo: " << input->info()->quantization_info()
                               << " Weights QuantInfo: " << weights->info()->quantization_info()
                               << " Input shape: " << input->info()->tensor_shape()
                               << " Weights shape: " << weights->info()->tensor_shape()
                               << " Output shape: " << output->info()->tensor_shape()
                               << std::endl);
    return func;
}

/** Create a backend element-wise operation layer function
 *
 * @tparam EltwiseFunctions Backend element-wise function
 * @tparam TargetInfo       Target-specific information
 *
 * @param[in] node Node to create the backend function for
 *
 * @return Backend element-wise operation layer function
 */
template <typename EltwiseFunctions, typename TargetInfo>
std::unique_ptr<IFunction> create_eltwise_layer(EltwiseLayerNode &node)
{
    validate_node<TargetInfo>(node, 2 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input1         = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *input2         = get_backing_tensor<TargetInfo>(node.input(1));
    typename TargetInfo::TensorType *output         = get_backing_tensor<TargetInfo>(node.output(0));
    const EltwiseOperation           eltwise_op     = node.eltwise_operation();
    const ConvertPolicy              convert_policy = node.convert_policy();
    ARM_COMPUTE_ERROR_ON(input1 == nullptr);
    ARM_COMPUTE_ERROR_ON(input2 == nullptr);
    ARM_COMPUTE_ERROR_ON(output == nullptr);

    std::unique_ptr<IFunction> func = nullptr;
    std::string                func_name;
    if(eltwise_op == EltwiseOperation::Add)
    {
        std::tie(func, func_name) = create_named_function<typename EltwiseFunctions::Addition>(
                                        std::string("ArithmeticAddition"),
                                        input1, input2, output, convert_policy);
    }
    else if(eltwise_op == EltwiseOperation::Sub)
    {
        std::tie(func, func_name) = create_named_function<typename EltwiseFunctions::Subtraction>(
                                        std::string("ArithmeticSubtraction"),
                                        input1, input2, output, convert_policy);
    }
    else if(eltwise_op == EltwiseOperation::Mul)
    {
        std::tie(func, func_name) = create_named_function<typename EltwiseFunctions::Multiplication>(
                                        std::string("PixelWiseMultiplication"),
                                        input1, input2, output, 1.f, convert_policy, node.rounding_policy());
    }
    else
    {
        ARM_COMPUTE_ERROR("Unsupported element-wise operation!");
    }

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Operation " << func_name
                               << " Data Type: " << input1->info()->data_type()
                               << " Shape : " << input1->info()->tensor_shape()
                               << std::endl);

    return func;
}

/** Create a backend flatten layer function
 *
 * @tparam FlattenLayerFunction Backend flatten function
 * @tparam TargetInfo           Target-specific information
 *
 * @param[in] node Node to create the backend function for
 *
 * @return Backend flatten layer function
 */
template <typename FlattenLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_flatten_layer(FlattenLayerNode &node)
{
    validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input  = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));

    ARM_COMPUTE_ERROR_ON(input == nullptr);
    ARM_COMPUTE_ERROR_ON(output == nullptr);

    // Create and configure function
    auto func = support::cpp14::make_unique<FlattenLayerFunction>();
    func->configure(input, output);

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Input shape: " << input->info()->tensor_shape()
                               << " Output shape: " << output->info()->tensor_shape()
                               << std::endl);

    return std::move(func);
}

/** Create a backend fully connected layer function
 *
 * @tparam FullyConnectedLayerFunction Backend fully-connected function
 * @tparam TargetInfo                  Target-specific information
 *
 * @param[in] node Node to create the backend function for
 * @param[in] ctx  Graph context
 *
 * @return Backend fully connected layer function
 */
template <typename FullyConnectedLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_fully_connected_layer(FullyConnectedLayerNode &node, GraphContext &ctx)
{
    validate_node<TargetInfo>(node, 3 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input   = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *weights = get_backing_tensor<TargetInfo>(node.input(1));
    typename TargetInfo::TensorType *biases  = get_backing_tensor<TargetInfo>(node.input(2));
    typename TargetInfo::TensorType *output  = get_backing_tensor<TargetInfo>(node.output(0));
    const FullyConnectedLayerInfo    fc_info = node.info();

    ARM_COMPUTE_ERROR_ON(input == nullptr);
    ARM_COMPUTE_ERROR_ON(weights == nullptr);
    ARM_COMPUTE_ERROR_ON(output == nullptr);

    // Create and configure function
    auto func = support::cpp14::make_unique<FullyConnectedLayerFunction>(get_memory_manager(ctx, TargetInfo::TargetType));
    func->configure(input, weights, biases, output, fc_info);

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Input QuantInfo: " << input->info()->quantization_info()
                               << " Weights QuantInfo: " << weights->info()->quantization_info()
                               << " Input shape: " << input->info()->tensor_shape()
                               << " Weights shape: " << weights->info()->tensor_shape()
                               << " Output shape: " << output->info()->tensor_shape()
                               << std::endl);

    return std::move(func);
}

/** Create a backend normalization layer function
 *
 * @tparam NormalizationLayerFunction Backend normalization function
 * @tparam TargetInfo                 Target-specific information
 *
 * @param[in] node Node to create the backend function for
 * @param[in] ctx  Graph context
 *
 * @return Backend normalization layer function
 */
template <typename NormalizationLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_normalization_layer(NormalizationLayerNode &node, GraphContext &ctx)
{
    ARM_COMPUTE_UNUSED(ctx);

    validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input     = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *output    = get_backing_tensor<TargetInfo>(node.output(0));
    const NormalizationLayerInfo     norm_info = node.normalization_info();
    ARM_COMPUTE_ERROR_ON(input == nullptr);
    ARM_COMPUTE_ERROR_ON(output == nullptr);

    // Create and configure function
    auto func = support::cpp14::make_unique<NormalizationLayerFunction>();
    func->configure(input, output, norm_info);

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Input shape: " << input->info()->tensor_shape()
                               << " Output shape: " << output->info()->tensor_shape()
                               << " Normalization info: " << norm_info.type()
                               << std::endl);

    return std::move(func);
}

/** Create a backend permute layer function
 *
 * @tparam PermuteLayerFunction Backend permute function
 * @tparam TargetInfo           Target-specific information
 *
 * @param[in] node Node to create the backend function for
 *
 * @return Backend permute layer function
 */
template <typename PermuteLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_permute_layer(PermuteLayerNode &node)
{
    validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input  = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
    const PermutationVector         &perm   = node.permutation_vector();
    ARM_COMPUTE_ERROR_ON(input == nullptr);
    ARM_COMPUTE_ERROR_ON(output == nullptr);

    // Create and configure function
    auto func = support::cpp14::make_unique<PermuteLayerFunction>();
    func->configure(input, output, perm);

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Input shape: " << input->info()->tensor_shape()
                               << " Output shape: " << output->info()->tensor_shape()
                               << " Permutation vector: " << perm
                               << std::endl);

    return std::move(func);
}

/** Create a backend pooling layer function
 *
 * @tparam PoolingLayerFunction Backend pooling function
 * @tparam TargetInfo           Target-specific information
 *
 * @param[in] node Node to create the backend function for
 *
 * @return Backend pooling layer function
 */
template <typename PoolingLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_pooling_layer(PoolingLayerNode &node)
{
    validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input     = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *output    = get_backing_tensor<TargetInfo>(node.output(0));
    const PoolingLayerInfo           pool_info = node.pooling_info();
    ARM_COMPUTE_ERROR_ON(input == nullptr);
    ARM_COMPUTE_ERROR_ON(output == nullptr);

    // Create and configure function
    auto func = support::cpp14::make_unique<PoolingLayerFunction>();
    func->configure(input, output, pool_info);

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Input shape: " << input->info()->tensor_shape()
                               << " Output shape: " << output->info()->tensor_shape()
                               << " Pooling info: " << pool_info.pool_type()
                               << std::endl);

    return std::move(func);
}

/** Create a backend reshape layer function
 *
 * @tparam ReshapeLayerFunction Backend reshape function
 * @tparam TargetInfo           Target-specific information
 *
 * @param[in] node Node to create the backend function for
 *
 * @return Backend reshape layer function
 */
template <typename ReshapeLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_reshape_layer(ReshapeLayerNode &node)
{
    validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input  = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
    ARM_COMPUTE_ERROR_ON(input == nullptr);
    ARM_COMPUTE_ERROR_ON(output == nullptr);

    // Create and configure function
    auto func = support::cpp14::make_unique<ReshapeLayerFunction>();
    func->configure(input, output);

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Input shape: " << input->info()->tensor_shape()
                               << " Output shape: " << output->info()->tensor_shape()
                               << std::endl);

    return std::move(func);
}

/** Create a backend resize layer function
 *
 * @tparam ResizeLayerFunction Backend resize function
 * @tparam TargetInfo          Target-specific information
 *
 * @param[in] node Node to create the backend function for
 *
 * @return Backend resize layer function
 */
template <typename ResizeLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_resize_layer(ResizeLayerNode &node)
{
    validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input  = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
    ARM_COMPUTE_ERROR_ON(input == nullptr);
    ARM_COMPUTE_ERROR_ON(output == nullptr);
    const InterpolationPolicy policy = node.policy();

    // Create and configure function
    auto func = support::cpp14::make_unique<ResizeLayerFunction>();
    func->configure(input, output, policy, BorderMode::CONSTANT);

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Input shape: " << input->info()->tensor_shape()
                               << " Output shape: " << output->info()->tensor_shape()
                               << " Interpolation: " << policy
                               << std::endl);

    return std::move(func);
}

/** Create a backend softmax layer function
 *
 * @tparam SoftmaxLayerFunction Backend softmax function
 * @tparam TargetInfo           Target-specific information
 *
 * @param[in] node Node to create the backend function for
 * @param[in] ctx  Graph context
 *
 * @return Backend softmax layer function
 */
template <typename SoftmaxLayerFunction, typename TargetInfo>
std::unique_ptr<IFunction> create_softmax_layer(SoftmaxLayerNode &node, GraphContext &ctx)
{
    validate_node<TargetInfo>(node, 1 /* expected inputs */, 1 /* expected outputs */);

    // Extract IO and info
    typename TargetInfo::TensorType *input  = get_backing_tensor<TargetInfo>(node.input(0));
    typename TargetInfo::TensorType *output = get_backing_tensor<TargetInfo>(node.output(0));
    const float                      beta   = node.beta();
    ARM_COMPUTE_ERROR_ON(input == nullptr);
    ARM_COMPUTE_ERROR_ON(output == nullptr);

    // Create and configure function
    auto func = support::cpp14::make_unique<SoftmaxLayerFunction>(get_memory_manager(ctx, TargetInfo::TargetType));
    func->configure(input, output, beta);

    // Log info
    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << node.type()
                               << " Target " << TargetInfo::TargetType
                               << " Data Type: " << input->info()->data_type()
                               << " Input shape: " << input->info()->tensor_shape()
                               << " Output shape: " << output->info()->tensor_shape()
                               << std::endl);

    return std::move(func);
}
} // namespace detail
} // namespace backends
} // namespace graph
} // namespace arm_compute

#endif /* __ARM_COMPUTE_GRAPH_BACKENDS_DETAIL_FUNCTION_HELPERS_H__ */