aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/utils/misc/ShapeCalculator.h
blob: 4756ff4f9746210966f4fbe62542ff57003545a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
/*
 * Copyright (c) 2017-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef __ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H__
#define __ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H__

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensorInfo.h"
#include "arm_compute/core/Utils.h"

#include "arm_compute/core/utils/helpers/tensor_transform.h"

#include <cmath>

namespace arm_compute
{
namespace misc
{
namespace shape_calculator
{
inline TensorShape compute_vector_to_tensor_output_shape(const TensorShape &input, size_t conv_w, size_t conv_h, const DataLayout &data_layout)
{
    const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const size_t idx_c = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);

    TensorShape output_shape(input);
    output_shape.set(idx_w, conv_w);
    output_shape.set(idx_h, conv_h);
    output_shape.set(idx_c, input.x() / (conv_w * conv_h));

    return output_shape;
}

inline TensorShape compute_permutation_output_shape(const ITensorInfo &input, const PermutationVector &perm)
{
    TensorShape output_shape = input.tensor_shape();
    permute(output_shape, perm);
    return output_shape;
}

inline TensorShape compute_reorg_output_shape(const ITensorInfo &input, int32_t stride)
{
    const size_t idx_width   = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_height  = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
    const size_t idx_channel = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL);

    ARM_COMPUTE_ERROR_ON(stride <= 0);
    ARM_COMPUTE_ERROR_ON_MSG((input.tensor_shape()[idx_width] % stride != 0), "The width of the input tensor must be a multiple of stride");
    ARM_COMPUTE_ERROR_ON_MSG((input.tensor_shape()[idx_height] % stride != 0), "The height of the input tensor must be a multiple of stride");

    TensorShape output_shape{ input.tensor_shape() };

    output_shape.set(idx_width, output_shape[idx_width] / stride);
    output_shape.set(idx_height, output_shape[idx_height] / stride);
    output_shape.set(idx_channel, output_shape[idx_channel] * stride * stride);

    return output_shape;
}

inline TensorShape compute_weights_reshaped_shape(const ITensorInfo &weights, bool has_bias = false, unsigned int num_groups = 1)
{
    // Number of groups greater than one are only supported for NCHW data layout, and the number of weights must be a multiple of it.
    ARM_COMPUTE_ERROR_ON(num_groups == 0);
    ARM_COMPUTE_ERROR_ON(weights.data_layout() == DataLayout::NHWC && num_groups > 1);
    ARM_COMPUTE_ERROR_ON((weights.dimension(3) % num_groups) != 0);

    // Calculate output shape
    TensorShape weights_reshaped{ weights.tensor_shape() };
    weights_reshaped.set(3, weights_reshaped[3] / num_groups);

    weights_reshaped.collapse(3);
    const size_t tmp_dim = weights_reshaped[0];
    weights_reshaped.set(0, weights_reshaped[1]);
    weights_reshaped.set(1, tmp_dim + (has_bias ? 1 : 0));
    if(weights.num_dimensions() < 5)
    {
        weights_reshaped.set(2, num_groups);
    }

    return weights_reshaped;
}

inline TensorShape compute_lhs_reshaped_shape(const ITensorInfo &a, const GEMMLHSMatrixInfo &lhs_info, bool reinterpret_input_as_3d = false)
{
    ARM_COMPUTE_ERROR_ON(lhs_info.m0 == 0);
    ARM_COMPUTE_ERROR_ON(lhs_info.k0 == 0);
    ARM_COMPUTE_ERROR_ON(lhs_info.v0 == 0);

    // Input width/height
    const unsigned int input_width  = a.dimension(0);
    const unsigned int input_height = reinterpret_input_as_3d ? a.dimension(1) * a.dimension(2) : a.dimension(1);

    // Number of horizontal/vertical blocks in the input tensor
    const unsigned int num_horiz_blocks = std::ceil(input_width / static_cast<float>(lhs_info.k0));
    const unsigned int num_vert_blocks  = std::ceil(input_height / static_cast<float>(lhs_info.m0));

    // Block size
    const unsigned int block_size = lhs_info.m0 * lhs_info.k0;

    // Output width/height
    const unsigned int output_width  = block_size * num_horiz_blocks * lhs_info.v0;
    const unsigned int output_height = std::ceil(num_vert_blocks / static_cast<float>(lhs_info.v0));

    TensorShape lhs_shape{ a.tensor_shape() };
    lhs_shape.set(0, output_width);
    lhs_shape.set(1, output_height);

    if((reinterpret_input_as_3d) && (lhs_shape.num_dimensions() > 2))
    {
        // When the data format is NHWC and the shapes are Nx1x1
        // the tensor shape num_dimensions is automatically set to 1 instead of 3.
        // To avoid failures by removing a dimension that doesn't exist
        // check if the number of dimensions is greater than 2.
        lhs_shape.remove_dimension(2);
    }

    return lhs_shape;
}

inline TensorShape compute_rhs_reshaped_shape(const ITensorInfo &a, const GEMMRHSMatrixInfo &rhs_info)
{
    ARM_COMPUTE_ERROR_ON(rhs_info.n0 == 0);
    ARM_COMPUTE_ERROR_ON(rhs_info.k0 == 0);
    ARM_COMPUTE_ERROR_ON(rhs_info.h0 == 0);

    // Input width/height
    const unsigned int input_width  = a.dimension(0);
    const unsigned int input_height = a.dimension(1);

    // Number of horizontal/vertical blocks in the input tensor
    const unsigned int num_horiz_blocks = std::ceil(input_width / static_cast<float>(rhs_info.n0));
    const unsigned int num_vert_blocks  = std::ceil(input_height / static_cast<float>(rhs_info.k0));

    // Block size
    const unsigned int block_size = rhs_info.n0 * rhs_info.k0;

    // Output width/height
    const unsigned int output_width  = block_size * num_vert_blocks * rhs_info.h0;
    const unsigned int output_height = std::ceil(num_horiz_blocks / static_cast<float>(rhs_info.h0));

    TensorShape rhs_shape{ a.tensor_shape() };
    rhs_shape.set(0, output_width);
    rhs_shape.set(1, output_height);

    return rhs_shape;
}

inline TensorShape compute_interleaved_shape(const ITensorInfo &a, int mult_interleave4x4_height = 1, bool reinterpret_input_as_3d = false)
{
    // The interleaved output matrix will have the following shape: [ a_height * W, ceil(a_width / W) ] where W = 4 * mult_interleave4x4_height
    ARM_COMPUTE_ERROR_ON(mult_interleave4x4_height < 1);
    const int   interleave_width = 4 * mult_interleave4x4_height;
    TensorShape shape_interleaved_a{ a.tensor_shape() };
    shape_interleaved_a.set(0, a.dimension(0) * interleave_width);
    if(reinterpret_input_as_3d)
    {
        const int M      = a.dimension(1) * a.dimension(2);
        const int height = std::ceil(M / static_cast<float>(interleave_width));
        shape_interleaved_a.set(1, height);

        // When the data format is NHWC and the shapes are Nx1x1
        // the tensor shape num_dimensions is automatically set to 1 instead of 3.
        // To avoid failures by removing a dimension that doesn't exist
        // check if the number of dimensions is greater than 2.
        if(shape_interleaved_a.num_dimensions() > 2)
        {
            shape_interleaved_a.remove_dimension(2);
        }
    }
    else
    {
        shape_interleaved_a.set(1, std::ceil(a.dimension(1) / static_cast<float>(interleave_width)));
    }

    return shape_interleaved_a;
}

inline TensorShape compute_transpose1xW_shape(const ITensorInfo &b)
{
    // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ]
    TensorShape shape_transposed1xW_b{ b.tensor_shape() };
    shape_transposed1xW_b.set(0, b.dimension(1) * 16);
    shape_transposed1xW_b.set(1, std::ceil(b.dimension(0) / 16.f));

    return shape_transposed1xW_b;
}

inline TensorShape compute_transpose1xW_with_element_size_shape(const ITensorInfo &b, int mult_transpose1xW_width = 1)
{
    // Note: mult_transpose1xW_width expresses the number of chunks with size 1x(W) we want to store on the same row
    //       The transpose1xW output matrix will have the following shape:
    //       [ b_height * W, ceil(b_width / W) ] where W = (16 / element size of the tensor) * mult_transpose1xW_width
    ARM_COMPUTE_ERROR_ON(mult_transpose1xW_width < 1);
    TensorShape  shape_transposed1xW_b{ b.tensor_shape() };
    const size_t transpose_width = (16 / b.element_size()) * mult_transpose1xW_width;
    shape_transposed1xW_b.set(0, b.dimension(1) * transpose_width);
    shape_transposed1xW_b.set(1, static_cast<size_t>(std::ceil(b.dimension(0) / static_cast<float>(transpose_width))));

    return shape_transposed1xW_b;
}

inline TensorShape compute_reductionA_shape(const ITensorInfo &b)
{
    TensorShape shape_vector_sum_col{ b.tensor_shape() };
    if(shape_vector_sum_col.num_dimensions() > 1)
    {
        shape_vector_sum_col.remove_dimension(1);
    }

    return shape_vector_sum_col;
}

inline TensorShape compute_reductionB_shape(const ITensorInfo &a)
{
    TensorShape shape_vector_sum_row{ a.tensor_shape() };
    shape_vector_sum_row.set(Window::DimX, a.dimension(1));
    if(shape_vector_sum_row.num_dimensions() > 1)
    {
        shape_vector_sum_row.remove_dimension(1);
    }

    return shape_vector_sum_row;
}

inline TensorShape compute_col2im_shape(const ITensorInfo &input, const Size2D &convolved_dims, bool batch_size_on_z, unsigned int num_groups = 1)
{
    ARM_COMPUTE_ERROR_ON(num_groups == 0);
    ARM_COMPUTE_ERROR_ON(input.tensor_shape()[1] != (convolved_dims.area()));
    ARM_COMPUTE_ERROR_ON((num_groups > 1) && input.tensor_shape()[2] != num_groups);

    const DataLayout data_layout = input.data_layout();
    const int        width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);

    TensorShape col2im_shape{ input.tensor_shape() };
    // If batches start on 3rd dimension shift dimensions right by 1 to retain upper tensor shape,
    // as first three will be override by H,W,C data
    if(batch_size_on_z && num_groups == 1)
    {
        col2im_shape.shift_right(1);
    }
    col2im_shape.set(width_idx, convolved_dims.width);
    col2im_shape.set(height_idx, convolved_dims.height);
    col2im_shape.set(channel_idx, input.tensor_shape()[0] * num_groups);

    return col2im_shape;
}

inline TensorShape compute_transposed_shape(const ITensorInfo &input)
{
    TensorShape shape_transposed{ input.tensor_shape() };

    shape_transposed.set(0, input.dimension(1));
    shape_transposed.set(1, input.dimension(0));

    return shape_transposed;
}

inline TensorShape compute_depthwise_convolution_shape(const ITensorInfo &input, const ITensorInfo &weights, PadStrideInfo conv_info, unsigned int depth_multiplier)
{
    const TensorShape input_shape{ input.tensor_shape() };
    const TensorShape weights_shape{ weights.tensor_shape() };

    const DataLayout data_layout = input.data_layout();
    const int        width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);

    unsigned int output_width  = 0;
    unsigned int output_height = 0;
    std::tie(output_width, output_height) = scaled_dimensions(input_shape[width_idx], input_shape[height_idx],
                                                              weights_shape[width_idx], weights_shape[height_idx],
                                                              conv_info);

    TensorShape output_shape{ input_shape };
    output_shape.set(width_idx, output_width);
    output_shape.set(height_idx, output_height);
    output_shape.set(channel_idx, input_shape[channel_idx] * depth_multiplier);

    return output_shape;
}

inline TensorShape compute_deconvolution_upsampled_shape(const ITensorInfo &input, const ITensorInfo &weights, unsigned int sx, unsigned int sy, unsigned int inner_border_right,
                                                         unsigned int inner_border_top,
                                                         std::pair<unsigned int, unsigned int> &out_dims, unsigned int &padx, unsigned int &pady)
{
    const DataLayout data_layout = input.data_layout();
    const size_t     idx_w       = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const size_t     idx_h       = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);

    // Find the upsampled dimensions
    unsigned int out_x = (input.dimension(idx_w) - 1) * sx + inner_border_right + 1;
    unsigned int out_y = (input.dimension(idx_h) - 1) * sy + inner_border_top + 1;

    // Find the padding needed for the convolution with stride 1 in order to match output shape
    padx = out_dims.first - (out_x - weights.dimension(idx_w) + 1);
    pady = out_dims.second - (out_y - weights.dimension(idx_h) + 1);
    out_x += padx;
    out_y += pady;

    TensorShape scale_out_shape(input.tensor_shape());
    scale_out_shape.set(idx_w, out_x);
    scale_out_shape.set(idx_h, out_y);

    return scale_out_shape;
}

inline TensorShape compute_deconvolution_output_shape(const std::pair<unsigned int, unsigned int> &out_dims, const ITensorInfo &input, const ITensorInfo &weights)
{
    const TensorShape input_shape{ input.tensor_shape() };
    const TensorShape weights_shape{ weights.tensor_shape() };

    const DataLayout data_layout = input.data_layout();
    const int        width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
    const int        batch_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);

    TensorShape out_shape{ input_shape };
    out_shape.set(width_idx, out_dims.first);
    out_shape.set(height_idx, out_dims.second);
    out_shape.set(channel_idx, weights_shape[batch_idx]);
    return out_shape;
}

inline TensorShape compute_im2col_conv_shape(const ITensorInfo *input, const Size2D &kernel_dims, const PadStrideInfo &conv_info, bool has_bias, const Size2D &dilation, bool batch_size_on_z,
                                             unsigned int num_groups = 1)
{
    // The output shape will be the 3D shape [ out_channels * kernel_area, num_elems_per_out_channel, batches ]                           if batch_size_on_z == true
    //                       or the 4D shape [ out_channels * kernel_area / num_groups, num_elems_per_out_channel, num_groups, batches ]  if batch_size_on_z == false

    ARM_COMPUTE_ERROR_ON(num_groups == 0);
    ARM_COMPUTE_ERROR_ON(num_groups > 1 && input->data_layout() != DataLayout::NCHW);
    ARM_COMPUTE_ERROR_ON(num_groups > 1 && batch_size_on_z);

    TensorShape output_shape{ input->tensor_shape() };

    const DataLayout data_layout = input->data_layout();
    const int        width_idx   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        height_idx  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);

    std::pair<unsigned int, unsigned int> out_dims = scaled_dimensions(output_shape[width_idx], output_shape[height_idx], kernel_dims.width, kernel_dims.height, conv_info, dilation);
    output_shape.set(0, (output_shape[channel_idx] / num_groups * kernel_dims.area() + (has_bias ? 1 : 0))); // NOLINT
    output_shape.set(1, (out_dims.first * out_dims.second));
    if(batch_size_on_z && output_shape.num_dimensions() >= 3)
    {
        output_shape.remove_dimension(2);
    }
    else
    {
        output_shape.set(2, num_groups);
    }

    return output_shape;
}

inline TensorShape compute_flatten_shape(const ITensorInfo *input)
{
    // The output shape will be the flatten version of the input (i.e. [ width * height * channels, num_batches, ... ] ). Used for FlattenLayer and FullyConnectedLayer.

    TensorShape output_shape{ input->tensor_shape() };

    output_shape.collapse(3);

    return output_shape;
}

inline TensorShape compute_softmax_shape(const ITensorInfo *input, size_t axis = 1)
{
    // The output shape will be a 2D version of the input. For instance:
    // - [x,y,z] and axis 1 will return [x, y*z]
    // - [x,y,z,w] and axis 2 will return [x*y, w*z]
    // - [x,y,z,w] and axis 3 will return [x*y*z, w]
    TensorShape shape2D = input->tensor_shape();

    if(axis < input->num_dimensions())
    {
        // Collapse from axis onward (this changes the shape)
        shape2D.collapse_from(axis);

        // Collapse the rest (collapse is inclusive)
        shape2D.collapse(shape2D.num_dimensions() - 1);
    }
    else
    {
        // Collapse everything
        shape2D.collapse(shape2D.num_dimensions());
    }

    if(axis == 0)
    {
        // If axis is zero the first dim should be one. Since
        // collapse is an inclusive operation we need to shift
        shape2D.shift_right(1);
    }

    return shape2D;
}

inline TensorShape compute_interleave_custom_shape(const TensorShape &input, const int x_interleave, const int y_interleave)
{
    TensorShape output_shape{ input };

    output_shape.set(0, output_shape.x() * x_interleave);
    output_shape.set(1, std::ceil(output_shape.y() / static_cast<float>(y_interleave)));

    return output_shape;
}

inline TensorShape compute_fully_connected_reshaped_weights_shape(const ITensorInfo *input, bool transpose_weights, bool is_batched_fc_layer, const int interleave)
{
    TensorShape output_shape{ input->tensor_shape() };

    // Transpose weights if the user hasn't done it
    if(transpose_weights)
    {
        output_shape = compute_transposed_shape(*input);
    }

    // If we run multiple batches we need 1xW transpose, too.
    if(is_batched_fc_layer)
    {
        output_shape = compute_transposed_shape(input->clone()->set_tensor_shape(output_shape));
        output_shape = compute_interleave_custom_shape(output_shape, interleave, interleave);
    }

    return output_shape;
}

inline TensorShape compute_winograd_filter_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info)
{
    TensorShape tensor_shape{ input.tensor_shape() };

    const Size2D kernel_size      = winograd_info.kernel_size;
    const Size2D output_tile_size = winograd_info.output_tile_size;
    const Size2D input_tile_size  = Size2D(output_tile_size.width + kernel_size.width - 1, output_tile_size.height + kernel_size.height - 1);

    tensor_shape.remove_dimension(get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH));
    tensor_shape.set(Window::DimX, input.dimension(3));
    tensor_shape.set(Window::DimY, input.dimension(get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL)));
    tensor_shape.set(Window::DimZ, input_tile_size.area());

    return tensor_shape;
}

inline TensorShape compute_winograd_input_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info)
{
    const PadStrideInfo conv_info        = winograd_info.convolution_info;
    const Size2D        kernel_size      = winograd_info.kernel_size;
    const Size2D        output_tile_size = winograd_info.output_tile_size;
    const Size2D        input_tile_size  = Size2D(output_tile_size.width + kernel_size.width - 1, output_tile_size.height + kernel_size.height - 1);

    const size_t idx_w = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_h = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
    const size_t idx_c = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL);

    // Compute the number of output tiles along the x and y direction of size "output_tile_size"
    const Size2D num_tiles = compute_winograd_convolution_tiles(Size2D(input.tensor_shape()[idx_w], input.tensor_shape()[idx_h]),
                                                                kernel_size,
                                                                output_tile_size,
                                                                conv_info);

    const unsigned int width  = input.tensor_shape()[idx_c];
    const unsigned int height = num_tiles.area();
    const unsigned int depth  = input_tile_size.area();

    TensorShape output_shape{ input.tensor_shape() };
    output_shape.set(0, width);
    output_shape.set(1, height);
    output_shape.set(2, depth);

    return output_shape;
}

inline TensorShape compute_winograd_output_transform_shape(const ITensorInfo &input, const WinogradInfo &winograd_info)
{
    const PadStrideInfo conv_info        = winograd_info.convolution_info;
    const Size2D        kernel_size      = winograd_info.kernel_size;
    const Size2D        input_dimensions = winograd_info.input_dimensions;
    const DataLayout    data_layout      = winograd_info.output_data_layout;

    // Compute output shape
    unsigned int output_width  = 0;
    unsigned int output_height = 0;
    std::tie(output_width, output_height) = scaled_dimensions(input_dimensions.width, input_dimensions.height,
                                                              kernel_size.width, kernel_size.height, conv_info);

    TensorShape tensor_shape{ input.tensor_shape() };

    // Output dimension
    const unsigned int out_w = output_width;
    const unsigned int out_h = output_height;
    const unsigned int out_c = input.dimension(0);

    tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH), out_w);
    tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT), out_h);
    tensor_shape.set(get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL), out_c);

    return tensor_shape;
}

inline TensorShape compute_deep_convolution_shape(const ITensorInfo &input, const ITensorInfo &weights, PadStrideInfo conv_info)
{
    const TensorShape input_shape{ input.tensor_shape() };
    const TensorShape weights_shape{ weights.tensor_shape() };

    const size_t idx_width   = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
    const size_t idx_height  = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
    const size_t idx_channel = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::CHANNEL);

    const unsigned int input_width         = input_shape[idx_width];
    const unsigned int input_height        = input_shape[idx_height];
    const unsigned int weights_width       = weights_shape[idx_width];
    const unsigned int weights_height      = weights_shape[idx_height];
    const unsigned int weights_out_channel = weights_shape[3];
    unsigned int       output_width        = 0;
    unsigned int       output_height       = 0;
    std::tie(output_width, output_height) = scaled_dimensions(input_width, input_height, weights_width, weights_height, conv_info);

    TensorShape output_shape{ input_shape };
    output_shape.set(idx_width, output_width);
    output_shape.set(idx_height, output_height);
    output_shape.set(idx_channel, weights_out_channel);

    return output_shape;
}

inline TensorShape compute_min_max_shape(const ITensorInfo *input)
{
    TensorShape output_shape{ input->tensor_shape() };
    output_shape.set(Window::DimX, 2);
    output_shape.remove_dimension(1);
    output_shape.remove_dimension(1);

    return output_shape;
}

inline TensorShape compute_pool_shape(const ITensorInfo &input, PoolingLayerInfo pool_info)
{
    unsigned int pooled_w = 0;
    unsigned int pooled_h = 0;

    TensorShape output_shape{ input.tensor_shape() };

    const bool         is_global_pooling = pool_info.is_global_pooling();
    const unsigned int idx_width         = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::WIDTH);
    const unsigned int idx_height        = get_data_layout_dimension_index(input.data_layout(), DataLayoutDimension::HEIGHT);
    const unsigned int pool_size_x       = is_global_pooling ? output_shape[idx_width] : pool_info.pool_size().width;
    const unsigned int pool_size_y       = is_global_pooling ? output_shape[idx_height] : pool_info.pool_size().height;

    std::tie(pooled_w, pooled_h) = scaled_dimensions(output_shape[idx_width],
                                                     output_shape[idx_height],
                                                     pool_size_x,
                                                     pool_size_y,
                                                     pool_info.pad_stride_info());

    output_shape.set(idx_width, pooled_w);
    output_shape.set(idx_height, pooled_h);

    return output_shape;
}

inline TensorShape compute_rnn_shape(const ITensorInfo *input, const unsigned int batch_size)
{
    TensorShape output_shape{ input->tensor_shape() };
    output_shape.set(1, batch_size);

    return output_shape;
}

inline TensorShape compute_mm_shape(const ITensorInfo &input0, const ITensorInfo &input1, bool is_interleaved_transposed, const GEMMReshapeInfo &reshape_info)
{
    ARM_COMPUTE_ERROR_ON_MSG(input0.num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");
    ARM_COMPUTE_ERROR_ON_MSG(is_interleaved_transposed && reshape_info.reinterpret_input_as_3d(), "The first input tensor cannot be reinterpreted as 3D if is_interleaved_transposed is true");

    const bool reinterpret_input_as_3d  = reshape_info.reinterpret_input_as_3d();
    const bool reinterpret_output_as_3d = reshape_info.depth_output_gemm3d() != 0;
    const int  depth_output_gemm3d      = reinterpret_output_as_3d ? reshape_info.depth_output_gemm3d() : 1;
    const int  m                        = reshape_info.reinterpret_input_as_3d() ? input0.dimension(1) * input0.dimension(2) : input0.dimension(1);

    // If the output of GEMM has to be reinterpreted as 3D, the number of input0 rows (M) is obtained collapsing the second and third
    // dimension of the output tensor
    const int dim0 = is_interleaved_transposed ? reshape_info.n() : input1.dimension(0);
    const int dim1 = is_interleaved_transposed ? reshape_info.m() / depth_output_gemm3d : m / depth_output_gemm3d;
    const int dim2 = reinterpret_input_as_3d ? input0.tensor_shape()[3] : input0.tensor_shape()[2];
    const int dim3 = reinterpret_input_as_3d ? 1 : input0.tensor_shape()[3];

    TensorShape output_shape{ input0.tensor_shape() };

    output_shape.set(0, dim0);
    output_shape.set(1, dim1);
    output_shape.set(2, reinterpret_output_as_3d ? depth_output_gemm3d : dim2);
    output_shape.set(3, reinterpret_output_as_3d ? dim2 : dim3);
    output_shape.set(4, reinterpret_output_as_3d ? dim3 : 1);

    return output_shape;
}

inline TensorShape compute_mm_shape(const ITensorInfo &input0, const ITensorInfo &input1, const GEMMReshapeInfo &gemm_info)
{
    ARM_COMPUTE_ERROR_ON_MSG(input0.num_dimensions() > 4, "The number of dimensions for the matrix A must be <= 4");

    const bool reinterpret_output_as_3d = gemm_info.depth_output_gemm3d() != 0;
    const int  depth_output_gemm3d      = reinterpret_output_as_3d ? gemm_info.depth_output_gemm3d() : 1;

    // If the output of GEMM has to be reinterpreted as 3D, the number of input0 rows (M) is obtained collapsing the second and third
    // dimension of the output tensor
    const int dim0 = gemm_info.n();
    const int dim1 = gemm_info.m() / depth_output_gemm3d;
    const int dim2 = input0.tensor_shape()[2];
    const int dim3 = input0.tensor_shape()[3];

    TensorShape output_shape{ input0.tensor_shape() };

    output_shape.set(0, dim0);
    output_shape.set(1, dim1);
    output_shape.set(2, reinterpret_output_as_3d ? depth_output_gemm3d : dim2);
    output_shape.set(3, reinterpret_output_as_3d ? dim2 : dim3);
    output_shape.set(4, reinterpret_output_as_3d ? dim3 : 1);

    return output_shape;
}

inline TensorShape compute_output_stage_shape(const ITensorInfo &input, unsigned int gemm_3d_depth = 1, bool batch_size_on_z = false)
{
    ARM_COMPUTE_ERROR_ON(input.data_layout() != DataLayout::NHWC && gemm_3d_depth > 1);

    TensorShape output_shape = input.tensor_shape();
    if(gemm_3d_depth > 1)
    {
        if(batch_size_on_z)
        {
            output_shape.shift_right(1);
        }
        output_shape.set(0, input.tensor_shape().x());
        output_shape.set(1, input.tensor_shape().y() / gemm_3d_depth);
        output_shape.set(2, gemm_3d_depth);
    }

    return output_shape;
}

inline TensorShape compute_strided_slice_shape(const ITensorInfo &input,
                                               const Coordinates &starts, const Coordinates &ends, const Coordinates &strides,
                                               int32_t begin_mask, int32_t end_mask, int32_t shrink_axis_mask)
{
    using namespace arm_compute::helpers::tensor_transform;
    return compute_strided_slice_output_shape(input.tensor_shape(), starts, ends, strides, begin_mask, end_mask, shrink_axis_mask);
}

inline TensorShape compute_slice_shape(const TensorShape &input_shape, const Coordinates &starts, const Coordinates &ends)
{
    using namespace arm_compute::helpers::tensor_transform;

    return compute_strided_slice_output_shape(input_shape,
                                              starts, ends, BiStrides(),
                                              0, construct_slice_end_mask(ends), 0);
}

inline TensorShape compute_batch_to_space_shape(const ITensorInfo *input, const int block_x, const int block_y)
{
    ARM_COMPUTE_ERROR_ON(block_x <= 0 || block_y <= 0);

    const DataLayout data_layout = input->data_layout();
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        idx_batch   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);

    TensorShape output_shape{ input->tensor_shape() };
    output_shape.set(idx_width, input->tensor_shape()[idx_width] * block_x);
    output_shape.set(idx_height, input->tensor_shape()[idx_height] * block_y);
    output_shape.set(idx_batch, input->tensor_shape()[idx_batch] / (block_x * block_y));

    return output_shape;
}

inline TensorShape compute_split_shape(const ITensorInfo *input, unsigned int axis, unsigned int num_splits)
{
    TensorShape empty_shape;
    empty_shape.set(0, 0);

    TensorShape out_shape{ input->tensor_shape() };

    // Return empty shape if axis is invalid
    if(axis > input->tensor_shape().num_dimensions())
    {
        return empty_shape;
    }

    size_t axis_size = out_shape[axis];

    // Return empty shape if num_split is not valid
    if(axis_size % num_splits)
    {
        return empty_shape;
    }

    out_shape[axis] = axis_size / num_splits;
    return out_shape;
}

inline TensorShape compute_space_to_batch_shape(const ITensorInfo *input, const int block_x, const int block_y, const Size2D &padding_left, const Size2D &padding_right)
{
    TensorShape output_shape{ input->tensor_shape() };

    const DataLayout data_layout = input->data_layout();
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int        idx_batch   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);

    output_shape.set(idx_width, input->tensor_shape()[idx_width] * block_x + padding_left.x() + padding_right.x());
    output_shape.set(idx_height, input->tensor_shape()[idx_height] * block_y + padding_left.y() + padding_right.y());
    output_shape.set(idx_batch, input->tensor_shape()[idx_batch] / (block_x * block_y));

    return output_shape;
}

inline TensorShape compute_prior_box_shape(const ITensorInfo &input, const PriorBoxLayerInfo &info)
{
    DataLayout   data_layout = input.data_layout();
    const size_t idx_w       = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const size_t idx_h       = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
    const int    num_priors  = info.aspect_ratios().size() * info.min_sizes().size() + info.max_sizes().size();

    TensorShape output_shape{};
    output_shape.set(0, input.dimension(idx_w) * input.dimension(idx_h) * num_priors * 4);
    output_shape.set(1, 2);

    return output_shape;
}

inline TensorShape compute_padded_shape(const TensorShape &input_shape, const PaddingList &padding)
{
    TensorShape padded_shape = input_shape;
    for(size_t dim = 0; dim < padding.size(); ++dim)
    {
        padded_shape.set(dim, padding[dim].first + input_shape[dim] + padding[dim].second);
    }
    return padded_shape;
}

inline TensorShape compute_tiled_shape(const TensorShape &input_shape, const Multiples &multiples)
{
    TensorShape tiled_shape = input_shape;
    for(size_t dim = 0; dim < multiples.size(); ++dim)
    {
        tiled_shape.set(dim, input_shape[dim] * multiples[dim]);
    }
    return tiled_shape;
}

inline TensorShape compute_upsample_shape(const ITensorInfo &input, const Size2D &info)
{
    const DataLayout data_layout = input.data_layout();
    const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
    const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);

    TensorShape        scale_out_shape(input.tensor_shape());
    const unsigned int out_x = input.dimension(idx_width) * info.x();
    const unsigned int out_y = input.dimension(idx_height) * info.y();
    scale_out_shape.set(idx_width, out_x);
    scale_out_shape.set(idx_height, out_y);

    return scale_out_shape;
}

template <typename T>
inline TensorShape extract_shape(T *data)
{
    return data->info()->tensor_shape();
}

inline TensorShape extract_shape(ITensorInfo *data)
{
    return data->tensor_shape();
}

inline TensorShape extract_shape(const TensorShape *data)
{
    return *data;
}

inline TensorShape calculate_unstack_shape(TensorShape input_shape, unsigned int axis)
{
    ARM_COMPUTE_ERROR_ON(axis > input_shape.num_dimensions());
    input_shape.remove_dimension(axis);
    return input_shape;
}

template <typename T>
inline TensorShape calculate_depth_concatenate_shape(const std::vector<T *> &inputs_vector)
{
    TensorShape out_shape = extract_shape(inputs_vector[0]);

    size_t max_x = 0;
    size_t max_y = 0;
    size_t depth = 0;

    for(const auto &tensor : inputs_vector)
    {
        ARM_COMPUTE_ERROR_ON(tensor == nullptr);
        const TensorShape shape = extract_shape(tensor);
        max_x                   = std::max(shape.x(), max_x);
        max_y                   = std::max(shape.y(), max_y);
        depth += shape.z();
    }

    out_shape.set(0, max_x);
    out_shape.set(1, max_y);
    out_shape.set(2, depth);

    return out_shape;
}

template <typename T>
inline TensorShape calculate_width_concatenate_shape(const std::vector<T *> &inputs_vector)
{
    TensorShape out_shape = extract_shape(inputs_vector[0]);

    size_t width = 0;
    for(const auto &tensor : inputs_vector)
    {
        ARM_COMPUTE_ERROR_ON(tensor == nullptr);
        const TensorShape shape = extract_shape(tensor);
        width += shape.x();
    }

    out_shape.set(0, width);

    return out_shape;
}

inline TensorShape compute_stack_shape(const ITensorInfo &a, unsigned int axis, unsigned int num_tensors)
{
    ARM_COMPUTE_ERROR_ON(axis > a.num_dimensions());
    ARM_COMPUTE_ERROR_ON(a.num_dimensions() > 4);

    TensorShape shape_out{ a.tensor_shape() };
    shape_out.set(axis, num_tensors);

    unsigned int i_shift = 0;

    for(unsigned int i = 0; i < a.num_dimensions(); ++i)
    {
        if(i == axis)
        {
            i_shift++;
        }

        shape_out.set(i + i_shift, a.tensor_shape()[i]);
    }
    return shape_out;
}
} // namespace shape_calculator
} // namespace misc
} // namespace arm_compute
#endif /* __ARM_COMPUTE_MISC_SHAPE_CALCULATOR_H__ */