aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/NEON/kernels/winograd/transforms/input.hpp
blob: 075765a513b9a53143d23d6e1c20c39c24f19a10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#pragma once
#include "../winograd_gemm.hpp"

namespace winograd
{
  /***************************************************************************/
  /* Instance-less API */
  template <int output_tile_rows, int output_tile_cols,
            int kernel_rows, int kernel_cols>
  template <typename T>
  void WinogradGEMM<output_tile_rows, output_tile_cols, kernel_rows, kernel_cols>::InputTransform<T>::execute(
    const T *inptr,
    const Tensor4DShape& input_shape,
    const PaddingType padding_type,
    const int tile_M,
    const int tile_N,
    T *outptr_base,
    const int matrix_stride,
    const int matrix_batch_stride,
    const int matrix_row_stride
  )
  {
    // Compute the padding required on each edge of the image
    const bool base_padding = (padding_type == PADDING_SAME) ? 1 : 0;
    const int pad_top = base_padding;
    const int pad_left = base_padding;
    const int tile_overlap = kernel_rows - 1;

    // Compute striding values (assuming NHWC ordered data)
    const int input_col_stride = input_shape.n_channels;
    const int input_row_stride = input_shape.n_cols * input_col_stride;
    const int input_batch_stride = input_shape.n_rows * input_row_stride;
    const int output_col_stride = matrix_row_stride;
    const int output_row_stride = tile_N * output_col_stride;

    // Loop over batches
    for (int batch = 0; batch < input_shape.n_batches; batch++)
    {
      // Pointer to the batch
      const T* const input_base_batch = inptr + batch * input_batch_stride;
      T* const outptr_base_batch = outptr_base + batch * matrix_batch_stride;

      // Loop over rows of tiles
      for (int tile_i = 0; tile_i < tile_M; tile_i++)
      {
        // Pointer to the row
        const int row_offset = (tile_i == 0) ?
          0 : ((padding_type == PADDING_VALID) ? 0 : 1);
        const T* const input_base_row = (
          input_base_batch + ((inner_tile_rows - (kernel_rows - 1))*tile_i - row_offset)*input_row_stride
        );
        T* const outptr_base_row = outptr_base_batch + tile_i*output_row_stride;

        // Padding (top + bottom) for the row
        const int row_top = tile_i*(inner_tile_rows - tile_overlap) - pad_top;
        const int row_bottom = row_top + inner_tile_rows;
        const int row_pad_top = (tile_i == 0) ? pad_top : 0;
        const int row_pad_bottom = (row_bottom <= input_shape.n_rows) ? 0 : row_bottom - input_shape.n_rows;

        // Process the row
        process_tile_row(
          tile_N, input_shape.n_channels,
          input_base_row, input_row_stride, input_col_stride,
          outptr_base_row, matrix_stride, matrix_row_stride,
          row_pad_top, pad_left, row_pad_bottom, input_shape.n_cols
        );
      }
    }
  }

  template <int output_tile_rows, int output_tile_cols,
            int kernel_rows, int kernel_cols>
  template <typename T>
  void WinogradGEMM<output_tile_rows, output_tile_cols, kernel_rows, kernel_cols>::InputTransform<T>::process_tile_row(
    const int tile_N,
    int n_channels,
    const T* const input_base,
    const int input_row_stride,
    const int input_col_stride,
    T* const matrix_base,
    const int matrix_stride,
    const int matrix_row_stride,
    const int pad_top,
    const int row_pad_left,
    const int pad_bottom,
    const int n_cols
  )
  {
    constexpr int tile_overlap = kernel_cols - 1;

    // Loop over columns of tiles
    for (int tile_j = 0; tile_j < tile_N; tile_j++)
    {
      // Padding (left + right) for the tile
      const int t_pad_left = (tile_j == 0) ? row_pad_left : 0;
      const int t_start = tile_j*(inner_tile_cols - tile_overlap) - row_pad_left;
      const int t_end = t_start + inner_tile_cols;
      const int t_pad_right = (t_end <= n_cols) ? 0 : t_end - n_cols;

      // Get pointers into the inputs and outputs
      const int col_offset = (tile_j == 0) ? 0 : row_pad_left;
      const T* const input_base_col = (
        input_base + ((inner_tile_cols - tile_overlap)*tile_j - col_offset)*input_col_stride
      );
      T* const outptr = matrix_base + tile_j*matrix_row_stride;

      // Apply the specific tile processing function
      tile_fns[pad_top][t_pad_left][pad_bottom][t_pad_right](
        n_channels,
        input_base_col,
        input_row_stride,
        input_col_stride,
        outptr,
        matrix_stride
      );
    }
  }

  /***************************************************************************/
  template <int otr, int otc, int kr, int kc>
  template <typename T>
  WinogradGEMM<otr, otc, kr, kc>::InputTransform<T>::InputTransform(
    const T* const input,        /** Input tensor data */
    const int n_batches,         /** Number of batches in input tensor. */
    const int n_rows,            /** Number of rows in input tensor. */
    const int n_cols,            /** Number of columns in input tensor. */
    const int n_channels,        /** Number of channels in input tensor. */
    const PaddingType padding,   /** Padding type. */
    T* const output,             /** Base of output matrices. */
    const int matrix_stride,     /** Stride between output matrices. */
    const int matrix_row_stride  /** Stride within matrices. */
  ) : _inptr(input), _outptr(output),
      _n_batches(n_batches), _n_rows(n_rows), _n_cols(n_cols), _n_channels(n_channels),
      _matrix_stride(matrix_stride), _matrix_row_stride(matrix_row_stride),
      _tiles_M(iceildiv((padding == PADDING_SAME) ? n_rows : n_rows - 2, output_tile_rows)),
      _tiles_N(iceildiv((padding == PADDING_SAME) ? n_cols : n_cols - 2, output_tile_cols)),
      _padding_type(padding)
  {
  }

  template <int otr, int otc, int kr, int kc>
  template <typename T>
  unsigned int WinogradGEMM<otr, otc, kr, kc>::InputTransform<T>::get_window() const
  {
    // TODO When the input transform supports multithreading, return the total
    // number of tile rows (allowing for multiple batches). For now we return 1
    // to indicate that the activations must be transformed as a single block.
    return 1;  // TODO _tiles_M * _n_batches;
  }

  template <int otr, int otc, int kr, int kc>
  template <typename T>
  void WinogradGEMM<otr, otc, kr, kc>::InputTransform<T>::run(
    const unsigned int start, const unsigned int stop
  )
  {
    // TODO When the input transform supports multithreading call execute for a
    // portion of the tile rows.
    (void) start;
    (void) stop;

    // For now, just do all of the work.
    const Tensor4DShape input_shape = {
      _n_batches, _n_rows, _n_cols, _n_channels, NHWC
    };
    execute(
      _inptr, input_shape, _padding_type, _tiles_M, _tiles_N, _outptr,
      _matrix_stride, _matrix_row_stride * _tiles_M * _tiles_N, _matrix_row_stride
    );
  }
}