aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/utils/misc/ShapeCalculator.h
blob: 9bf6b046b465caceb91eb552970ea1ead31a6242 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef __ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H__
#define __ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H__

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensorInfo.h"
#include "arm_compute/core/Utils.h"

#include <cmath>

namespace arm_compute
{
namespace misc
{
namespace shape_calculator
{
inline TensorShape compute_vector_to_tensor_output_shape(const TensorShape &input, size_t conv_w, size_t conv_h, const DataLayout &data_layout)
{
    const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const size_t idx_c = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);

    TensorShape output_shape(input);
    output_shape.set(idx_w, conv_w);
    output_shape.set(idx_h, conv_h);
    output_shape.set(idx_c, input.x() / (conv_w * conv_h));

    return output_shape;
}
inline TensorShape compute_permutation_output_shape(const ITensorInfo &input, const PermutationVector &perm)
{
    TensorShape output_shape = input.tensor_shape();
    permute(output_shape, perm);
    return output_shape;
}
inline TensorShape compute_weights_reshaped_shape(const ITensorInfo &weights, bool has_bias = false)
{
    // Calculate output shape
    TensorShape weights_reshaped{ weights.tensor_shape() };
    weights_reshaped.collapse(3);
    const size_t tmp_dim = weights_reshaped[0];
    weights_reshaped.set(0, weights_reshaped[1]);
    weights_reshaped.set(1, tmp_dim + (has_bias ? 1 : 0));

    return weights_reshaped;
}
inline TensorShape compute_interleaved_shape(const ITensorInfo &a, int mult_interleave4x4_height = 1)
{
    // The interleaved output matrix will have the following shape: [ a_height * W, ceil(a_width / W) ] where W = 4 * mult_interleave4x4_height
    ARM_COMPUTE_ERROR_ON(mult_interleave4x4_height < 1);
    const int   interleave_width = 4 * mult_interleave4x4_height;
    TensorShape shape_interleaved_a{ a.tensor_shape() };
    shape_interleaved_a.set(0, a.dimension(0) * interleave_width);
    shape_interleaved_a.set(1, std::ceil(a.dimension(1) / static_cast<float>(interleave_width)));

    return shape_interleaved_a;
}
inline TensorShape compute_transpose1xW_shape(const ITensorInfo &b)
{
    // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ]
    TensorShape shape_transposed1xW_b{ b.tensor_shape() };
    shape_transposed1xW_b.set(0, b.dimension(1) * 16);
    shape_transposed1xW_b.set(1, std::ceil(b.dimension(0) / 16.f));

    return shape_transposed1xW_b;
}
inline TensorShape compute_transpose1xW_with_element_size_shape(const ITensorInfo &b, int mult_transpose1xW_width = 1)
{
    // Note: mult_transpose1xW_width expresses the number of chunks with size 1x(W) we want to store on the same row
    //       The transpose1xW output matrix will have the following shape:
    //       [ b_height * W, ceil(b_width / W) ] where W = (16 / element size of the tensor) * mult_transpose1xW_width
    ARM_COMPUTE_ERROR_ON(mult_transpose1xW_width < 1);
    TensorShape  shape_transposed1xW_b{ b.tensor_shape() };
    const size_t transpose_width = (16 / b.element_size()) * mult_transpose1xW_width;
    shape_transposed1xW_b.set(0, b.dimension(1) * transpose_width);
    shape_transposed1xW_b.set(1, static_cast<size_t>(std::ceil(b.dimension(0) / static_cast<float>(transpose_width))));

    return shape_transposed1xW_b;
}
inline TensorShape compute_reductionA_shape(const ITensorInfo &b)
{
    TensorShape shape_vector_sum_col{ b.tensor_shape() };
    if(shape_vector_sum_col.num_dimensions() > 1)
    {
        shape_vector_sum_col.remove_dimension(1);
    }

    return shape_vector_sum_col;
}
inline TensorShape compute_reductionB_shape(const ITensorInfo &a)
{
    TensorShape shape_vector_sum_row{ a.tensor_shape() };
    shape_vector_sum_row.set(Window::DimX, a.dimension(1));
    if(a.num_dimensions() > 1)
    {
        shape_vector_sum_row.remove_dimension(1);
    }

    return shape_vector_sum_row;
}
inline TensorShape compute_col2im_shape(const ITensorInfo &input, std::pair<unsigned int, unsigned int> convolved_dims)
{
    TensorShape col2im_shape{ input.tensor_shape() };
    col2im_shape.shift_right(1);
    col2im_shape.set(0, convolved_dims.first);
    col2im_shape.set(1, convolved_dims.second);
    col2im_shape.set(2, input.tensor_shape()[0]);

    return col2im_shape;
}
inline TensorShape compute_transposed_shape(const ITensorInfo &input)
{
    TensorShape shape_transposed{ input.tensor_shape() };

    shape_transposed.set(0, input.dimension(1));
    shape_transposed.set(1, input.dimension(0));

    return shape_transposed;
}
inline TensorShape compute_depthwise_convolution_shape(const ITensorInfo &input, const ITensorInfo &weights, PadStrideInfo conv_info, unsigned int depth_multiplier)
{
    const TensorShape input_shape{ input.tensor_shape() };
    const TensorShape weights_shape{ weights.tensor_shape() };

    const DataLayout data_layout = input.data_layout();
    const int        width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);

    unsigned int output_width  = 0;
    unsigned int output_height = 0;
    std::tie(output_width, output_height) = scaled_dimensions(input_shape[width_idx], input_shape[height_idx],
                                                              weights_shape[width_idx], weights_shape[height_idx],
                                                              conv_info);

    TensorShape output_shape{ input_shape };
    output_shape.set(width_idx, output_width);
    output_shape.set(height_idx, output_height);
    output_shape.set(channel_idx, input_shape[channel_idx] * depth_multiplier);

    return output_shape;
}
inline TensorShape compute_deconvolution_shape(const ITensorInfo &input, unsigned int sx, unsigned int sy, unsigned int inner_border_right, unsigned int inner_border_top, const PadStrideInfo &info)
{
    TensorShape        scale_out_shape(input.tensor_shape());
    const unsigned int out_x = input.dimension(0) + (input.dimension(0) - 1) * (sx - 1) + inner_border_right + 2 * info.pad().first;
    const unsigned int out_y = input.dimension(1) + (input.dimension(1) - 1) * (sy - 1) + inner_border_top + 2 * info.pad().second;
    scale_out_shape.set(0, out_x);
    scale_out_shape.set(1, out_y);

    return scale_out_shape;
}
inline TensorShape compute_im2col_conv_shape(const ITensorInfo *input, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, const Size2D &dilation)
{
    // The output shape will be the 2D shape used as input for GEMM [ out_channels * kernel_area, num_elems_per_out_channel ]

    TensorShape output_shape{ input->tensor_shape() };

    const DataLayout data_layout = input->data_layout();
    const int        width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);

    std::pair<unsigned int, unsigned int> out_dims = scaled_dimensions(output_shape[width_idx], output_shape[height_idx], kernel_dims.width, kernel_dims.height, conv_info, dilation);
    output_shape.set(0, (output_shape[channel_idx] * kernel_dims.area() + (has_bias ? 1 : 0)));
    output_shape.set(1, (out_dims.first * out_dims.second));
    output_shape.set(2, 1);

    return output_shape;
}
inline TensorShape compute_im2col_fc_shape(const ITensorInfo *input, const int num_input_dimensions = 3)
{
    TensorShape output_shape{ input->tensor_shape() };

    output_shape.collapse(num_input_dimensions);

    return output_shape;
}
inline TensorShape compute_im2col_flatten_shape(const ITensorInfo *input)
{
    // The output shape will be the flatten version of the input (i.e. [ width * height * channels, 1, 1, ... ] ). Used for FlattenLayer.

    ARM_COMPUTE_ERROR_ON(input->num_dimensions() < 3);

    TensorShape output_shape{ input->tensor_shape() };

    const size_t flatten_shape = input->dimension(0) * input->dimension(1) * input->dimension(2);
    output_shape.set(0, flatten_shape);
    output_shape.remove_dimension(1);
    output_shape.remove_dimension(1);

    return output_shape;
}
inline TensorShape compute_interleave_custom_shape(const TensorShape &input, const int x_interleave, const int y_interleave)
{
    TensorShape output_shape{ input };

    output_shape.set(0, output_shape.x() * x_interleave);
    output_shape.set(1, std::ceil(output_shape.y() / static_cast<float>(y_interleave)));

    return output_shape;
}
inline TensorShape compute_fully_connected_reshaped_weights_shape(const ITensorInfo *input, bool transpose_weights, bool is_batched_fc_layer, const int interleave)
{
    TensorShape output_shape{ input->tensor_shape() };

    // Transpose weights if the user hasn't done it
    if(transpose_weights)
    {
        output_shape = compute_transposed_shape(*input);
    }

    // If we run multiple batches we need 1xW transpose, too.
    if(is_batched_fc_layer)
    {
        output_shape = compute_transposed_shape(input->clone()->set_tensor_shape(output_shape));
        output_shape = compute_interleave_custom_shape(output_shape, interleave, interleave);
    }

    return output_shape;
}

inline TensorShape compute_winograd_filter_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info)
{
    TensorShape tensor_shape{ input.tensor_shape() };

    const Size2D kernel_size      = winograd_info.kernel_size;
    const Size2D output_tile_size = winograd_info.output_tile_size;
    const Size2D input_tile_size  = Size2D(output_tile_size.width + kernel_size.width - 1, output_tile_size.height + kernel_size.height - 1);

    tensor_shape.remove_dimension(get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH));
    tensor_shape.set(Window::DimX, input.dimension(3));
    tensor_shape.set(Window::DimY, input.dimension(get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL)));
    tensor_shape.set(Window::DimZ, input_tile_size.area());

    return tensor_shape;
}
inline TensorShape compute_winograd_input_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info)
{
    const PadStrideInfo conv_info        = winograd_info.convolution_info;
    const Size2D        kernel_size      = winograd_info.kernel_size;
    const Size2D        output_tile_size = winograd_info.output_tile_size;
    const Size2D        input_tile_size  = Size2D(output_tile_size.width + kernel_size.width - 1, output_tile_size.height + kernel_size.height - 1);

    const size_t idx_w = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_h = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
    const size_t idx_c = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL);

    // Compute the number of output tiles along the x and y direction of size "output_tile_size"
    const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(input.tensor_shape()[idx_w], input.tensor_shape()[idx_h]),
                                                                kernel_size,
                                                                output_tile_size,
                                                                conv_info);

    const unsigned int width  = input.tensor_shape()[idx_c];
    const unsigned int height = num_tiles.area();
    const unsigned int depth  = input_tile_size.area();

    TensorShape output_shape{ input.tensor_shape() };
    output_shape.set(0, width);
    output_shape.set(1, height);
    output_shape.set(2, depth);

    return output_shape;
}
inline TensorShape compute_winograd_output_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info)
{
    const PadStrideInfo conv_info        = winograd_info.convolution_info;
    const Size2D        kernel_size      = winograd_info.kernel_size;
    const Size2D        input_dimensions = winograd_info.input_dimensions;
    const DataLayout    data_layout      = winograd_info.output_data_layout;

    // Compute output shape
    unsigned int output_width  = 0;
    unsigned int output_height = 0;
    std::tie(output_width, output_height) = scaled_dimensions(input_dimensions.width, input_dimensions.height,
                                                              kernel_size.width, kernel_size.height, conv_info);

    TensorShape tensor_shape{ input.tensor_shape() };

    // Output dimension
    const unsigned int out_w = output_width;
    const unsigned int out_h = output_height;
    const unsigned int out_c = input.dimension(0);

    tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH), out_w);
    tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT), out_h);
    tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL), out_c);

    return tensor_shape;
}
inline TensorShape compute_deep_convolution_shape(const ITensorInfo &input, const ITensorInfo &weights, PadStrideInfo conv_info)
{
    const TensorShape input_shape{ input.tensor_shape() };
    const TensorShape weights_shape{ weights.tensor_shape() };

    const size_t idx_width   = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_height  = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
    const size_t idx_channel = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL);

    const unsigned int input_width         = input_shape[idx_width];
    const unsigned int input_height        = input_shape[idx_height];
    const unsigned int weights_width       = weights_shape[idx_width];
    const unsigned int weights_height      = weights_shape[idx_height];
    const unsigned int weights_out_channel = weights_shape[3];
    unsigned int       output_width        = 0;
    unsigned int       output_height       = 0;
    std::tie(output_width, output_height) = scaled_dimensions(input_width, input_height, weights_width, weights_height, conv_info);

    TensorShape output_shape{ input_shape };
    output_shape.set(idx_width, output_width);
    output_shape.set(idx_height, output_height);
    output_shape.set(idx_channel, weights_out_channel);

    return output_shape;
}
inline TensorShape compute_min_max_shape(const ITensorInfo *input)
{
    TensorShape output_shape{ input->tensor_shape() };
    output_shape.set(Window::DimX, 2);
    output_shape.remove_dimension(1);
    output_shape.remove_dimension(1);

    return output_shape;
}

inline TensorShape compute_pool_shape(const ITensorInfo &input, PoolingLayerInfo pool_info)
{
    unsigned int pooled_w = 0;
    unsigned int pooled_h = 0;

    TensorShape output_shape{ input.tensor_shape() };

    const bool         is_global_pooling = pool_info.is_global_pooling();
    const unsigned int idx_width         = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
    const unsigned int idx_height        = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
    const unsigned int pool_size_x       = is_global_pooling ? output_shape[idx_width] : pool_info.pool_size().width;
    const unsigned int pool_size_y       = is_global_pooling ? output_shape[idx_height] : pool_info.pool_size().height;

    std::tie(pooled_w, pooled_h) = scaled_dimensions(output_shape[idx_width],
                                                     output_shape[idx_height],
                                                     pool_size_x,
                                                     pool_size_y,
                                                     pool_info.pad_stride_info());

    output_shape.set(idx_width, pooled_w);
    output_shape.set(idx_height, pooled_h);

    return output_shape;
}

inline TensorShape compute_rnn_shape(const ITensorInfo *input, const unsigned int batch_size)
{
    TensorShape output_shape{ input->tensor_shape() };
    output_shape.set(1, batch_size);

    return output_shape;
}
inline TensorShape compute_mm_shape(const ITensorInfo &input0, const ITensorInfo &input1, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
{
    ARM_COMPUTE_ERROR_ON_MSG(input0.num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");

    const bool is_gemm3d = reshape_info.depth_output_gemm3d() != 1;

    // If the output of GEMM has to be reinterpreted as 3D, the number of input0 rows (M) is obtained collapsing the second and third
    // dimension of the output tensor
    const int dim0 = is_interleaved_transposed ? reshape_info.n() : input1.dimension(0);
    const int dim1 = is_interleaved_transposed ? reshape_info.m() / reshape_info.depth_output_gemm3d() : input0.dimension(1) / reshape_info.depth_output_gemm3d();
    const int dim2 = input0.tensor_shape()[2];
    const int dim3 = input0.tensor_shape()[3];

    TensorShape output_shape{ input0.tensor_shape() };

    output_shape.set(0, dim0);
    output_shape.set(1, dim1);
    output_shape.set(2, is_gemm3d ? reshape_info.depth_output_gemm3d() : dim2);
    output_shape.set(3, is_gemm3d ? dim2 : dim3);
    output_shape.set(4, is_gemm3d ? dim3 : 1);

    return output_shape;
}

template <typename T>
inline TensorShape get_shape_from_info(T *info)
{
    return info->info()->tensor_shape();
}

inline TensorShape get_shape_from_info(ITensorInfo *info)
{
    return info->tensor_shape();
}

template <typename T>
inline TensorShape calculate_width_concatenate_shape(const std::vector<T *> &inputs_vector)
{
    TensorShape out_shape = get_shape_from_info(inputs_vector[0]);

    size_t width = 0;
    for(const auto &tensor : inputs_vector)
    {
        ARM_COMPUTE_ERROR_ON(tensor == nullptr);
        const TensorShape shape = get_shape_from_info(tensor);
        width += shape.x();
    }

    out_shape.set(0, width);

    return out_shape;
}
} // namespace shape_calculator
} // namespace misc
} // namespace arm_compute
#endif /* __ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H__ */