aboutsummaryrefslogtreecommitdiff
path: root/arm_compute/Acl.hpp
blob: 6a9d585c142d1bb03e29964f2064b0e798b46849 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
/*
 * Copyright (c) 2021 Arm Limited.
 *
 * SPDX-License-Identifier: MIT
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
#ifndef ARM_COMPUTE_ACL_HPP_
#define ARM_COMPUTE_ACL_HPP_

#include "arm_compute/Acl.h"

#include <cstdlib>
#include <memory>
#include <string>
#include <vector>

#if defined(ARM_COMPUTE_EXCEPTIONS_ENABLED)
#include <exception>
#endif /* defined(ARM_COMPUTE_EXCEPTIONS_ENABLED) */

// Helper Macros
#define ARM_COMPUTE_IGNORE_UNUSED(x) (void)(x)

namespace acl
{
// Forward declarations
class Context;
class Queue;
class Tensor;
class TensorPack;

/**< Status code enum */
enum class StatusCode
{
    Success            = AclSuccess,
    RuntimeError       = AclRuntimeError,
    OutOfMemory        = AclOutOfMemory,
    Unimplemented      = AclUnimplemented,
    UnsupportedTarget  = AclUnsupportedTarget,
    InvalidArgument    = AclInvalidArgument,
    InvalidTarget      = AclInvalidTarget,
    UnsupportedConfig  = AclUnsupportedConfig,
    InvalidObjectState = AclInvalidObjectState,
};

/**< Utility namespace containing helpers functions */
namespace detail
{
/** Construct to handle destruction of objects
 *
 * @tparam T Object base type
 */
template <typename T>
struct ObjectDeleter
{
};

#define OBJECT_DELETER(obj, func)              \
    template <>                                \
    struct ObjectDeleter<obj>                  \
                                               \
    {                                          \
        static inline AclStatus Destroy(obj v) \
        {                                      \
            return func(v);                    \
        }                                      \
    };

OBJECT_DELETER(AclContext, AclDestroyContext)
OBJECT_DELETER(AclQueue, AclDestroyQueue)
OBJECT_DELETER(AclTensor, AclDestroyTensor)
OBJECT_DELETER(AclTensorPack, AclDestroyTensorPack)
OBJECT_DELETER(AclOperator, AclDestroyOperator)

#undef OBJECT_DELETER

/** Convert a strongly typed enum to an old plain c enum
  *
  * @tparam E  Plain old C enum
  * @tparam SE Strongly typed resulting enum
  *
  * @param[in] v Value to convert
  *
  * @return A corresponding plain old C enumeration
  */
template <typename E, typename SE>
constexpr E as_cenum(SE v) noexcept
{
    return static_cast<E>(static_cast<typename std::underlying_type<SE>::type>(v));
}

/** Convert plain old enumeration to a strongly typed enum
  *
  * @tparam SE Strongly typed resulting enum
  * @tparam E  Plain old C enum
  *
  * @param[in] val Value to convert
  *
  * @return A corresponding strongly typed enumeration
  */
template <typename SE, typename E>
constexpr SE as_enum(E val) noexcept
{
    return static_cast<SE>(val);
}

/** Object base class for library objects
 *
 * Class is defining basic common interface for all the library objects
 *
 * @tparam T Object type to be templated on
 */
template <typename T>
class ObjectBase
{
public:
    /** Destructor */
    ~ObjectBase() = default;
    /** Copy constructor */
    ObjectBase(const ObjectBase<T> &) = default;
    /** Move Constructor */
    ObjectBase(ObjectBase<T> &&) = default;
    /** Copy assignment operator */
    ObjectBase<T> &operator=(const ObjectBase<T> &) = default;
    /** Move assignment operator */
    ObjectBase<T> &operator=(ObjectBase<T> &&) = default;
    /** Reset object value
     *
     * @param [in] val Value to set
     */
    void reset(T *val)
    {
        _object.reset(val, detail::ObjectDeleter<T *>::Destroy);
    }
    /** Access uderlying object
     *
     * @return Underlying object
     */
    const T *get() const
    {
        return _object.get();
    }
    /** Access uderlying object
     *
     * @return Underlying object
     */
    T *get()
    {
        return _object.get();
    }

protected:
    /** Constructor */
    ObjectBase() = default;

protected:
    std::shared_ptr<T> _object{nullptr}; /**< Library object */
};

/** Equality operator for library object
 *
 * @tparam T Parameter to template on
 *
 * @param[in] lhs Left hand-side argument
 * @param[in] rhs Right hand-side argument
 *
 * @return True if objects are equal, else false
 */
template <typename T>
bool operator==(const ObjectBase<T> &lhs, const ObjectBase<T> &rhs)
{
    return lhs.get() == rhs.get();
}

/** Inequality operator for library object
 *
 * @tparam T Parameter to template on
 *
 * @param[in] lhs Left hand-side argument
 * @param[in] rhs Right hand-side argument
 *
 * @return True if objects are equal, else false
 */
template <typename T>
bool operator!=(const ObjectBase<T> &lhs, const ObjectBase<T> &rhs)
{
    return !(lhs == rhs);
}
} // namespace detail

#if defined(ARM_COMPUTE_EXCEPTIONS_ENABLED)
/** Status class
 *
 * Class is an extension of std::exception and contains the underlying
 * status construct and an error explanatory message to be reported.
 *
 * @note Class is visible only when exceptions are enabled during compilation
 */
class Status : public std::exception
{
public:
    /** Constructor
     *
     * @param[in] status Status returned
     * @param[in] msg    Error message to be bound with the exception
     */
    Status(StatusCode status, const std::string &msg) : _status(status), _msg(msg)
    {
    }
    /** Returns an explanatory exception message
     *
     * @return Status message
     */
    const char *what() const noexcept override
    {
        return _msg.c_str();
    }
    /** Underlying status accessor
     *
     * @return Status code
     */
    StatusCode status() const
    {
        return _status;
    }
    /** Explicit status converter
     *
     * @return Status code
     */
    explicit operator StatusCode() const
    {
        return _status;
    }

private:
    StatusCode  _status; /**< Status code */
    std::string _msg;    /**< Status message */
};

/** Reports an error status and throws an exception object in case of failure
 *
 * @note This implementation is used when exceptions are enabled during compilation
 *
 * @param[in] status Status to report
 * @param[in] msg    Explanatory error messaged
 *
 * @return Status code
 */
static inline void report_status(StatusCode status, const std::string &msg)
{
    if (status != StatusCode::Success)
    {
        throw Status(status, msg);
    }
}
#else  /* defined(ARM_COMPUTE_EXCEPTIONS_ENABLED) */
/** Reports a status code
 *
 * @note This implementation is used when exceptions are disabled during compilation
 * @note Message is surpressed and not reported in this case
 *
 * @param[in] status Status to report
 * @param[in] msg    Explanatory error messaged
 *
 * @return Status code
 */
static inline void report_status(StatusCode status, const std::string &msg)
{
    ARM_COMPUTE_IGNORE_UNUSED(status);
    ARM_COMPUTE_IGNORE_UNUSED(msg);
}
#endif /* defined(ARM_COMPUTE_EXCEPTIONS_ENABLED) */

/**< Target enum */
enum class Target
{
    Cpu    = AclCpu,   /**< Cpu target that leverages SIMD */
    GpuOcl = AclGpuOcl /**< Gpu target that leverages OpenCL */
};

/**< Available execution modes */
enum class ExecutionMode
{
    FastRerun =
        AclPreferFastRerun, /**< Prefer minimum latency in consecutive runs, might introduce higher startup times */
    FastStart = AclPreferFastStart, /**< Prefer minimizing startup time */
};

/** Context class
 *
 * Context acts as a central aggregate service for further objects created from it.
 * It provides, internally, common facilities in order to avoid the use of global
 * statically initialized objects that can lead to important side-effect under
 * specific execution contexts.
 *
 * For example context contains allocators for object creation, for further backing memory allocation,
 * any serialization interfaces and other modules that affect the construction of objects,
 * like program caches for OpenCL.
 */
class Context : public detail::ObjectBase<AclContext_>
{
public:
    /**< Context options */
    struct Options
    {
        static constexpr int32_t num_threads_auto = -1; /**< Allow runtime to specify number of threads */

        /** Default Constructor
         *
         * @note By default no precision loss is enabled for operators
         * @note By default the preferred execution mode is to favor multiple consecutive reruns of an operator
         */
        Options()
            : Options(ExecutionMode::FastRerun /* mode */,
                      AclCpuCapabilitiesAuto /* caps */,
                      false /* enable_fast_math */,
                      nullptr /* kernel_config */,
                      num_threads_auto /* max_compute_units */,
                      nullptr /* allocator */)
        {
        }
        /** Constructor
         *
         * @param[in] mode              Execution mode to be used
         * @param[in] caps              Capabilities to be used
         * @param[in] enable_fast_math  Allow precision loss in favor of performance
         * @param[in] kernel_config     Kernel configuration file containing construction tuning meta-data
         * @param[in] max_compute_units Max compute units that are expected to used
         * @param[in] allocator         Allocator to be used for internal memory allocation
         */
        Options(ExecutionMode         mode,
                AclTargetCapabilities caps,
                bool                  enable_fast_math,
                const char           *kernel_config,
                int32_t               max_compute_units,
                AclAllocator         *allocator)
        {
            copts.mode               = detail::as_cenum<AclExecutionMode>(mode);
            copts.capabilities       = caps;
            copts.enable_fast_math   = enable_fast_math;
            copts.kernel_config_file = kernel_config;
            copts.max_compute_units  = max_compute_units;
            copts.allocator          = allocator;
        }

        AclContextOptions copts{};
    };

public:
    /** Constructor
     *
     * @note Serves as a simpler delegate constructor
     * @note As context options, default conservative options will be used
     *
     * @param[in]  target Target to create context for
     * @param[out] status Status information if requested
     */
    explicit Context(Target target, StatusCode *status = nullptr) : Context(target, Options(), status)
    {
    }
    /** Constructor
     *
     * @param[in]  target  Target to create context for
     * @param[in]  options Context construction options
     * @param[out] status  Status information if requested
     */
    Context(Target target, const Options &options, StatusCode *status = nullptr)
    {
        AclContext ctx;
        const auto st =
            detail::as_enum<StatusCode>(AclCreateContext(&ctx, detail::as_cenum<AclTarget>(target), &options.copts));
        reset(ctx);
        report_status(st, "[Compute Library] Failed to create context");
        if (status)
        {
            *status = st;
        }
    }
};

/**< Available tuning modes */
enum class TuningMode
{
    Rapid      = AclRapid,
    Normal     = AclNormal,
    Exhaustive = AclExhaustive
};

/** Queue class
 *
 * Queue is responsible for the execution related aspects, with main responsibilities those of
 * scheduling and tuning operators.
 *
 * Multiple queues can be created from the same context, and the same operator can be scheduled on each concurrently.
 *
 * @note An operator might depend on the maximum possible compute units that are provided in the context,
 *       thus in cases where the number of the scheduling units of the queue are greater might lead to errors.
 */
class Queue : public detail::ObjectBase<AclQueue_>
{
public:
    /**< Queue options */
    struct Options
    {
        /** Default Constructor
         *
         * As default options, no tuning will be performed, and the number of scheduling units will
         * depends on internal device discovery functionality
         */
        Options() : opts{AclTuningModeNone, 0} {};
        /** Constructor
         *
         * @param[in] mode          Tuning mode to be used
         * @param[in] compute_units Number of scheduling units to be used
         */
        Options(TuningMode mode, int32_t compute_units) : opts{detail::as_cenum<AclTuningMode>(mode), compute_units}
        {
        }

        AclQueueOptions opts;
    };

public:
    /** Constructor
     *
     * @note Serves as a simpler delegate constructor
     * @note As queue options, default conservative options will be used
     *
     * @param[in]  ctx    Context to create queue for
     * @param[out] status Status information if requested
     */
    explicit Queue(Context &ctx, StatusCode *status = nullptr) : Queue(ctx, Options(), status)
    {
    }
    /** Constructor
     *
     * @note As queue options, default conservative options will be used
     *
     * @param[in]  ctx     Context from where the queue will be created from
     * @param[in]  options Queue options to be used
     * @param[out] status  Status information if requested
     */
    explicit Queue(Context &ctx, const Options &options = Options(), StatusCode *status = nullptr)
    {
        AclQueue   queue;
        const auto st = detail::as_enum<StatusCode>(AclCreateQueue(&queue, ctx.get(), &options.opts));
        reset(queue);
        report_status(st, "[Compute Library] Failed to create queue!");
        if (status)
        {
            *status = st;
        }
    }
    /** Block until all the tasks of the queue have been marked as finished
     *
     * @return Status code
     */
    StatusCode finish()
    {
        return detail::as_enum<StatusCode>(AclQueueFinish(_object.get()));
    }
};

/**< Data type enumeration */
enum class DataType
{
    Unknown  = AclDataTypeUnknown,
    UInt8    = AclUInt8,
    Int8     = AclInt8,
    UInt16   = AclUInt16,
    Int16    = AclInt16,
    UInt32   = AclUint32,
    Int32    = AclInt32,
    Float16  = AclFloat16,
    BFloat16 = AclBFloat16,
    Float32  = AclFloat32,
};

/** Tensor Descriptor class
 *
 * Structure that contains all the required meta-data to represent a tensor
 */
class TensorDescriptor
{
public:
    /** Constructor
     *
     * @param[in] shape Shape of the tensor
     * @param[in] data_type Data type of the tensor
     */
    TensorDescriptor(const std::vector<int32_t> &shape, DataType data_type) : _shape(shape), _data_type(data_type)
    {
        _cdesc.ndims     = _shape.size();
        _cdesc.shape     = _shape.data();
        _cdesc.data_type = detail::as_cenum<AclDataType>(_data_type);
        _cdesc.strides   = nullptr;
        _cdesc.boffset   = 0;
    }
    /** Constructor
     *
     * @param[in] desc C-type descriptor
     */
    explicit TensorDescriptor(const AclTensorDescriptor &desc)
    {
        _cdesc     = desc;
        _data_type = detail::as_enum<DataType>(desc.data_type);
        _shape.reserve(desc.ndims);
        for (int32_t d = 0; d < desc.ndims; ++d)
        {
            _shape.emplace_back(desc.shape[d]);
        }
    }
    /** Get underlying C tensor descriptor
     *
     * @return Underlying structure
     */
    const AclTensorDescriptor *get() const
    {
        return &_cdesc;
    }
    /** Operator to compare two TensorDescriptor
     *
     * @param[in] other The instance to compare against
     *
     * @return True if two instances have the same shape and data type
     */
    bool operator==(const TensorDescriptor &other)
    {
        bool is_same = true;

        is_same &= _data_type == other._data_type;
        is_same &= _shape.size() == other._shape.size();

        if (is_same)
        {
            for (uint32_t d = 0; d < _shape.size(); ++d)
            {
                is_same &= _shape[d] == other._shape[d];
            }
        }

        return is_same;
    }

private:
    std::vector<int32_t> _shape{};
    DataType             _data_type{};
    AclTensorDescriptor  _cdesc{};
};

/** Import memory types */
enum class ImportType
{
    Host = AclImportMemoryType::AclHostPtr
};

/** Tensor class
 *
 * Tensor is an mathematical construct that can represent an N-Dimensional space.
 *
 * @note Maximum dimensionality support is 6 internally at the moment
 */
class Tensor : public detail::ObjectBase<AclTensor_>
{
public:
    /** Constructor
     *
     * @note Tensor memory is allocated
     *
     * @param[in]  ctx    Context from where the tensor will be created from
     * @param[in]  desc   Tensor descriptor to be used
     * @param[out] status Status information if requested
     */
    Tensor(Context &ctx, const TensorDescriptor &desc, StatusCode *status = nullptr) : Tensor(ctx, desc, true, status)
    {
    }
    /** Constructor
     *
     * @param[in]  ctx    Context from where the tensor will be created from
     * @param[in]  desc   Tensor descriptor to be used
     * @param[in]  allocate Flag to indicate if the tensor needs to be allocated
     * @param[out] status Status information if requested
     */
    Tensor(Context &ctx, const TensorDescriptor &desc, bool allocate, StatusCode *status)
    {
        AclTensor  tensor;
        const auto st = detail::as_enum<StatusCode>(AclCreateTensor(&tensor, ctx.get(), desc.get(), allocate));
        reset(tensor);
        report_status(st, "[Compute Library] Failed to create tensor!");
        if (status)
        {
            *status = st;
        }
    }
    /** Maps the backing memory of a given tensor that can be used by the host to access any contents
     *
     * @return A valid non-zero pointer in case of success else nullptr
     */
    void *map()
    {
        void      *handle = nullptr;
        const auto st     = detail::as_enum<StatusCode>(AclMapTensor(_object.get(), &handle));
        report_status(st, "[Compute Library] Failed to map the tensor and extract the tensor's backing memory!");
        return handle;
    }
    /** Unmaps tensor's memory
     *
     * @param[in] handle Handle to unmap
     *
     * @return Status code
     */
    StatusCode unmap(void *handle)
    {
        const auto st = detail::as_enum<StatusCode>(AclUnmapTensor(_object.get(), handle));
        report_status(st, "[Compute Library] Failed to unmap the tensor!");
        return st;
    }
    /** Import external memory to a given tensor object
     *
     * @param[in] handle External memory handle
     * @param[in] type   Type of memory to be imported
     *
     * @return Status code
     */
    StatusCode import(void *handle, ImportType type)
    {
        const auto st = detail::as_enum<StatusCode>(
            AclTensorImport(_object.get(), handle, detail::as_cenum<AclImportMemoryType>(type)));
        report_status(st, "[Compute Library] Failed to import external memory to tensor!");
        return st;
    }
    /** Get the size of the tensor in byte
     *
     * @note The size isn't based on allocated memory, but based on information in its descriptor (dimensions, data type, etc.).
     *
     * @return The size of the tensor in byte
     */
    uint64_t get_size()
    {
        uint64_t   size{0};
        const auto st = detail::as_enum<StatusCode>(AclGetTensorSize(_object.get(), &size));
        report_status(st, "[Compute Library] Failed to get the size of the tensor");
        return size;
    }
    /** Get the descriptor of this tensor
     *
     * @return The descriptor describing the characteristics of this tensor
     */
    TensorDescriptor get_descriptor()
    {
        AclTensorDescriptor desc;
        const auto          st = detail::as_enum<StatusCode>(AclGetTensorDescriptor(_object.get(), &desc));
        report_status(st, "[Compute Library] Failed to get the descriptor of the tensor");
        return TensorDescriptor(desc);
    }
};

/** Tensor pack class
 *
 * Pack is a utility construct that is used to create a collection of tensors that can then
 * be passed into operator as inputs.
 */
class TensorPack : public detail::ObjectBase<AclTensorPack_>
{
public:
    /** Pack pair construct */
    struct PackPair
    {
        /** Constructor
         *
         * @param[in] tensor_ Tensor to pack
         * @param[in] slot_id_ Slot identification of the tensor in respect with the operator
         */
        PackPair(Tensor *tensor_, int32_t slot_id_) : tensor(tensor_), slot_id(slot_id_)
        {
        }

        Tensor *tensor{nullptr};         /**< Tensor object */
        int32_t slot_id{AclSlotUnknown}; /**< Slot id in respect with the operator */
    };

public:
    /** Constructor
     *
     * @param[in]  ctx    Context from where the tensor pack will be created from
     * @param[out] status Status information if requested
     */
    explicit TensorPack(Context &ctx, StatusCode *status = nullptr)
    {
        AclTensorPack pack;
        const auto    st = detail::as_enum<StatusCode>(AclCreateTensorPack(&pack, ctx.get()));
        reset(pack);
        report_status(st, "[Compute Library] Failure during tensor pack creation");
        if (status)
        {
            *status = st;
        }
    }
    /** Add tensor to tensor pack
     *
     * @param[in] slot_id Slot id of the tensor in respect with the operator
     * @param[in] tensor  Tensor to be added in the pack
     *
     * @return Status code
     */
    StatusCode add(Tensor &tensor, int32_t slot_id)
    {
        return detail::as_enum<StatusCode>(AclPackTensor(_object.get(), tensor.get(), slot_id));
    }
    /** Add a list of tensors to a tensor pack
     *
     * @param[in] packed Pair packs to be added
     *
     * @return Status code
     */
    StatusCode add(std::initializer_list<PackPair> packed)
    {
        const size_t           size = packed.size();
        std::vector<int32_t>   slots(size);
        std::vector<AclTensor> tensors(size);
        int                    i = 0;
        for (auto &p : packed)
        {
            slots[i]   = p.slot_id;
            tensors[i] = AclTensor(p.tensor);
            ++i;
        }
        return detail::as_enum<StatusCode>(AclPackTensors(_object.get(), tensors.data(), slots.data(), size));
    }
};

/** Operator class
 *
 * Operators are the basic algorithmic blocks responsible for performing distinct operations
 */
class Operator : public detail::ObjectBase<AclOperator_>
{
public:
    /** Run an operator on a given input list
     *
     * @param[in,out] queue Queue to scheduler the operator on
     * @param pack  Tensor list to be used as input
     *
     * @return Status Code
     */
    StatusCode run(Queue &queue, TensorPack &pack)
    {
        return detail::as_cenum<StatusCode>(AclRunOperator(_object.get(), queue.get(), pack.get()));
    }

protected:
    /** Constructor */
    Operator() = default;
};

/// Operators
using ActivationDesc = AclActivationDescriptor;
class Activation : public Operator
{
public:
    Activation(Context                &ctx,
               const TensorDescriptor &src,
               const TensorDescriptor &dst,
               const ActivationDesc   &desc,
               StatusCode             *status = nullptr)
    {
        AclOperator op;
        const auto  st = detail::as_enum<StatusCode>(AclActivation(&op, ctx.get(), src.get(), dst.get(), desc));
        reset(op);
        report_status(st, "[Compute Library] Failure during Activation operator creation");
        if (status)
        {
            *status = st;
        }
    }
};
} // namespace acl
#undef ARM_COMPUTE_IGNORE_UNUSED
#endif /* ARM_COMPUTE_ACL_HPP_ */