aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/NEON/kernels/convolution/winograd/transforms/output.hpp
blob: 401b2816be3c4c4eec1619199b02b26a7ae7cafd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
 * Copyright (c) 2017 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#pragma once
#include "arm_compute/core/NEON/kernels/convolution/winograd/winograd_gemm.hpp"

namespace winograd
{
  template <int output_tile_rows, int output_tile_cols,
            int kernel_rows, int kernel_cols>
  template <typename T>
  void WinogradGEMM<output_tile_rows, output_tile_cols, kernel_rows, kernel_cols>::OutputTransform<T>::execute(
    const Tensor4DShape &output_shape,
    const T* const matrix_base,
    const int matrix_stride,
    const int matrix_row_stride,
    const T* const biases,
    T* const output
  )
  {
    // Compute the number of tiles and hence the padding required on the bottom
    // and right of the image.
    const int tile_M = iceildiv(output_shape.n_rows, output_tile_rows);
    const int tile_N = iceildiv(output_shape.n_cols, output_tile_cols);
    const int pad_bottom = output_tile_rows*tile_M - output_shape.n_rows;
    const int pad_right = output_tile_cols*tile_N - output_shape.n_cols;

    const int matrix_tile_row_stride = tile_N * matrix_row_stride;
    const int matrix_batch_stride = tile_M * matrix_tile_row_stride;
    const int output_col_stride = output_shape.n_channels;
    const int output_row_stride = output_shape.n_cols * output_col_stride;
    const int output_batch_stride = output_shape.n_rows * output_row_stride;

    // Perform the output transformation for each batch
    for (int batch = 0; batch < output_shape.n_batches; batch++)
    {
      // Get batch offset for input and outputs.
      const T* const matrix_batch = matrix_base + batch*matrix_batch_stride;
      T* const outptr_batch = output + batch*output_batch_stride;

      // Perform the output transformation for each row of the output tensor.
      for (int tile_i = 0; tile_i < tile_M; tile_i++)
      {
        // Compute properties of this row of output tiles
        const int row_pad_bottom = (tile_i < tile_M - 1) ? 0: pad_bottom;
        const T* const matrix_tile_row = matrix_batch + tile_i * matrix_tile_row_stride;
        T* const outptr_row = outptr_batch + output_tile_rows*tile_i*output_row_stride;

        // Process the row
        process_tile_row(
          tile_N, output_shape.n_channels, matrix_tile_row, matrix_stride,
          matrix_row_stride, biases,
          outptr_row, output_row_stride, output_col_stride, row_pad_bottom,
          pad_right
        );
      }
    }
  }

  template <int output_tile_rows, int output_tile_cols,
            int kernel_rows, int kernel_cols>
  template <typename T>
  void WinogradGEMM<output_tile_rows, output_tile_cols, kernel_rows, kernel_cols>::OutputTransform<T>::process_tile_row(
    const int tile_N,
    const int n_channels,
    const T* const matrix_base,
    const int matrix_stride,
    const int matrix_row_stride,
    const T* const biases,
    T* const output,
    const int output_row_stride,
    const int output_col_stride,
    const int row_pad_bottom,
    const int row_pad_right
  )
  {
    // Loop over columns of tiles
    for (int tile_j = 0; tile_j < tile_N; tile_j++)
    {
      // Properties of this tile
      const int tile_pad_right = (tile_j < tile_N - 1) ? 0 : row_pad_right;
      const T* const matrix_row = matrix_base + tile_j * matrix_row_stride;
      T* const outptr = output + output_tile_cols*tile_j*output_col_stride;

      // Perform the output transformation
      tile_fns[row_pad_bottom][tile_pad_right](
        n_channels, matrix_row, matrix_stride, biases,
        outptr, output_row_stride, output_col_stride
      );
    }
  }

  template <int output_tile_rows, int output_tile_cols, int kr, int kc>
  template <typename T>
  size_t WinogradGEMM<output_tile_rows, output_tile_cols, kr, kc>::OutputTransform<T>::bytes_read(const Tensor4DShape &shape)
  {
    const int M = iceildiv(shape.n_rows, output_tile_rows) *
                  iceildiv(shape.n_cols, output_tile_cols);
    const int N = shape.n_channels;
    return inner_tile_rows * inner_tile_cols * M * N * sizeof(T);
  }

  template <int otr, int otc, int kr, int kc>
  template <typename T>
  size_t WinogradGEMM<otr, otc, kr, kc>::OutputTransform<T>::bytes_written(const Tensor4DShape &shape)
  {
    return shape.size() * sizeof(T);
  }

  template <int output_tile_rows, int output_tile_cols, int kr, int kc>
  template <typename T>
  WinogradGEMM<output_tile_rows, output_tile_cols, kr, kc>::OutputTransform<T>::OutputTransform(
    const T* const matrix_base,
    const int matrix_stride,
    const int matrix_row_stride,
    const T* const biases,
    T* const output,
    const int n_batches,
    const int n_rows,
    const int n_cols,
    const int n_channels
  ) : _matrix_base(matrix_base), _biases(biases),
      _matrix_stride(matrix_stride), _matrix_row_stride(matrix_row_stride),
      _outptr(output), _n_batches(n_batches), _n_rows(n_rows), _n_cols(n_cols),
      _n_channels(n_channels), _tile_M(iceildiv(n_rows, output_tile_rows)),
      _tile_N(iceildiv(n_cols, output_tile_cols))
  {
  }

  template <int otr, int otc, int kr, int kc>
  template <typename T>
  unsigned int WinogradGEMM<otr, otc, kr, kc>::OutputTransform<T>::get_window() const
  {
    // TODO When the output transform supports multithreading, return the total
    // number of tile rows (allowing for multiple batches). For now we return 1
    // to indicate that the activations must be transformed as a single block.
    return 1;  // TODO _tile_M * _n_batches;
  }

  template <int otr, int otc, int kr, int kc>
  template <typename T>
  void WinogradGEMM<otr, otc, kr, kc>::OutputTransform<T>::run(
    const unsigned int start, const unsigned int stop
  )
  {
    // TODO When the output transform supports multithreading call execute for a
    // portion of the tile rows.
    (void) start;
    (void) stop;

    // For now, just do all of the work.
    const Tensor4DShape output_shape = {
      _n_batches, _n_rows, _n_cols, _n_channels, NHWC
    };
    execute(
      output_shape, _matrix_base, _matrix_stride, _matrix_row_stride, _biases,
      _outptr
    );
  }
}  // namespace winograd