aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/Types.h
blob: c0350bc7a48ebc76b1b1c85739227a58cfef7744 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
/*
 * Copyright (c) 2016-2018 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef __ARM_COMPUTE_TYPES_H__
#define __ARM_COMPUTE_TYPES_H__

#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/QAsymm8.h"
#include "arm_compute/core/Rounding.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Strides.h"
#include "arm_compute/core/TensorShape.h"
#include "support/Half.h"

#include <cmath>
#include <cstddef>
#include <cstdint>
#include <string>
#include <utility>

namespace arm_compute
{
/** 16-bit floating point type */
using half = half_float::half;

/** Permutation vector */
using PermutationVector = Strides;
/** Bidirectional strides */
using BiStrides = Coordinates;

/** Image colour formats */
enum class Format
{
    UNKNOWN,  /**< Unknown image format */
    U8,       /**< 1 channel, 1 U8 per channel */
    S16,      /**< 1 channel, 1 S16 per channel */
    U16,      /**< 1 channel, 1 U16 per channel */
    S32,      /**< 1 channel, 1 S32 per channel */
    U32,      /**< 1 channel, 1 U32 per channel */
    F16,      /**< 1 channel, 1 F16 per channel */
    F32,      /**< 1 channel, 1 F32 per channel */
    UV88,     /**< 2 channel, 1 U8 per channel */
    RGB888,   /**< 3 channels, 1 U8 per channel */
    RGBA8888, /**< 4 channels, 1 U8 per channel */
    YUV444,   /**< A 3 plane of 8 bit 4:4:4 sampled Y, U, V planes */
    YUYV422,  /**< A single plane of 32-bit macro pixel of Y0, U0, Y1, V0 bytes */
    NV12,     /**< A 2 plane YUV format of Luma (Y) and interleaved UV data at 4:2:0 sampling */
    NV21,     /**< A 2 plane YUV format of Luma (Y) and interleaved VU data at 4:2:0 sampling */
    IYUV,     /**< A 3 plane of 8-bit 4:2:0 sampled Y, U, V planes */
    UYVY422   /**< A single plane of 32-bit macro pixel of U0, Y0, V0, Y1 byte */
};

/** Available data types */
enum class DataType
{
    UNKNOWN, /**< Unknown data type */
    U8,      /**< unsigned 8-bit number */
    S8,      /**< signed 8-bit number */
    QASYMM8, /**< quantized, asymmetric fixed-point 8-bit number */
    U16,     /**< unsigned 16-bit number */
    S16,     /**< signed 16-bit number */
    U32,     /**< unsigned 32-bit number */
    S32,     /**< signed 32-bit number */
    U64,     /**< unsigned 64-bit number */
    S64,     /**< signed 64-bit number */
    F16,     /**< 16-bit floating-point number */
    F32,     /**< 32-bit floating-point number */
    F64,     /**< 64-bit floating-point number */
    SIZET    /**< size_t */
};

/** Available Sampling Policies */
enum class SamplingPolicy
{
    CENTER,  /**< Samples are taken at pixel center */
    TOP_LEFT /**< Samples are taken at pixel top left corner */
};

/** Constant value of the border pixels when using BorderMode::CONSTANT */
constexpr uint8_t CONSTANT_BORDER_VALUE = 199;

/** Constant value used to indicate a half-scale pyramid */
constexpr float SCALE_PYRAMID_HALF = 0.5f;

/** Constant value used to indicate a ORB scaled pyramid */
constexpr float SCALE_PYRAMID_ORB = 8.408964152537146130583778358414e-01;

/** Supported tensor data layouts */
enum class DataLayout
{
    UNKNOWN, /**< Unknown data layout */
    NCHW,    /**< Num samples, channels, height, width */
    NHWC     /**< Num samples, height, width, channels */
};

/** Supported tensor data layout dimensions */
enum class DataLayoutDimension
{
    CHANNEL, /**< channel */
    HEIGHT,  /**< height */
    WIDTH,   /**< width */
    BATCHES  /**< batches */
};

/** Quantization settings (used for QASYMM8 data type) */
struct QuantizationInfo
{
    /** Default constructor */
    QuantizationInfo() noexcept
        : scale(0.0f),
          offset(0)
    {
    }

    /** Construct quantization info.
     *
     * @param[in] scale  Scale.
     * @param[in] offset Offset.
     */
    QuantizationInfo(float scale, int offset)
        : scale(scale), offset(offset)
    {
    }

    /** Check whether equal to a given quantization info.
     *
     * @param[in] other Other quantization info.
     *
     * @return True if the given quantization info is the same.
     */
    bool operator==(const QuantizationInfo &other)
    {
        return scale == other.scale && offset == other.offset;
    }

    /** Check whether not equal to a given quantization info.
     *
     * @param[in] other Other quantization info.
     *
     * @return True if the given quantization info is not the same.
     */
    bool operator!=(const QuantizationInfo &other)
    {
        return !(*this == other);
    }

    float scale;  /**< scale */
    int   offset; /**< offset */

    /** Quantizes a value using the scale/offset in this QuantizationInfo
     *
     * @param[in] value           Value to quantize.
     * @param[in] rounding_policy Policy to use when rounding.
     *
     * @return the quantized value.
     */
    qasymm8_t quantize(float value, RoundingPolicy rounding_policy) const
    {
        ARM_COMPUTE_ERROR_ON_MSG(scale == 0, "QuantizationInfo::quantize: scale == 0");
        return sqcvt_qasymm8_f32(value, scale, offset, rounding_policy);
    }

    /** Dequantizes a value using the scale/offset in this QuantizationInfo
     *
     * @param[in] value Value to dequantize.
     *
     * @return the original value before quantization.
     */
    float dequantize(qasymm8_t value) const
    {
        ARM_COMPUTE_ERROR_ON_MSG(scale == 0, "QuantizationInfo::dequantize: scale == 0");
        return scvt_f32_qasymm8(value, scale, offset);
    }

    /** Indicates whether this QuantizationInfo has valid settings or not
     *
     * @return True if the this has invalid settings.
     */
    bool empty() const
    {
        return scale == 0;
    }
};

/** Container for valid region of a window */
struct ValidRegion
{
    /** Default constructor */
    ValidRegion()
        : anchor{}, shape{}
    {
    }

    /** Allow instances of this class to be copy constructed */
    ValidRegion(const ValidRegion &) = default;
    /** Allow instances of this class to be move constructed */
    ValidRegion(ValidRegion &&) = default;
    /** Allow instances of this class to be copied */
    ValidRegion &operator=(const ValidRegion &) = default;
    /** Allow instances of this class to be moved */
    ValidRegion &operator=(ValidRegion &&) = default;
    /** Default destructor */
    ~ValidRegion() = default;

    /** Constructor for a valid region with default number of dimensions
     *
     * @param[in] an_anchor Anchor for the start of the valid region.
     * @param[in] a_shape   Shape of the valid region.
     *
     */
    ValidRegion(const Coordinates &an_anchor, const TensorShape &a_shape)
        : anchor{ an_anchor }, shape{ a_shape }
    {
        anchor.set_num_dimensions(std::max(anchor.num_dimensions(), shape.num_dimensions()));
    }

    /** Constructor for a valid region with specified number of dimensions
     *
     * @param[in] an_anchor      Anchor for the start of the valid region.
     * @param[in] a_shape        Shape of the valid region.
     * @param[in] num_dimensions Number of dimensions (must be >= number of dimensions of anchor and shape).
     *
     */
    ValidRegion(const Coordinates &an_anchor, const TensorShape &a_shape, size_t num_dimensions)
        : anchor{ an_anchor }, shape{ a_shape }
    {
        ARM_COMPUTE_ERROR_ON(num_dimensions < std::max(anchor.num_dimensions(), shape.num_dimensions()));
        anchor.set_num_dimensions(num_dimensions);
    }

    /** Return the start of the valid region for the given dimension @p d */
    int start(unsigned int d) const
    {
        return anchor[d];
    }

    /** Return the end of the valid region for the given dimension @p d */
    int end(unsigned int d) const
    {
        return anchor[d] + shape[d];
    }

    /** Accessor to set the value of anchor and shape for one of the dimensions.
     *
     * @param[in] dimension Dimension for which the value is set.
     * @param[in] start     Value to be set in anchor for the dimension.
     * @param[in] size      Value to be set in shape for the dimension.
     *
     * @return *this.
     */
    ValidRegion &set(size_t dimension, int start, size_t size)
    {
        anchor.set(dimension, start);
        shape.set(dimension, size);
        return *this;
    }

    Coordinates anchor; /**< Anchor for the start of the valid region. */
    TensorShape shape;  /**< Shape of the valid region. */
};

/** Methods available to handle borders */
enum class BorderMode
{
    UNDEFINED, /**< Borders are left undefined */
    CONSTANT,  /**< Pixels outside the image are assumed to have a constant value */
    REPLICATE  /**< Pixels outside the image are assumed to have the same value as the closest image pixel */
};

/** Container for 2D border size */
struct BorderSize
{
    /** Empty border, i.e. no border */
    constexpr BorderSize()
        : top{ 0 }, right{ 0 }, bottom{ 0 }, left{ 0 }
    {
    }

    /** Border with equal size around the 2D plane */
    explicit constexpr BorderSize(unsigned int size)
        : top{ size }, right{ size }, bottom{ size }, left{ size }
    {
    }

    /** Border with same size for top/bottom and left/right */
    constexpr BorderSize(unsigned int top_bottom, unsigned int left_right)
        : top{ top_bottom }, right{ left_right }, bottom{ top_bottom }, left{ left_right }
    {
    }

    /** Border with different sizes */
    constexpr BorderSize(unsigned int top, unsigned int right, unsigned int bottom, unsigned int left)
        : top{ top }, right{ right }, bottom{ bottom }, left{ left }
    {
    }

    /** Check if the entire border is zero */
    constexpr bool empty() const
    {
        return top == 0 && right == 0 && bottom == 0 && left == 0;
    }

    /** Check if the border is the same size on all sides */
    constexpr bool uniform() const
    {
        return top == right && top == bottom && top == left;
    }

    /** Scale this border size.
     *
     * @param[in] scale Scale to multiply border size by.
     *
     * @return *this.
     */
    BorderSize &operator*=(float scale)
    {
        top *= scale;
        right *= scale;
        bottom *= scale;
        left *= scale;

        return *this;
    }

    /** Scale a copy of this border size.
     *
     * @param[in] scale Scale to multiply border size by.
     *
     * @return a scaled copy of this.
     */
    BorderSize operator*(float scale)
    {
        BorderSize size = *this;
        size *= scale;

        return size;
    }

    /** Limit this border size.
     *
     * @param[in] limit Border size to limit this border size to.
     */
    void limit(const BorderSize &limit)
    {
        top    = std::min(top, limit.top);
        right  = std::min(right, limit.right);
        bottom = std::min(bottom, limit.bottom);
        left   = std::min(left, limit.left);
    }

    unsigned int top;    /**< top of the border */
    unsigned int right;  /**< right of the border */
    unsigned int bottom; /**< bottom of the border */
    unsigned int left;   /**< left of the border */
};

/** Container for 2D padding size */
using PaddingSize = BorderSize;

/** Policy to handle overflow */
enum class ConvertPolicy
{
    WRAP,    /**< Wrap around */
    SATURATE /**< Saturate */
};

/** Interpolation method */
enum class InterpolationPolicy
{
    NEAREST_NEIGHBOR, /**< Output values are defined to match the source pixel whose center is nearest to the sample position */
    BILINEAR,         /**< Output values are defined by bilinear interpolation between the pixels */
    AREA,             /**< Output values are determined by averaging the source pixels whose areas fall under the area of the destination pixel, projected onto the source image */
};

/** Bilinear Interpolation method used by LKTracker */
enum class BilinearInterpolation
{
    BILINEAR_OLD_NEW, /**< Old-new method */
    BILINEAR_SCHARR   /**< Scharr method */
};

/** Threshold mode */
enum class ThresholdType
{
    BINARY, /**< Threshold with one value */
    RANGE   /**< Threshold with two values*/
};

/** Termination criteria */
enum class Termination
{
    TERM_CRITERIA_EPSILON,    /**< Terminate when within epsilon of a threshold */
    TERM_CRITERIA_ITERATIONS, /**< Terminate after a maximum number of iterations */
    TERM_CRITERIA_BOTH        /**< Terminate on whichever of the other conditions occurs first */
};

/** Magnitude calculation type. */
enum class MagnitudeType
{
    L1NORM, /**< L1 normalization type */
    L2NORM  /**< L2 normalization type */
};

/** Phase calculation type.
 *
 * @note When PhaseType == SIGNED, each angle is mapped to the range 0 to 255 inclusive otherwise angles between 0 and 180
 */
enum class PhaseType
{
    SIGNED,  /**< Angle range: [0, 360] */
    UNSIGNED /**< Angle range: [0, 180] */
};

/** Keypoint type */
struct KeyPoint
{
    int32_t x{ 0 };               /**< X coordinates */
    int32_t y{ 0 };               /**< Y coordinates */
    float   strength{ 0.f };      /**< Strength of the point */
    float   scale{ 0.f };         /**< Scale initialized to 0 by the corner detector */
    float   orientation{ 0.f };   /**< Orientation initialized to 0 by the corner detector */
    int32_t tracking_status{ 0 }; /**< Status initialized to 1 by the corner detector, set to 0 when the point is lost */
    float   error{ 0.f };         /**< Tracking error initialized to 0 by the corner detector */
};

/** Internal key point */
using InternalKeypoint = std::tuple<float, float, float>; /* x,y,strength */

/** Rectangle type */
struct Rectangle
{
    uint16_t x;      /**< Top-left x coordinate */
    uint16_t y;      /**< Top-left y coordinate */
    uint16_t width;  /**< Width of the rectangle */
    uint16_t height; /**< Height of the rectangle */
};

/** Coordinate type */
struct Coordinates2D
{
    int32_t x; /**< X coordinates */
    int32_t y; /**< Y coordinates */
};

/** Coordinate type */
struct Coordinates3D
{
    uint32_t x; /**< X coordinates */
    uint32_t y; /**< Y coordinates */
    uint32_t z; /**< Z coordinates */
};

/** Padding information as a pair of unsigned int start/end */
using PaddingInfo = std::pair<uint32_t, uint32_t>;

/** List of padding information */
using PaddingList = std::vector<PaddingInfo>;

/** Region of interest */
struct ROI
{
    Rectangle rect;      /**< Rectangle specifying the region of interest */
    uint16_t  batch_idx; /**< The batch index of the region of interest */
};

/** Available channels */
enum class Channel
{
    UNKNOWN, /** Unknown channel format */
    C0,      /**< First channel (used by formats with unknown channel types). */
    C1,      /**< Second channel (used by formats with unknown channel types). */
    C2,      /**< Third channel (used by formats with unknown channel types). */
    C3,      /**< Fourth channel (used by formats with unknown channel types). */
    R,       /**< Red channel. */
    G,       /**< Green channel. */
    B,       /**< Blue channel. */
    A,       /**< Alpha channel. */
    Y,       /**< Luma channel. */
    U,       /**< Cb/U channel. */
    V        /**< Cr/V/Value channel. */
};

/** Available matrix patterns */
enum class MatrixPattern
{
    BOX,   /**< Box pattern matrix. */
    CROSS, /**< Cross pattern matrix. */
    DISK,  /**< Disk pattern matrix. */
    OTHER  /**< Any other matrix pattern. */
};

/** Available non linear functions. */
enum class NonLinearFilterFunction : unsigned
{
    MEDIAN = 0, /**< Non linear median filter. */
    MIN    = 1, /**< Non linear erode. */
    MAX    = 2, /**< Non linear dilate. */
};

/** Available reduction operations */
enum class ReductionOperation
{
    SUM_SQUARE, /**< Sum of squares */
    SUM,        /**< Sum */
    MEAN_SUM,   /**< Mean of sum */
};

/** The normalization type used for the normalization layer */
enum class NormType
{
    IN_MAP_1D, /**< Normalization applied within the same map in 1D region */
    IN_MAP_2D, /**< Normalization applied within the same map in 2D region */
    CROSS_MAP  /**< Normalization applied cross maps */
};

/** Normalization type for Histogram of Oriented Gradients (HOG) */
enum class HOGNormType
{
    L2_NORM    = 1, /**< L2-norm */
    L2HYS_NORM = 2, /**< L2-norm followed by clipping */
    L1_NORM    = 3  /**< L1 norm */
};

/** Detection window used for the object detection. The detection window keeps the following information:
 *
 *  -# Geometry of the rectangular window (x/y of top-left corner and width/height)
 *  -# Index of the class used for evaluating which class the detection window belongs to
 *  -# Confidence value (score) obtained with the classifier
 */
struct DetectionWindow
{
    uint16_t x{ 0 };         /**< Top-left x coordinate */
    uint16_t y{ 0 };         /**< Top-left y coordinate */
    uint16_t width{ 0 };     /**< Width of the detection window */
    uint16_t height{ 0 };    /**< Height of the detection window */
    uint16_t idx_class{ 0 }; /**< Index of the class */
    float    score{ 0.f };   /**< Confidence value for the detection window */
};

/** Dimension rounding type when down-scaling on CNNs
 * @note Used in pooling and convolution layer
 */
enum class DimensionRoundingType
{
    FLOOR, /**< Floor rounding */
    CEIL   /**< Ceil rounding */
};

/** Available pooling types */
enum class PoolingType
{
    MAX, /**< Max Pooling */
    AVG, /**< Average Pooling */
    L2   /**< L2 Pooling */
};

/** Padding and stride information class */
class PadStrideInfo
{
public:
    /** Constructor
     *
     * @param[in] stride_x (Optional) Stride, in elements, across x. Defaults to 1.
     * @param[in] stride_y (Optional) Stride, in elements, across y. Defaults to 1.
     * @param[in] pad_x    (Optional) Padding, in elements, across x. Defaults to 0.
     * @param[in] pad_y    (Optional) Padding, in elements, across y. Defaults to 0.
     * @param[in] round    (Optional) Dimensions rounding. Defaults to @ref FLOOR.
     */
    PadStrideInfo(unsigned int stride_x = 1, unsigned int stride_y = 1,
                  unsigned int pad_x = 0, unsigned int pad_y = 0,
                  DimensionRoundingType round = DimensionRoundingType::FLOOR)
        : _stride(std::make_pair(stride_x, stride_y)),
          _pad_left(pad_x),
          _pad_top(pad_y),
          _pad_right(pad_x),
          _pad_bottom(pad_y),
          _round_type(round)
    {
    }
    /** Constructor
     *
     * @param[in] stride_x   Stride, in elements, across x.
     * @param[in] stride_y   Stride, in elements, across y.
     * @param[in] pad_left   Padding across x on the left, in elements.
     * @param[in] pad_top    Padding across y on the top, in elements.
     * @param[in] pad_right  Padding across x on the right, in elements.
     * @param[in] pad_bottom Padding across y on the bottom, in elements.
     * @param[in] round      Dimensions rounding.
     */
    PadStrideInfo(unsigned int stride_x, unsigned int stride_y,
                  unsigned int pad_left, unsigned int pad_right,
                  unsigned int pad_top, unsigned int pad_bottom,
                  DimensionRoundingType round)
        : _stride(std::make_pair(stride_x, stride_y)),
          _pad_left(pad_left),
          _pad_top(pad_top),
          _pad_right(pad_right),
          _pad_bottom(pad_bottom),
          _round_type(round)
    {
    }
    /** Get the stride.
     *
     * @return a pair: stride x, stride y.
     */
    std::pair<unsigned int, unsigned int> stride() const
    {
        return _stride;
    }
    /** Check whether the padding is symmetric.
     *
     * @return True if the padding is symmetric.
     */
    bool padding_is_symmetric() const
    {
        return (_pad_left == _pad_right) && (_pad_top == _pad_bottom);
    }
    /** Get the padding.
     *
     * @note This should only be used when the padding is symmetric.
     *
     * @return a pair: padding left/right, padding top/bottom
     */
    std::pair<unsigned int, unsigned int> pad() const
    {
        //this accessor should be used only when padding is symmetric
        ARM_COMPUTE_ERROR_ON(!padding_is_symmetric());
        return std::make_pair(_pad_left, _pad_top);
    }

    /** Get the left padding */
    unsigned int pad_left() const
    {
        return _pad_left;
    }
    /** Get the right padding */
    unsigned int pad_right() const
    {
        return _pad_right;
    }
    /** Get the top padding */
    unsigned int pad_top() const
    {
        return _pad_top;
    }
    /** Get the bottom padding */
    unsigned int pad_bottom() const
    {
        return _pad_bottom;
    }

    /** Get the rounding type */
    DimensionRoundingType round() const
    {
        return _round_type;
    }

    /** Check whether this has any padding */
    bool has_padding() const
    {
        return (_pad_left != 0 || _pad_top != 0 || _pad_right != 0 || _pad_bottom != 0);
    }

private:
    std::pair<unsigned int, unsigned int> _stride;
    unsigned int _pad_left;
    unsigned int _pad_top;
    unsigned int _pad_right;
    unsigned int _pad_bottom;

    DimensionRoundingType _round_type;
};

/** Fully connected layer info */
struct FullyConnectedLayerInfo
{
    DataLayout weights_trained_layout{ DataLayout::NCHW }; /**<  Layout that the weights have been trained with. */
    bool       transpose_weights{ true };                  /**<  Transpose weights if true. */
    bool       are_weights_reshaped{ false };              /**<  Reshape the weights tensor if false. */
    bool       retain_internal_weights{ false };           /**<  Retain internal reshaped weights. */

    /** Sets the weights trained data layout
     *
     * @param[in] layout Data layout that the weights were trained with
     *
     * @return Updated object
     */
    FullyConnectedLayerInfo &set_weights_trained_layout(DataLayout layout)
    {
        weights_trained_layout = layout;
        return *this;
    }
    /** Sets the transpose weights flag
     *
     * @param[in] should_transpose_weights Boolean flag indicating if weights should be transposed
     *
     * @return Updated object
     */
    FullyConnectedLayerInfo &set_transpose_weights(bool should_transpose_weights)
    {
        transpose_weights = should_transpose_weights;
        return *this;
    }
};

/** Pooling Layer Information class */
class PoolingLayerInfo
{
public:
    /** Default Constructor */
    PoolingLayerInfo()
        : _pool_type(PoolingType::MAX), _pool_size(Size2D()), _pad_stride_info(PadStrideInfo()), _exclude_padding(false), _is_global_pooling(false)
    {
    }
    /** Default Constructor
     *
     * @param[in] pool_type       Pooling type @ref PoolingType.
     * @param[in] pool_size       Pooling size, in elements, across  x and y.
     * @param[in] pad_stride_info (Optional) Padding and stride information @ref PadStrideInfo
     * @param[in] exclude_padding (Optional) Strategy when accounting padding in calculations.
     *                             True will exclude padding while false will not (Used in AVG/L2 pooling to determine the pooling area).
     *                             Defaults to false;
     */
    explicit PoolingLayerInfo(PoolingType   pool_type,
                              unsigned int  pool_size,
                              PadStrideInfo pad_stride_info = PadStrideInfo(),
                              bool          exclude_padding = false)
        : _pool_type(pool_type), _pool_size(Size2D(pool_size, pool_size)), _pad_stride_info(pad_stride_info), _exclude_padding(exclude_padding), _is_global_pooling(false)
    {
    }
    /** Default Constructor
     *
     * @param[in] pool_type       Pooling type @ref PoolingType.
     * @param[in] pool_size       Pooling size, in elements, across  x and y.
     * @param[in] pad_stride_info (Optional) Padding and stride information @ref PadStrideInfo
     * @param[in] exclude_padding (Optional) Strategy when accounting padding in calculations.
     *                             True will exclude padding while false will not (Used in AVG/L2 pooling to determine the pooling area).
     *                             Defaults to false;
     */
    explicit PoolingLayerInfo(PoolingType   pool_type,
                              Size2D        pool_size,
                              PadStrideInfo pad_stride_info = PadStrideInfo(),
                              bool          exclude_padding = false)
        : _pool_type(pool_type), _pool_size(pool_size), _pad_stride_info(pad_stride_info), _exclude_padding(exclude_padding), _is_global_pooling(false)
    {
    }
    /** Default Constructor
     *
     * @note This constructor is used for global pooling
     *
     * @param[in] pool_type Pooling type @ref PoolingType.
     */
    explicit PoolingLayerInfo(PoolingType pool_type)
        : _pool_type(pool_type), _pool_size(Size2D()), _pad_stride_info(PadStrideInfo(1, 1, 0, 0)), _exclude_padding(false), _is_global_pooling(true)
    {
    }
    /** Get the pooling type */
    PoolingType pool_type() const
    {
        return _pool_type;
    }
    /** Get the pooling size */
    const Size2D &pool_size() const
    {
        return _pool_size;
    }
    /** Get the padding and stride */
    PadStrideInfo pad_stride_info() const
    {
        return _pad_stride_info;
    }
    /** Check if padding is excluded in calculations */
    bool exclude_padding() const
    {
        return _exclude_padding;
    }
    /** Check if is global pooling */
    bool is_global_pooling() const
    {
        return _is_global_pooling;
    }

private:
    PoolingType   _pool_type;
    Size2D        _pool_size;
    PadStrideInfo _pad_stride_info;
    bool          _exclude_padding;
    bool          _is_global_pooling;
};

/** ROI Pooling Layer Information class */
class ROIPoolingLayerInfo final
{
public:
    /** Constructor
     *
     * @param[in] pooled_width   Pooled width of the layer.
     * @param[in] pooled_height  Pooled height of the layer.
     * @param[in] spatial_scale  Spatial scale to be applied to the ROI coordinates and dimensions.
     * @param[in] sampling_ratio Number of samples to include in each pooling region (if set to zero, a ceil(roi_dims/pooling_dims))
     */
    ROIPoolingLayerInfo(unsigned int pooled_width, unsigned int pooled_height, float spatial_scale, unsigned int sampling_ratio = 0)
        : _pooled_width(pooled_width), _pooled_height(pooled_height), _spatial_scale(spatial_scale), _sampling_ratio(sampling_ratio)
    {
    }
    /** Get the pooled width of the layer */
    unsigned int pooled_width() const
    {
        return _pooled_width;
    }
    /** Get the pooled height of the layer */
    unsigned int pooled_height() const
    {
        return _pooled_height;
    }
    /** Get the spatial scale */
    float spatial_scale() const
    {
        return _spatial_scale;
    }
    /** Get sampling ratio */
    unsigned int sampling_ratio() const
    {
        return _sampling_ratio;
    }

private:
    unsigned int _pooled_width;
    unsigned int _pooled_height;
    float        _spatial_scale;
    unsigned int _sampling_ratio;
};

/** Activation Layer Information class */
class ActivationLayerInfo
{
public:
    /** Available activation functions */
    enum class ActivationFunction
    {
        LOGISTIC,        /**< Logistic ( \f$ f(x) = \frac{1}{1 + e^{-x}} \f$ ) */
        TANH,            /**< Hyperbolic tangent ( \f$ f(x) = a \cdot tanh(b \cdot x) \f$ ) */
        RELU,            /**< Rectifier ( \f$ f(x) = max(0,x) \f$ ) */
        BOUNDED_RELU,    /**< Upper Bounded Rectifier ( \f$ f(x) = min(a, max(0,x)) \f$ ) */
        LU_BOUNDED_RELU, /**< Lower and Upper Bounded Rectifier ( \f$ f(x) = min(a, max(b,x)) \f$ ) */
        LEAKY_RELU,      /**< Leaky Rectifier ( \f$ f(x)= log(1+e^x) \f$ ) */
        SOFT_RELU,       /**< Soft Rectifier ( \f$ f(x)= log(1+e^x) \f$ ) */
        ABS,             /**< Absolute ( \f$ f(x)= |x| \f$ ) */
        SQUARE,          /**< Square ( \f$ f(x)= x^2 \f$ )*/
        SQRT,            /**< Square root ( \f$ f(x) = \sqrt{x} \f$ )*/
        LINEAR           /**< Linear ( \f$ f(x)= ax + b \f$ ) */
    };

    ActivationLayerInfo() = default;
    /** Default Constructor
     *
     * @param[in] f The activation function to use.
     * @param[in] a (Optional) The alpha parameter used by some activation functions
     *              (@ref ActivationFunction::BOUNDED_RELU, @ref ActivationFunction::LU_BOUNDED_RELU, @ref ActivationFunction::LINEAR, @ref ActivationFunction::TANH).
     * @param[in] b (Optional) The beta parameter used by some activation functions (@ref ActivationFunction::LINEAR, @ref ActivationFunction::LU_BOUNDED_RELU, @ref ActivationFunction::TANH).
     */
    ActivationLayerInfo(ActivationFunction f, float a = 0.0f, float b = 0.0f)
        : _act(f), _a(a), _b(b), _enabled(true)
    {
    }
    /** Get the type of activation function */
    ActivationFunction activation() const
    {
        return _act;
    }
    /** Get the alpha value */
    float a() const
    {
        return _a;
    }
    /** Get the beta value */
    float b() const
    {
        return _b;
    }
    /** Check if initialised */
    bool enabled() const
    {
        return _enabled;
    }

private:
    ActivationFunction _act     = { ActivationLayerInfo::ActivationFunction::LOGISTIC };
    float              _a       = {};
    float              _b       = {};
    bool               _enabled = { false };
};

/** Normalization Layer Information class */
class NormalizationLayerInfo
{
public:
    /** Default Constructor
     *
     * @param[in] type      The normalization type. Can be @ref NormType::IN_MAP_1D, @ref NormType::IN_MAP_2D or @ref NORM_TYPE::CROSS_MAP
     * @param[in] norm_size The normalization size is the number of elements to normalize across. Defaults to 5.
     * @param[in] alpha     (Optional) Alpha parameter used by normalization equation. Defaults to 0.0001.
     * @param[in] beta      (Optional) Beta parameter used by normalization equation. Defaults to 0.5.
     * @param[in] kappa     (Optional) Kappa parameter used by [Krichevksy 2012] Across Channel Local Brightness Normalization equation.
     * @param[in] is_scaled (Optional) Boolean that specifies if alpha will be scaled by the normalization size or not.
     *                      Should be false to follow [Krichevksy 2012].
     */
    NormalizationLayerInfo(NormType type, uint32_t norm_size = 5, float alpha = 0.0001f, float beta = 0.5f, float kappa = 1.f, bool is_scaled = true)
        : _type(type), _norm_size(norm_size), _alpha(alpha), _beta(beta), _kappa(kappa), _is_scaled(is_scaled)
    {
    }
    /** Get the normalization type */
    NormType type() const
    {
        return _type;
    }
    /** Get the normalization size */
    uint32_t norm_size() const
    {
        return _norm_size;
    }
    /** Get the alpha value */
    float alpha() const
    {
        return _alpha;
    }
    /** Get the beta value */
    float beta() const
    {
        return _beta;
    }
    /** Get the kappa value */
    float kappa() const
    {
        return _kappa;
    }
    /** Check if normalization is cross map */
    bool is_cross_map() const
    {
        return _type == NormType::CROSS_MAP;
    }
    /** Check if normalization is not cross map */
    bool is_in_map() const
    {
        return !is_cross_map();
    }
    /** Return the scaling factor of the normalization function.
     *
     * If is_scaled is set to false then [Krichevksy 2012] normalization scaling is performed,
     * where alpha is returned plainly, else alpha is scaled by the total number of elements used for the normalization.
     *
     * @return The normalization scaling factor.
     */
    float scale_coeff() const
    {
        const uint32_t size = (_type == NormType::IN_MAP_2D) ? _norm_size * _norm_size : _norm_size;
        return (_is_scaled) ? (_alpha / size) : _alpha;
    }

private:
    NormType _type;
    uint32_t _norm_size;
    float    _alpha;
    float    _beta;
    float    _kappa;
    bool     _is_scaled;
};

/** Convolution Layer Weights Information class. This class stores the necessary information to compute convolution layer when the weights are already reshaped */
class WeightsInfo
{
public:
    /** Default constructor */
    WeightsInfo()
        : _are_reshaped(false), _kernel_width(0), _kernel_height(0), _num_kernels(0), _retain_internal_weights(false)
    {
    }
    /** Constructor
     *
     * @param[in] are_reshaped            True if the weights have been reshaped
     * @param[in] kernel_width            Kernel width.
     * @param[in] kernel_height           Kernel height.
     * @param[in] num_kernels             Number of convolution kernels.
     * @param[in] retain_internal_weights (Optional) True if internal reshaped weights must be retained. Used for reconfiguration purposes. Default is false.
     */
    WeightsInfo(bool are_reshaped, unsigned int kernel_width, unsigned int kernel_height, unsigned int num_kernels, bool retain_internal_weights = false)
        : _are_reshaped(are_reshaped), _kernel_width(kernel_width), _kernel_height(kernel_height), _num_kernels(num_kernels), _retain_internal_weights(retain_internal_weights)
    {
    }
    /** Flag which specifies if the weights tensor has been reshaped.
     *
     * @return True if the weights tensors has been reshaped
     */
    bool are_reshaped() const
    {
        return _are_reshaped;
    };
    /** Return the number of convolution kernels
     *
     * @return The number of convolution kernels
     */
    unsigned int num_kernels() const
    {
        return _num_kernels;
    };
    /** Return the width and height of the kernel
     *
     * @return The width and height of the kernel
     */
    std::pair<unsigned int, unsigned int> kernel_size() const
    {
        return std::make_pair(_kernel_width, _kernel_height);
    }
    bool retain_internal_weights() const
    {
        return _retain_internal_weights;
    }

private:
    const bool         _are_reshaped;
    const unsigned int _kernel_width;
    const unsigned int _kernel_height;
    const unsigned int _num_kernels;
    const bool         _retain_internal_weights;
};

/** GEMM reshape information class. This class stores the necessary information about matrix A and matrix B reshape.
 *
 * The matrix A can only be reshaped through @ref CLGEMMInterleave4x4Kernel or  @ref NEGEMMInterleave4x4Kernel or  @ref GCGEMMInterleave4x4Kernel
 * Note: Optionally just for @ref CLGEMMInterleave4x4Kernel is it possible to set mult_interleave4x4_height, the multiplication factor for the height of the 4x4 interleaved block
 *
 * The matrix B can only be reshaped through @ref CLGEMMTranspose1xWKernel or  @ref NEGEMMTranspose1xWKernel or  @ref GCGEMMTranspose1xWKernel
 * Note: Optionally just for @ref CLGEMMTranspose1xWKernel is it possible to set mult_transpose1xW_width, the multiplication factor for the width of the 1xW transposed block
 *
 */
class GEMMReshapeInfo final
{
public:
    /** Default constructor */
    GEMMReshapeInfo()
        : _m(1), _n(1), _k(1), _mult_transpose1xW_width(1), _mult_interleave4x4_height(1), _depth_output_gemm3d(1), _reinterpret_input_as_3d(false)
    {
    }
    /** Constructor
     *
     * @param[in] m                         Number of matrix A rows
     * @param[in] n                         Number of matrix B columns
     * @param[in] k                         Number of matrix A columns or matrix B rows
     * @param[in] mult_transpose1xW_width   (Optional) Multiplication factor for the width of the 1xW transposed block
     * @param[in] mult_interleave4x4_height (Optional) Multiplication factor for the height of the 4x4 interleaved block
     * @param[in] depth_output_gemm3d       (Optional) Depth (third dimension) of the output tensor to be used with the GEMM3D kernel
     * @param[in] reinterpret_input_as_3d   (Optional) Reinterpret the input as 3D tensor. (i.e. this flag should be set to true when GEMM is used
     *                                                 to perform 1x1 convolutions with the NHWC data layout)
     */
    GEMMReshapeInfo(int m, int n, int k, int mult_transpose1xW_width = 1, int mult_interleave4x4_height = 1, int depth_output_gemm3d = 1, bool reinterpret_input_as_3d = false)
        : _m(m), _n(n), _k(k), _mult_transpose1xW_width(mult_transpose1xW_width), _mult_interleave4x4_height(mult_interleave4x4_height), _depth_output_gemm3d(depth_output_gemm3d),
          _reinterpret_input_as_3d(reinterpret_input_as_3d)
    {
    }
    /** Number of matrix A rows
     *
     * @return the number of matrix A rows
     */
    int m() const
    {
        return _m;
    }
    /** Number of matrix B columns
     *
     * @return the number of matrix B columns
     */
    int n() const
    {
        return _n;
    }
    /** Number of matrix A columns or matrix B rows
     *
     * @return the number of matrix A columns or matrix B rows
     */
    int k() const
    {
        return _k;
    }
    /** Multiplication factor for the width of the 1xW transposed block
     *
     * @return the multiplication factor for the width of the 1xW transposed block
     */
    int mult_transpose1xW_width() const
    {
        return _mult_transpose1xW_width;
    }
    /** Multiplication factor for the height of the 4x4 interleaved block
     *
     * @return the multiplication factor for the height of the 4x4 interleaved block
     */
    int mult_interleave4x4_height() const
    {
        return _mult_interleave4x4_height;
    }
    /** Depth (third dimension) of the output tensor to be used with the GEMM3D kernel
     *
     * @note GEMM3D kernel is used when the output has to be reinterpret as 3D tensor. In that case:
     *       m = depth_output_gemm3d * output_height
     *
     * @return the depth of the output tensor to be used with the GEMM3D kernel
     */
    int depth_output_gemm3d() const
    {
        return _depth_output_gemm3d;
    }
    /** Flag which specifies if the input tensor has to be reinterpreted as 3D
     *
     * @return True if the input tensor has to be reinterpreted as 3D tensor
     */
    bool reinterpret_input_as_3d() const
    {
        return _reinterpret_input_as_3d;
    };

private:
    const int  _m;
    const int  _n;
    const int  _k;
    const int  _mult_transpose1xW_width;
    const int  _mult_interleave4x4_height;
    const int  _depth_output_gemm3d;
    const bool _reinterpret_input_as_3d;
};

/** GEMM information class. This class stores the necessary information to compute GEMM functions
 *
 * This object also contains the information about how matrix A and matrix B have been reshaped
 *
 */
class GEMMInfo
{
public:
    /** Default constructor */
    GEMMInfo()
        : _is_a_reshaped(false), _is_b_reshaped(false), _reshape_b_only_on_first_run(false), _depth_output_gemm3d(1), _reinterpret_input_as_3d(false), _retain_internal_weights(false)
    {
    }
    /** Constructor
     *
     * @param[in] is_a_reshaped               True if the matrix A has been reshaped
     * @param[in] is_b_reshaped               True if the matrix B has been reshaped
     * @param[in] reshape_b_only_on_first_run Reshape matrix B only for the first run
     * @param[in] depth_output_gemm3d         (Optional) Depth (third dimension) of the output tensor to be used with the GEMM3D kernel
     * @param[in] reinterpret_input_as_3d     (Optional) Reinterpret the input as 3D tensor. (i.e. this flag should be set to true when GEMM is used
     *                                        to perform 1x1 convolutions with the NHWC data layout)
     * @param[in] retain_internal_weights     (Optional) Retain the weights tensor from previous run
     *
     */
    GEMMInfo(bool is_a_reshaped, bool is_b_reshaped, bool reshape_b_only_on_first_run, int depth_output_gemm3d = 1, bool reinterpret_input_as_3d = false, bool retain_internal_weights = false)
        : _is_a_reshaped(is_a_reshaped), _is_b_reshaped(is_b_reshaped), _reshape_b_only_on_first_run(reshape_b_only_on_first_run), _depth_output_gemm3d(depth_output_gemm3d),
          _reinterpret_input_as_3d(reinterpret_input_as_3d), _retain_internal_weights(retain_internal_weights)
    {
    }
    /** Flag which specifies if the matrix A has been reshaped
     *
     * @return True if the matrix A has been reshaped
     */
    bool is_a_reshaped() const
    {
        return _is_a_reshaped;
    };
    /** Flag which specifies if the matrix B has been reshaped
     *
     * @return True if the matrix B has been reshaped
     */
    bool is_b_reshaped() const
    {
        return _is_b_reshaped;
    };
    /** Flag which specifies if the reshape of matrix B should executed only for the first
     *
     * @note This flag could be set to TRUE when GEMM is used to accelerate convolution layer
     *
     * @return True if the reshaped of matrix B happens only for the first run
     */
    bool reshape_b_only_on_first_run() const
    {
        return _reshape_b_only_on_first_run;
    };
    /** Depth of the output when GEMM output is reinterpreted as 3D tensor
     *
     * @return the depth of the output tensor
     */
    int depth_output_gemm3d() const
    {
        return _depth_output_gemm3d;
    };
    /** Flag which specifies if the input tensor has to be reinterpreted as 3D
     *
     * @return True if the input tensor has to be reinterpreted as 3D tensor
     */
    bool reinterpret_input_as_3d() const
    {
        return _reinterpret_input_as_3d;
    };
    /** Flag which specifies if the weights tensor has to be retained from previous run
     *
     * @return True if the weights tensor has to be retained
     */
    bool retain_internal_weights() const
    {
        return _retain_internal_weights;
    };

private:
    const bool _is_a_reshaped;
    const bool _is_b_reshaped;
    const bool _reshape_b_only_on_first_run;
    const int  _depth_output_gemm3d;
    const bool _reinterpret_input_as_3d;
    const bool _retain_internal_weights;
};

/** Winograd information */
struct WinogradInfo
{
    /** Default constructor
     *
     * @param[in] output_tile_sz Width and height of the output tile
     * @param[in] kernel_sz      Width and height of the kernel
     * @param[in] input_dims     Width and height of the input tensor before the convolution is applied
     * @param[in] conv_info      Convolution info (Pads, strides)
     * @param[in] data_layout    Data layout to use for the output tensor once the convolution has been applied
     */
    WinogradInfo(Size2D output_tile_sz, Size2D kernel_sz, Size2D input_dims, PadStrideInfo conv_info, DataLayout data_layout)
        : output_tile_size(output_tile_sz), kernel_size(kernel_sz), input_dimensions(input_dims), convolution_info(conv_info), output_data_layout(data_layout)
    {
    }

    Size2D        output_tile_size{};                     /**< Width and height of the output tile */
    Size2D        kernel_size{};                          /**< Width and height of the kernel*/
    Size2D        input_dimensions{};                     /**< Width and height of the input tensor before the convolution is applied */
    PadStrideInfo convolution_info{};                     /**< Convolution info (Pads, strides,...) */
    DataLayout    output_data_layout{ DataLayout::NCHW }; /**< Data layout to use for the output tensor once the convolution has been applied (NCHW or NHWC) */
};

/** IO formatting information class*/
struct IOFormatInfo
{
    /** Precision type used when printing floating point numbers */
    enum class PrecisionType
    {
        Default, /**< Default precision to the one that the current stream has */
        Custom,  /**< Custom precision specified by the user using the precision parameter */
        Full     /**< The maximum precision of the floating point representation */
    };

    /** Specifies the area to be printed, used by Tensor objects */
    enum class PrintRegion
    {
        ValidRegion, /**< Prints the valid region of the Tensor object */
        NoPadding,   /**< Prints the Tensor object without the padding */
        Full         /**< Print the tensor object including padding */
    };

    /** Construct a set of IO formatting information.
     *
     * @param[in] print_region   Area to be printed. Used by Tensor objects. Default: ValidRegion.
     * @param[in] precision_type Precision type for floating point numbers. Default: stream default.
     * @param[in] precision      Precision value for float point numbers. Default: 10.
     * @param[in] align_columns  Whether to align columns when printed. Default: true.
     * @param[in] element_delim  Delimeter between elements. Default: " ".
     * @param[in] row_delim      Delimenter between rows. Default: "\n".
     */
    IOFormatInfo(PrintRegion   print_region   = PrintRegion::ValidRegion,
                 PrecisionType precision_type = PrecisionType::Default,
                 unsigned int  precision      = 10,
                 bool          align_columns  = true,
                 std::string   element_delim  = " ",
                 std::string   row_delim      = "\n")
        : print_region(print_region),
          precision_type(precision_type),
          precision(precision),
          element_delim(element_delim),
          row_delim(row_delim),
          align_columns(align_columns)
    {
    }

    /** Area to be printed by Tensor objects */
    PrintRegion print_region;
    /** Floating point precision type */
    PrecisionType precision_type;
    /** Floating point precision */
    unsigned int precision;
    /** Element delimeter */
    std::string element_delim;
    /** Row delimeter */
    std::string row_delim;
    /** Align columns */
    bool align_columns;
};

/** Available ConvolutionMethod*/
enum class ConvolutionMethod
{
    GEMM,    /**< Convolution using GEMM */
    DIRECT,  /**< Direct convolution */
    WINOGRAD /**< Convolution using Winograd */
};
} // namespace arm_compute
#endif /* __ARM_COMPUTE_TYPES_H__ */