aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/core/NEON/kernels/assembly/NEGEMMInterleavedPrepareBWrapperKernel.h
blob: ba3223f66d02b7470f6c93ed631af1fa3acd425b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
 * Copyright (c) 2018-2019 ARM Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef __ARM_COMPUTE_NEGEMMINTERLEAVEDPREPAREBWRAPPERKERNEL_H__
#define __ARM_COMPUTE_NEGEMMINTERLEAVEDPREPAREBWRAPPERKERNEL_H__

#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/INEKernel.h"
#include "arm_compute/core/NEON/kernels/assembly/Helpers.h"
#include "arm_compute/core/NEON/kernels/assembly/INEGEMMWrapperKernel.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"

namespace arm_compute
{
/** Unit of work for @ref NEGEMMInterleavedPrepareBWrapperKernel to process */
struct PrepareBWorkload
{
    /** Constructor
     *
     * @param[in] offset_b             Offset from the start of b's allocation
     * @param[in] offset_transformed_b Offset from the start of transformed_b's allocation.
     * @param[in] x0                   First value to process along the X dimension (N).
     * @param[in] xmax                 Last value to process along the X dimension (N).
     * @param[in] k0                   First value to process along the K dimension.
     * @param[in] kmax                 Last value to process along the K dimension.
     */
    PrepareBWorkload(unsigned int offset_b, unsigned int offset_transformed_b, unsigned int x0, unsigned int xmax, unsigned int k0, unsigned int kmax)
        : _offset_b(offset_b), _offset_transformed_b(offset_transformed_b), _x0(x0), _xmax(xmax), _k0(k0), _kmax(kmax)
    {
    }
    unsigned int _offset_b;             /**< Offset from the start of b's allocation.*/
    unsigned int _offset_transformed_b; /**< Offset from the start of transformed_b's allocation.*/
    unsigned int _x0;                   /**< First value to process along the X dimension (N). */
    unsigned int _xmax;                 /**< Last value to process along the X dimension (N). */
    unsigned int _k0;                   /**< First value to process along the K dimension. */
    unsigned int _kmax;                 /**< Last value to process along the K dimension. */
};

namespace detail
{
// Call the lambda function for each workload generated by the passed window.
template <typename strategy, bool use_buffer_manager, typename Lambda>
void for_each_element_in_window(const Window &window, const ITensor *b, ITensor *transformed_b, unsigned int N, unsigned int K, Lambda &&lambda)
{
    unsigned int wl_index    = 0;
    unsigned int num_buffers = 0, reshaped_block_size = 0;

    if(use_buffer_manager)
    {
        num_buffers         = transformed_b->info()->tensor_shape()[1];
        reshaped_block_size = transformed_b->info()->strides_in_bytes().y();
    }

    unsigned int offset_transformed_b = transformed_b->info()->offset_first_element_in_bytes();
    execute_window_loop(window, [&](const Coordinates & coordinates)
    {
        const unsigned int x0    = coordinates.x();
        const unsigned int k0    = coordinates.y();
        const unsigned int multi = coordinates.z();

        const unsigned int offset_b = b->info()->offset_element_in_bytes(Coordinates(0, 0, multi));
        const unsigned int xmax     = std::min(x0 + window.x().step(), N);
        const unsigned int kmax     = std::min(k0 + window.y().step(), K);

        /* Figure out the size of each block. */
        unsigned int x_size = (xmax - x0);
        unsigned int k_size = (kmax - k0);

        /* Round sizes up as needed. */
        x_size = ceil_to_multiple(x_size, strategy::out_width());
        k_size = ceil_to_multiple(k_size, strategy::k_unroll());

        lambda(PrepareBWorkload(offset_b, offset_transformed_b, x0, xmax, k0, kmax));

        //Each workload represents one block:
        if(use_buffer_manager)
        {
            // Rotate through the BufferManager's buffers:
            wl_index++;
            offset_transformed_b = (wl_index % num_buffers) * reshaped_block_size;
        }
        else
        {
            offset_transformed_b += (x_size * k_size * sizeof(typename strategy::operand_type));
        }
    });
}

// Calculate the size of transformed_b:
template <typename strategy>
unsigned int get_B_pretransposed_array_size(unsigned int N, unsigned int K, const BlockSizes &bs, unsigned int multis)
{
    // How many full blocks do N / K contain ?
    size_t num_full_k = K / bs.k_block;
    size_t num_full_x = N / bs.x_block;

    ARM_COMPUTE_ERROR_ON(bs.x_block % strategy::out_width() != 0);
    ARM_COMPUTE_ERROR_ON(bs.k_block % strategy::k_unroll() != 0);

    size_t normal_x_size = bs.x_block;
    size_t normal_k_size = bs.k_block;

    // Round up the leftovers to be a multiple of the strategy processing size:
    size_t left_over_x_size = ceil_to_multiple(N % bs.x_block, strategy::out_width());
    size_t left_over_k_size = ceil_to_multiple(K % bs.k_block, strategy::k_unroll());

    // Calculate the total size of the buffer:
    size_t total = num_full_k * normal_k_size * (num_full_x * normal_x_size + left_over_x_size);
    total += left_over_k_size * (left_over_x_size + num_full_x * normal_x_size);

    total *= multis;

    return total;
}
} // namespace detail

/** Common interface for the templated wrappers around the B reshape NEON assembly implementations */
class NEGEMMInterleavedPrepareBWrapperKernel : public INEKernel
{
public:
    /** Transform the block at the given coordinates
     *
     * @param[in] wl   Workload to process.
     * @param[in] info Information about the current thread.
     */
    virtual void transform(const PrepareBWorkload &wl, const ThreadInfo &info) = 0;
    /** Generate an array of workloads
     *
     * @param[out] workloads Container to store the generated workloads.
     */
    virtual void create_workloads(std::vector<PrepareBWorkload> &workloads) = 0;
    /** Return the block_sizes used to resape B
     *
     * The same block sizes must be used to reshape A and for the matrix multiplication
     *
     * @return The block sizes used to reshape B.
     */
    virtual BlockSizes block_sizes() const = 0;

    // Inherited methods overridden:
    const char *name() const override
    {
        return "NEGEMMInterleavedPrepareBWrapperKernel";
    }

    bool is_parallelisable() const override
    {
        return false; // Can't run on arbitrary windows but can be parallelised using an array of workloads
    }
};

/** Equivalent to arm_gemm::GemmInterleaved's strategy::transforms::PrepareB() but using Compute Library types.
 */
template <typename strategy>
class NEGEMMInterleavedPrepareBWrapperKernelTemplate : public NEGEMMInterleavedPrepareBWrapperKernel
{
public:
    /** Configure the reshape B routine.
     *
     * @param[in]  b             Input matrix B.
     * @param[out] transformed_b Reshaped matrix B.
     * @param[in]  transpose_b   Also transpose B ?
     * @param[in]  ci            CPU information
     * @param[in]  params        M, N, K sizes.
     */
    void configure(const ITensor *b, ITensor *transformed_b, bool transpose_b, const CPUInfo &ci, const INEGEMMWrapperKernel::Params &params)
    {
        const unsigned int multis = b->info()->tensor_shape().z();
        _Nsize                    = b->info()->tensor_shape().x();
        _Ksize                    = b->info()->tensor_shape().y();
        _b                        = b;
        _transformed_b            = transformed_b;
        _transpose_b              = transpose_b;

        _block_sizes = calculate_block_sizes<strategy>(ci, params.M, params.N, params.K);

        auto_init_if_empty(*transformed_b->info(), b->info()->clone()->set_tensor_shape(TensorShape{ detail::get_B_pretransposed_array_size<strategy>(_Nsize, _Ksize, _block_sizes, multis) }));

        Window window;
        window.set(Window::DimX, Window::Dimension(0, ceil_to_multiple(_Nsize, _block_sizes.x_block), _block_sizes.x_block));
        window.set(Window::DimY, Window::Dimension(0, ceil_to_multiple(_Ksize, _block_sizes.k_block), _block_sizes.k_block));
        window.set(Window::DimZ, Window::Dimension(0, multis));

        INEKernel::configure(window);
    }

    // Inherited methods overridden:
    void transform(const PrepareBWorkload &wl, const ThreadInfo &info) override
    {
        strategy strat(info.cpu_info);
        strat.transforms.PrepareB(reinterpret_cast<typename strategy::operand_type *>(_transformed_b->buffer() + wl._offset_transformed_b),
                                  reinterpret_cast<typename strategy::operand_type *>(_b->buffer() + wl._offset_b),
                                  _b->info()->strides_in_bytes().y() / sizeof(typename strategy::operand_type),
                                  wl._x0, wl._xmax, wl._k0, wl._kmax, _transpose_b);
    }
    void create_workloads(std::vector<PrepareBWorkload> &workloads) override
    {
        detail::for_each_element_in_window<strategy, true>(window(), _b, _transformed_b, _Nsize, _Ksize, [&workloads](PrepareBWorkload && wl)
        {
            workloads.push_back(std::move(wl));
        });
    }
    void run(const Window &window, const ThreadInfo &info) override
    {
        ARM_COMPUTE_ERROR_ON_MISMATCHING_WINDOWS(window, INEKernel::window());
        detail::for_each_element_in_window<strategy, false>(window, _b, _transformed_b, _Nsize, _Ksize, [&](PrepareBWorkload && wl)
        {
            this->transform(wl, info);
        });
    }
    BlockSizes block_sizes() const override
    {
        return _block_sizes;
    }

private:
    const ITensor *_b
    {
        nullptr
    };
    ITensor     *_transformed_b{ nullptr };
    unsigned int _Nsize{ 0 };
    unsigned int _Ksize{ 0 };
    bool         _transpose_b{ false };
    BlockSizes   _block_sizes{};
};

} // namespace arm_compute
#endif /* __ARM_COMPUTE_NEGEMMINTERLEAVEDPREPAREBWRAPPERKERNEL_H__ */