aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/MatMulKernelFixture.h
diff options
context:
space:
mode:
Diffstat (limited to 'tests/validation/fixtures/MatMulKernelFixture.h')
-rw-r--r--tests/validation/fixtures/MatMulKernelFixture.h390
1 files changed, 390 insertions, 0 deletions
diff --git a/tests/validation/fixtures/MatMulKernelFixture.h b/tests/validation/fixtures/MatMulKernelFixture.h
new file mode 100644
index 0000000000..26072dff65
--- /dev/null
+++ b/tests/validation/fixtures/MatMulKernelFixture.h
@@ -0,0 +1,390 @@
+/*
+ * Copyright (c) 2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ACL_TESTS_VALIDATION_FIXTURES_MATMULKERNELFIXTURE_H
+#define ACL_TESTS_VALIDATION_FIXTURES_MATMULKERNELFIXTURE_H
+
+#include "arm_compute/core/KernelDescriptors.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+
+#include "tests/CL/CLAccessor.h"
+#include "tests/CL/Helper.h"
+#include "tests/framework/Asserts.h" // Required for ARM_COMPUTE_ASSERT
+#include "tests/framework/Fixture.h"
+#include "tests/validation/Helpers.h"
+#include "tests/validation/Validation.h"
+#include "tests/validation/reference/GEMM.h"
+#include "tests/validation/reference/GEMMLowp.h"
+#include "tests/validation/reference/Permute.h"
+#include "tests/validation/reference/ReshapeLayer.h"
+#include <cmath>
+#include <random>
+
+namespace arm_compute
+{
+namespace test
+{
+namespace validation
+{
+using namespace arm_compute::opencl::kernels;
+
+template <typename T, typename KernelType, bool use_mmul = false>
+class MatMulKernelGenericValidationFixture : public framework::Fixture
+{
+public:
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool pretranspose_a, bool pretranspose_b, int M0, int N0, int K0, bool export_rhs_to_cl_image, DataType data_type,
+ bool enable_bias)
+ {
+ // This hash is used by random generators. There may be hash collisions but
+ // this is intentional as it's a very easy way to make the the current
+ // random generation process almost different for many test configurations,
+ // which were using the same set of values before.
+ _hash = M0 + N0 + K0 + shape_a[0] + shape_a[1] + shape_b[0] + shape_b[1] + enable_bias + export_rhs_to_cl_image;
+
+ // Flag to create a bias
+ _enable_bias = enable_bias;
+
+ // For brevity, the input shapes are assumed to be not-transposed for both Lhs and Rhs matrices.
+ QuantizationInfo lhs_q_info;
+ QuantizationInfo rhs_q_info;
+ QuantizationInfo dst_q_info;
+
+ if(is_data_type_quantized(data_type))
+ {
+ const int32_t t_max = static_cast<int32_t>(std::numeric_limits<T>::max());
+ const int32_t t_min = static_cast<int32_t>(std::numeric_limits<T>::min());
+
+ std::mt19937 generator(library->seed() + _hash);
+ std::uniform_real_distribution<float> distribution_float(-5.0f, 3.0f);
+ std::uniform_int_distribution<int32_t> distribution_t(t_min, t_max);
+
+ const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
+ const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
+
+ const int32_t offset_lhs = distribution_t(generator);
+ const int32_t offset_rhs = distribution_t(generator);
+
+ lhs_q_info = QuantizationInfo(scale_lhs, offset_lhs);
+ rhs_q_info = QuantizationInfo(scale_rhs, offset_rhs);
+
+ const int m = shape_a.y();
+ const int n = shape_b.x();
+ const int k = shape_a.x();
+
+ const float bias_fraction = enable_bias ? 0.5f : 0.f;
+
+ QuantizationHint q_hint = suggest_matmul_dst_q_info_and_bias(lhs_q_info, rhs_q_info, m, n, k, data_type, bias_fraction);
+ dst_q_info = q_hint.q_info;
+ _min_bias = q_hint.bias_min;
+ _max_bias = q_hint.bias_max;
+ }
+
+ if(pretranspose_a)
+ {
+ permute(shape_a, PermutationVector(1U, 0U));
+ }
+
+ if(pretranspose_b)
+ {
+ permute(shape_b, PermutationVector(1U, 0U));
+ }
+
+ // Skip configurations unsupported by the device.
+ _device_supports_export_to_cl_image = image2d_from_buffer_supported(CLKernelLibrary::get().get_device());
+ if(!_device_supports_export_to_cl_image && export_rhs_to_cl_image)
+ {
+ ARM_COMPUTE_TEST_INFO("cl_khr_image2d_from_buffer not supported. TEST skipped");
+ framework::ARM_COMPUTE_PRINT_INFO();
+ return; // Note: Also need to skip the validate in corresponding FIXTURE_DATA_TEST_CASEs.
+ }
+
+ _device_supports_mmul = arm_matrix_multiply_supported(CLKernelLibrary::get().get_device());
+ if(!_device_supports_mmul && use_mmul)
+ {
+ ARM_COMPUTE_TEST_INFO("cl_arm_matrix_multiply not supported. TEST skipped");
+ framework::ARM_COMPUTE_PRINT_INFO();
+ return; // Note: Also need to skip the validate in corresponding FIXTURE_DATA_TEST_CASEs.
+ }
+
+ _target = compute_target(shape_a, shape_b, output_shape, pretranspose_a, pretranspose_b, M0, N0, K0, export_rhs_to_cl_image, data_type, lhs_q_info, rhs_q_info, dst_q_info);
+ _reference = compute_reference(shape_a, shape_b, output_shape, pretranspose_a, pretranspose_b, data_type, lhs_q_info, rhs_q_info, dst_q_info);
+ }
+
+protected:
+ template <typename U>
+ void fill(U &&tensor, int i, float lo = -1.f, float hi = 1.f)
+ {
+ switch(tensor.data_type())
+ {
+ case DataType::F16:
+ {
+ arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ float(lo), float(hi) };
+ library->fill(tensor, distribution, i);
+ break;
+ }
+ case DataType::F32:
+ {
+ std::uniform_real_distribution<float> distribution(lo, hi);
+ library->fill(tensor, distribution, i);
+ break;
+ }
+ default:
+ library->fill_tensor_uniform(tensor, i);
+ }
+ }
+
+ template <typename U>
+ void fill_bias_s32(U &&tensor, int i, int32_t min, int32_t max)
+ {
+ std::uniform_int_distribution<int32_t> distribution(min, max);
+ library->fill(tensor, distribution, i);
+ }
+
+ template <typename U, typename D>
+ void fill_constant(U &&tensor, D value)
+ {
+ library->fill_tensor_value(tensor, value);
+ }
+
+ CLTensor compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool pretranspose_a, bool pretranspose_b, const int M0, const int N0, const int K0,
+ bool export_rhs_to_cl_image, DataType data_type, const QuantizationInfo &lhs_q_info, const QuantizationInfo &rhs_q_info, const QuantizationInfo &dst_q_info)
+ {
+ CLSynthetizeOperator<KernelType> matMul{};
+ MatMulKernelInfo matmul_info;
+ matmul_info.adj_lhs = pretranspose_a;
+ matmul_info.adj_rhs = pretranspose_b;
+ matmul_info.m0 = M0;
+ matmul_info.n0 = N0;
+ matmul_info.k0 = K0;
+ matmul_info.export_rhs_to_cl_image = export_rhs_to_cl_image;
+
+ bool is_quantized = is_data_type_quantized(data_type);
+
+ // Create tensors
+ CLTensor a = create_tensor<CLTensor>(shape_a, data_type, 1, lhs_q_info);
+ CLTensor b = create_tensor<CLTensor>(shape_b, data_type, 1, rhs_q_info);
+ CLTensor bias = create_tensor<CLTensor>(output_shape[0], (is_quantized) ? DataType::S32 : data_type, 1, dst_q_info);
+ CLTensor dst = create_tensor<CLTensor>(output_shape, data_type, 1, dst_q_info);
+
+ matMul.configure(a.info(), b.info(), (_enable_bias) ? bias.info() : nullptr, dst.info(), matmul_info);
+ ARM_COMPUTE_ASSERT(a.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(b.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
+
+ // Allocate tensors
+ a.allocator()->allocate();
+ b.allocator()->allocate();
+ dst.allocator()->allocate();
+
+ ARM_COMPUTE_ASSERT(!a.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!b.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
+
+ // Fill tensors
+ fill(CLAccessor(a), _hash + 1);
+ fill(CLAccessor(b), _hash + 2);
+
+ // Compute matMul kernel
+ ITensorPack tensors_pack({ { ACL_SRC_0, &a },
+ { ACL_SRC_1, &b },
+ { ACL_DST, &dst }
+ });
+
+ if(_enable_bias)
+ {
+ // Allocate, fill and add bias to TensorPack obj
+ bias.allocator()->allocate();
+ if(is_quantized)
+ {
+ fill_bias_s32(CLAccessor(bias), _hash + 3, _min_bias, _max_bias);
+ }
+ else
+ {
+ fill(CLAccessor(bias), _hash + 3);
+ }
+ tensors_pack.add_tensor(ACL_SRC_2, &bias);
+ }
+
+ matMul.run(tensors_pack);
+
+ return dst;
+ }
+
+ SimpleTensor<T> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &output_shape, bool pretranspose_a, bool pretranspose_b, DataType data_type,
+ const QuantizationInfo &lhs_q_info, const QuantizationInfo &rhs_q_info, const QuantizationInfo &dst_q_info)
+ {
+ // We collapse dimensions > 3 onto dimension 3, i.e. 5D+ tensors will look like 4D
+ // This is necessary unless we choose to extend gemm reference for 5D+ tensors
+ TensorShape output_shape_collapsed = output_shape.collapsed_from(Window::DimZ);
+ TensorShape shape_a_collapsed = shape_a.collapsed_from(Window::DimZ);
+ TensorShape shape_b_collapsed = shape_b.collapsed_from(Window::DimZ);
+
+ // Create reference
+ SimpleTensor<T> a{ shape_a_collapsed, data_type, 1, lhs_q_info };
+ SimpleTensor<T> b{ shape_b_collapsed, data_type, 1, rhs_q_info };
+ SimpleTensor<T> c{ output_shape_collapsed, data_type, 1, dst_q_info };
+
+ // Fill reference
+ fill(a, _hash + 1);
+ fill(b, _hash + 2);
+
+ /* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if pretranspose_A is set to true, then A is assumed to be (B x K x M),
+ therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K)
+ in order to be able to call reference implementation that works with (B x M x K) input.
+ Similarly, if pretranspose_B is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */
+
+ // Define transposed shapes
+ TensorShape a_transposed_shape(a.shape());
+ a_transposed_shape.set(0, a.shape().y());
+ a_transposed_shape.set(1, a.shape().x());
+
+ TensorShape b_transposed_shape(b.shape());
+ b_transposed_shape.set(0, b.shape().y());
+ b_transposed_shape.set(1, b.shape().x());
+
+ // Define transposed tensors
+ SimpleTensor<T> a_transposed{ a_transposed_shape, data_type };
+ SimpleTensor<T> b_transposed{ b_transposed_shape, data_type };
+
+ // pretranspose a if necessary
+ if(pretranspose_a)
+ {
+ a_transposed = reference::permute<T>(a, PermutationVector(1U, 0U));
+ }
+
+ // pretranspose b if necessary
+ if(pretranspose_b)
+ {
+ b_transposed = reference::permute<T>(b, PermutationVector(1U, 0U));
+ }
+
+ // Use transposed tensors if boolean enabled else use original tensors
+ SimpleTensor<T> result = gemm_reference<T>((pretranspose_a) ? a_transposed : a, (pretranspose_b) ? b_transposed : b, c);
+
+ // We reshape the gemm output back if the tensor is high dimensional
+ if(output_shape_collapsed != output_shape)
+ {
+ result = reference::reshape_layer(result, output_shape);
+ }
+
+ return result;
+ }
+
+ template <typename U = T>
+ typename std::enable_if < std::is_same<U, float>::value || std::is_same<U, half>::value, SimpleTensor<U >>::type gemm_reference(SimpleTensor<U> &a, SimpleTensor<U> &b, SimpleTensor<U> &c)
+ {
+ // Fill bias, then copy first dimension into subsequent dimensions to mimic broadcast
+ // of bias tensor from shape [dst.dimension(0)] to [dst.tensor_shape()] in target kernel
+ if(_enable_bias)
+ {
+ fill(c, _hash + 3);
+ const int n = c.shape().x();
+ const int other_dims = c.shape().collapsed_from(1)[1];
+ for(int i = 1; i < other_dims; ++i) // For all data, copy first n elements into remaining batches
+ {
+ memcpy(c.data() + i * n, c.data(), n * sizeof(T));
+ }
+ }
+ // Setting beta to 0 will effectively disable C for the
+ // computation of the reference: alpha * A * B + 0 * C
+ return reference::gemm<U>(a, b, c, 1.0f, (_enable_bias) ? 1.0f : 0.f);
+ }
+
+ template <typename U = T>
+ typename std::enable_if < std::is_same<U, int8_t>::value || std::is_same<U, uint8_t>::value, SimpleTensor<U >>::type gemm_reference(SimpleTensor<U> &a, SimpleTensor<U> &b, SimpleTensor<U> &c)
+ {
+ const UniformQuantizationInfo aq = a.quantization_info().uniform();
+ const UniformQuantizationInfo bq = b.quantization_info().uniform();
+ const UniformQuantizationInfo cq = c.quantization_info().uniform();
+
+ const SimpleTensor<int32_t> result = reference::gemmlowp_matrix_multiply_core<int32_t, U, U>(a, b, c.shape(), -aq.offset, -bq.offset);
+
+ std::vector<int32_t> gemmlowp_multipliers{ 1 };
+ std::vector<int32_t> gemmlowp_shifts{ 1 };
+ const int gemmlowp_offset = cq.offset;
+ const float scale = aq.scale * bq.scale / cq.scale;
+
+ quantization::calculate_quantized_multiplier(scale, &gemmlowp_multipliers[0], &gemmlowp_shifts[0]);
+ constexpr int32_t gemmlowp_min_bound = std::numeric_limits<int32_t>::min();
+ constexpr int32_t gemmlowp_max_bound = std::numeric_limits<int32_t>::max();
+
+ SimpleTensor<int> bias{ c.shape(), DataType::S32 };
+ if(_enable_bias)
+ {
+ // Identical to float implementation, fill and copy values of bias first dimension
+ fill_bias_s32(bias, _hash + 3, _min_bias, _max_bias);
+ const int n = bias.shape().x();
+ const int other_dims = bias.shape().collapsed_from(1)[1];
+ const unsigned int dt_size = sizeof(int32_t);
+ for(int i = 1; i < other_dims; ++i)
+ {
+ memcpy(bias.data() + i * n, bias.data(), n * dt_size);
+ }
+ }
+ else
+ {
+ fill_constant(bias, static_cast<int32_t>(0)); // effectively disable bias
+ }
+
+ const SimpleTensor<U> final_result = reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, U>(result, bias,
+ gemmlowp_multipliers, gemmlowp_shifts, gemmlowp_offset, gemmlowp_min_bound, gemmlowp_max_bound);
+
+ return final_result;
+ }
+
+ CLTensor _target{};
+ SimpleTensor<T> _reference{};
+ bool _enable_bias{ false };
+ bool _device_supports_export_to_cl_image{ true };
+ bool _device_supports_mmul{ true };
+ int32_t _min_bias{ 0 };
+ int32_t _max_bias{ 0 };
+ int32_t _hash{ 0 };
+};
+
+template <typename T, typename KernelType, bool use_mmul = false>
+class MatMulKernelValidationFixture : public MatMulKernelGenericValidationFixture<T, KernelType, use_mmul>
+{
+public:
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool pretranspose_a, bool pretranspose_b, int M0, int N0, int K0, bool export_rhs_to_cl_image, DataType data_type)
+ {
+ MatMulKernelGenericValidationFixture<T, KernelType, use_mmul>::setup(shape_a, shape_b, output_shape, pretranspose_a, pretranspose_b, M0, N0, K0, export_rhs_to_cl_image, data_type,
+ false /* enable bias */);
+ }
+};
+
+template <typename T, typename KernelType, bool use_mmul = false>
+class MatMulKernelWithBiasValidation : public MatMulKernelGenericValidationFixture<T, KernelType, use_mmul>
+{
+public:
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape output_shape, bool pretranspose_a, bool pretranspose_b, int M0, int N0, int K0, bool export_rhs_to_cl_image, DataType data_type)
+ {
+ MatMulKernelGenericValidationFixture<T, KernelType, use_mmul>::setup(shape_a, shape_b, output_shape, pretranspose_a, pretranspose_b, M0, N0, K0, export_rhs_to_cl_image, data_type,
+ true /* enable bias */);
+ }
+};
+} // namespace validation
+} // namespace test
+} // namespace arm_compute
+#endif // ACL_TESTS_VALIDATION_FIXTURES_MATMULKERNELFIXTURE_H