aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/reference/GEMM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tests/validation/reference/GEMM.cpp')
-rw-r--r--tests/validation/reference/GEMM.cpp95
1 files changed, 73 insertions, 22 deletions
diff --git a/tests/validation/reference/GEMM.cpp b/tests/validation/reference/GEMM.cpp
index 6b3aa390f0..d513343796 100644
--- a/tests/validation/reference/GEMM.cpp
+++ b/tests/validation/reference/GEMM.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017-2020 Arm Limited.
+ * Copyright (c) 2017-2021, 2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -25,6 +25,7 @@
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Types.h"
+#include "tests/validation/reference/ArithmeticOperations.h"
namespace arm_compute
{
@@ -35,10 +36,11 @@ namespace validation
namespace reference
{
template <typename T, typename std::enable_if<is_floating_point<T>::value, int>::type>
-SimpleTensor<T> gemm(const SimpleTensor<T> &a, const SimpleTensor<T> &b, const SimpleTensor<T> &c, float alpha, float beta)
+SimpleTensor<T>
+gemm(const SimpleTensor<T> &a, const SimpleTensor<T> &b, const SimpleTensor<T> &c, float alpha, float beta)
{
// Create reference
- SimpleTensor<T> dst{ c.shape(), c.data_type(), 1 };
+ SimpleTensor<T> dst{c.shape(), c.data_type(), 1};
// Compute reference
const int M = a.shape().y();
@@ -50,30 +52,47 @@ SimpleTensor<T> gemm(const SimpleTensor<T> &a, const SimpleTensor<T> &b, const S
const int a_stride_z = K * M;
const int a_stride_w = K * M * D;
- const int b_stride_z = b.shape().num_dimensions() > 2 ? N * K : 0; // Do not slide the matrix B along the 3th dimension in case matrix B has less than 3 dimensions
- const int b_stride_w = b.shape().num_dimensions() > 3 ? K * N * D : 0; // Do not slide the matrix B along the 4th dimension in case matrix B has less than 4 dimensions
+ const int b_stride_z =
+ b.shape().num_dimensions() > 2
+ ? N * K
+ : 0; // Do not slide the matrix B along the 3th dimension in case matrix B has less than 3 dimensions
+ int b_stride_w =
+ b.shape().num_dimensions() > 3
+ ? K * N * D
+ : 0; // Do not slide the matrix B along the 4th dimension in case matrix B has less than 4 dimensions
+
+ // Note: There are 3 gemm types: batched-gemm, multi-gemm, and batched of multi-gemms. The third dimension of tensor b is overloaded when tensor b has exactly 3 dimensions:
+ // it can be either number of batches or multis. Batched-GEMM computation is detected only when the third dimension of "a" and "c" tensors is 1 and the number of dimensions is 4
+ const bool is_batched_gemm = b.shape().num_dimensions() == 3 && a.shape().num_dimensions() == 4 &&
+ c.shape().num_dimensions() == 4 && a.shape()[2] == 1 && c.shape()[2] == 1;
+
+ // Batched-GEMM
+ if (is_batched_gemm)
+ {
+ b_stride_w = b_stride_z;
+ }
const int c_stride_z = N * M;
const int c_stride_w = N * M * D;
-#if defined(_OPENMP) && !( defined(__arm__) && defined(__ANDROID__))
+#if defined(_OPENMP) && !(defined(__arm__) && defined(__ANDROID__))
#pragma omp parallel for collapse(2)
#endif /* _OPENMP */
- for(int w = 0; w < W; ++w)
+ for (int w = 0; w < W; ++w)
{
- for(int depth = 0; depth < D; ++depth)
+ for (int depth = 0; depth < D; ++depth)
{
const int base_addr_a = depth * a_stride_z + w * a_stride_w;
const int base_addr_b = depth * b_stride_z + w * b_stride_w;
const int base_addr_c = depth * c_stride_z + w * c_stride_w;
- for(int row = 0; row < M; ++row)
+ for (int row = 0; row < M; ++row)
{
- for(int col = 0; col < N; ++col)
+ for (int col = 0; col < N; ++col)
{
T acc(0);
- for(int k = 0; k < K; ++k)
+ for (int k = 0; k < K; ++k)
{
acc += a[base_addr_a + k + row * K] * b[base_addr_b + col + k * N];
}
@@ -89,11 +108,12 @@ SimpleTensor<T> gemm(const SimpleTensor<T> &a, const SimpleTensor<T> &b, const S
}
template <typename T, typename std::enable_if<is_floating_point<T>::value, int>::type>
-SimpleTensor<T> gemm_mixed_precision(const SimpleTensor<T> &a, const SimpleTensor<T> &b, const SimpleTensor<T> &c, float alpha, float beta)
+SimpleTensor<T> gemm_mixed_precision(
+ const SimpleTensor<T> &a, const SimpleTensor<T> &b, const SimpleTensor<T> &c, float alpha, float beta)
{
// GEMM mixed-precision combines F32 accumulators with F16 multiplications
// Create reference
- SimpleTensor<T> dst{ c.shape(), c.data_type(), 1 };
+ SimpleTensor<T> dst{c.shape(), c.data_type(), 1};
// Compute reference
const int M = a.shape().y();
@@ -105,36 +125,54 @@ SimpleTensor<T> gemm_mixed_precision(const SimpleTensor<T> &a, const SimpleTenso
const int a_stride_z = K * M;
const int a_stride_w = K * M * D;
- const int b_stride_z = b.shape().num_dimensions() > 2 ? N * K : 0; // Do not slide the matrix B along the 3th dimension in case matrix B has less than 3 dimensions
- const int b_stride_w = b.shape().num_dimensions() > 3 ? K * N * D : 0; // Do not slide the matrix B along the 4th dimension in case matrix B has less than 4 dimensions
+ const int b_stride_z =
+ b.shape().num_dimensions() > 2
+ ? N * K
+ : 0; // Do not slide the matrix B along the 3th dimension in case matrix B has less than 3 dimensions
+ int b_stride_w =
+ b.shape().num_dimensions() > 3
+ ? K * N * D
+ : 0; // Do not slide the matrix B along the 4th dimension in case matrix B has less than 4 dimensions
+
+ // Note: There are 3 gemm types: batched-gemm, multi-gemm, and batched of multi-gemms. The third dimension of tensor b is overloaded when tensor b has exactly 3 dimensions:
+ // it can be either number of batches or multis. Batched-GEMM computation is detected only when the third dimension of "a" and "c" tensors is 1 and the number of dimensions is 4
+ const bool is_batched_gemm = b.shape().num_dimensions() == 3 && a.shape().num_dimensions() == 4 &&
+ c.shape().num_dimensions() == 4 && a.shape()[2] == 1 && c.shape()[2] == 1;
+
+ // Batched-GEMM
+ if (is_batched_gemm)
+ {
+ b_stride_w = b_stride_z;
+ }
const int c_stride_z = N * M;
const int c_stride_w = N * M * D;
-#if defined(_OPENMP) && !( defined(__arm__) && defined(__ANDROID__))
+#if defined(_OPENMP) && !(defined(__arm__) && defined(__ANDROID__))
#pragma omp parallel for collapse(2)
#endif /* _OPENMP */
- for(int w = 0; w < W; ++w)
+ for (int w = 0; w < W; ++w)
{
- for(int depth = 0; depth < D; ++depth)
+ for (int depth = 0; depth < D; ++depth)
{
const int base_addr_a = depth * a_stride_z + w * a_stride_w;
const int base_addr_b = depth * b_stride_z + w * b_stride_w;
const int base_addr_c = depth * c_stride_z + w * c_stride_w;
- for(int row = 0; row < M; ++row)
+ for (int row = 0; row < M; ++row)
{
- for(int col = 0; col < N; ++col)
+ for (int col = 0; col < N; ++col)
{
float acc(0);
- for(int k = 0; k < K; ++k)
+ for (int k = 0; k < K; ++k)
{
acc += static_cast<float>(a[base_addr_a + k + row * K] * b[base_addr_b + col + k * N]);
}
// Finalize the result: alpha * A * B + beta * C
- dst[base_addr_c + col + row * N] = static_cast<T>(alpha * acc + beta * c[base_addr_c + col + row * N]);
+ dst[base_addr_c + col + row * N] =
+ static_cast<T>(alpha * acc + beta * c[base_addr_c + col + row * N]);
}
}
}
@@ -143,8 +181,21 @@ SimpleTensor<T> gemm_mixed_precision(const SimpleTensor<T> &a, const SimpleTenso
return dst;
}
+template <typename T, typename std::enable_if<is_floating_point<T>::value, int>::type>
+void gemm_accumulate(const SimpleTensor<T> &a, const SimpleTensor<T> &b, const SimpleTensor<T> &c, float alpha, float beta, SimpleTensor<T> &dst)
+{
+ // Compute reference
+ SimpleTensor<T> dst_gemm = gemm(a, b, c, alpha, beta);
+ reference::arithmetic_operation<T>(reference::ArithmeticOperation::ADD, dst, dst_gemm, dst, ConvertPolicy::SATURATE);
+}
+
+template SimpleTensor<bfloat16> gemm(const SimpleTensor<bfloat16> &a, const SimpleTensor<bfloat16> &b, const SimpleTensor<bfloat16> &c, float alpha, float beta);
template SimpleTensor<float> gemm(const SimpleTensor<float> &a, const SimpleTensor<float> &b, const SimpleTensor<float> &c, float alpha, float beta);
template SimpleTensor<half> gemm(const SimpleTensor<half> &a, const SimpleTensor<half> &b, const SimpleTensor<half> &c, float alpha, float beta);
+
+template void gemm_accumulate(const SimpleTensor<float> &a, const SimpleTensor<float> &b, const SimpleTensor<float> &c, float alpha, float beta, SimpleTensor<float> &dst);
+template void gemm_accumulate(const SimpleTensor<half> &a, const SimpleTensor<half> &b, const SimpleTensor<half> &c, float alpha, float beta, SimpleTensor<half> &dst);
+
template SimpleTensor<half> gemm_mixed_precision(const SimpleTensor<half> &a, const SimpleTensor<half> &b, const SimpleTensor<half> &c, float alpha, float beta);
} // namespace reference
} // namespace validation