aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/MatMulFixture.h
diff options
context:
space:
mode:
Diffstat (limited to 'tests/validation/fixtures/MatMulFixture.h')
-rw-r--r--tests/validation/fixtures/MatMulFixture.h612
1 files changed, 612 insertions, 0 deletions
diff --git a/tests/validation/fixtures/MatMulFixture.h b/tests/validation/fixtures/MatMulFixture.h
new file mode 100644
index 0000000000..ffd12e56d0
--- /dev/null
+++ b/tests/validation/fixtures/MatMulFixture.h
@@ -0,0 +1,612 @@
+/*
+ * Copyright (c) 2023-2024 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H
+#define ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H
+
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+
+#include "src/core/utils/quantization/AsymmHelpers.h"
+#include "tests/framework/Asserts.h" // Required for ARM_COMPUTE_ASSERT
+#include "tests/framework/Fixture.h"
+#include "tests/validation/reference/ActivationLayer.h"
+#include "tests/validation/reference/GEMM.h"
+#include "tests/validation/reference/GEMMLowp.h"
+#include "tests/validation/reference/Permute.h"
+#include "tests/validation/reference/ReshapeLayer.h"
+#include "tests/validation/Validation.h"
+
+#include <limits>
+#include <random>
+#include <type_traits>
+
+namespace arm_compute
+{
+namespace test
+{
+namespace validation
+{
+template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
+class MatMulGenericValidationFixture : public framework::Fixture
+{
+public:
+ void setup(TensorShape shape_a,
+ TensorShape shape_b,
+ TensorShape output_shape,
+ bool transpose_a,
+ bool transpose_b,
+ DataType data_type,
+ ActivationLayerInfo act_info,
+ int num_extra_runs,
+ Settings settings,
+ QuantizationInfo a_qinfo = QuantizationInfo(),
+ QuantizationInfo b_qinfo = QuantizationInfo(),
+ QuantizationInfo o_qinfo = QuantizationInfo())
+ {
+ // For brevity, the input shapes are assumed to be not-transposed for both a and b matrices.
+ if (transpose_a)
+ {
+ permute(shape_a, PermutationVector(1U, 0U));
+ }
+ if (transpose_b)
+ {
+ permute(shape_b, PermutationVector(1U, 0U));
+ }
+
+ _target = compute_target(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info,
+ num_extra_runs, settings, a_qinfo, b_qinfo, o_qinfo);
+ _reference = compute_reference(shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info,
+ a_qinfo, b_qinfo, o_qinfo);
+ }
+
+protected:
+ template <typename U>
+ void fill(U &&tensor, int i, float lo = -1.f, float hi = 1.f)
+ {
+ switch (tensor.data_type())
+ {
+ case DataType::BFLOAT16:
+ {
+ arm_compute::utils::uniform_real_distribution_16bit<bfloat16> distribution{float(lo), float(hi)};
+ library->fill(tensor, distribution, i);
+ break;
+ }
+ case DataType::F16:
+ {
+ arm_compute::utils::uniform_real_distribution_16bit<half> distribution{float(lo), float(hi)};
+ library->fill(tensor, distribution, i);
+ break;
+ }
+ case DataType::F32:
+ {
+ std::uniform_real_distribution<float> distribution(lo, hi);
+ library->fill(tensor, distribution, i);
+ break;
+ }
+ case DataType::QASYMM8:
+ case DataType::QASYMM8_SIGNED:
+ {
+ library->fill_tensor_uniform(tensor, i);
+ break;
+ }
+ default:
+ {
+ ARM_COMPUTE_ERROR("Unsupported data type.");
+ }
+ }
+ }
+
+ virtual TensorType compute_target(const TensorShape &shape_a,
+ const TensorShape &shape_b,
+ const TensorShape &output_shape,
+ bool transpose_a,
+ bool transpose_b,
+ DataType data_type,
+ ActivationLayerInfo act_info,
+ int num_extra_runs,
+ const Settings &settings,
+ QuantizationInfo a_qinfo,
+ QuantizationInfo b_qinfo,
+ QuantizationInfo o_qinfo)
+ {
+ // 1. Create Classes and configure function
+ // ----------------------------------------------------
+ // Create tensors
+ // Configure relevant classes and matmul function
+ TensorType a = create_tensor<TensorType>(shape_a, data_type, 1, a_qinfo);
+ TensorType b = create_tensor<TensorType>(shape_b, data_type, 1, b_qinfo);
+ TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, o_qinfo);
+
+ FunctionType matmul;
+
+ // Configure MatMulInfo class
+ MatMulInfo mm_info;
+ mm_info.adj_lhs(transpose_a).adj_rhs(transpose_b);
+
+ // Ensure values are dynamic
+ a.info()->set_are_values_constant(false);
+ b.info()->set_are_values_constant(false);
+
+ // Configure operator
+ matmul.configure(&a, &b, &dst, mm_info, settings, act_info);
+
+ // Assertions
+ ARM_COMPUTE_ASSERT(a.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(b.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
+
+ // Allocate tensors
+ a.allocator()->allocate();
+ b.allocator()->allocate();
+ dst.allocator()->allocate();
+
+ ARM_COMPUTE_ASSERT(!a.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!b.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
+
+ // For multiple runs.
+ for (int i = 0; i < num_extra_runs; i++)
+ {
+ // Stress dynamic tensors by running multiple times.
+ // --------------------------------------------------------
+ // Fill tensors with new seed
+ // Run function
+ const int seed_offset = num_extra_runs * 100;
+ fill(AccessorType(a), seed_offset);
+ fill(AccessorType(b), seed_offset + 1);
+
+ matmul.run();
+ }
+
+ // 2. Final Run for reference comparison
+ // --------------------------------------------------------
+ // Re-fill tensors same seed as reference run
+ // Compute MatMul operation
+ fill(AccessorType(a), 2);
+ fill(AccessorType(b), 3);
+
+ matmul.run();
+
+ return dst;
+ }
+
+ template <typename TT>
+ typename std::enable_if < !std::is_integral<TT>::value, SimpleTensor<TT >>::type
+ compute_reference_gemm(const SimpleTensor<TT> &a,
+ const SimpleTensor<TT> &b,
+ const SimpleTensor<TT> &c,
+ float alpha,
+ float beta,
+ const QuantizationInfo &o_qinfo)
+ {
+ ARM_COMPUTE_UNUSED(o_qinfo);
+
+ return reference::gemm(a, b, c, alpha, beta);
+ }
+
+ template <typename TT>
+ typename std::enable_if<std::is_integral<TT>::value, SimpleTensor<TT>>::type
+ compute_reference_gemm(const SimpleTensor<TT> &a,
+ const SimpleTensor<TT> &b,
+ const SimpleTensor<TT> &c,
+ float alpha,
+ float beta,
+ const QuantizationInfo &o_qinfo)
+ {
+ ARM_COMPUTE_UNUSED(alpha, beta);
+
+ const auto aq = a.quantization_info().uniform();
+ const auto bq = b.quantization_info().uniform();
+ const auto oq = o_qinfo.uniform();
+
+ const auto multiplier = aq.scale * bq.scale / oq.scale;
+
+ int32_t output_multiplier = 0;
+ int32_t output_shift = 0;
+ quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift);
+ std::vector<int32_t> output_multipliers{output_multiplier};
+ std::vector<int32_t> output_shifts{output_shift};
+
+ //The lhs and rhs offsets are negated here to keep the reference aligned with the function implementation where the lhs and rhs offsets are also negated.
+ const auto tmp = reference::gemmlowp_matrix_multiply_core<int32_t>(a, b, c.shape(), -aq.offset, -bq.offset);
+
+ auto output = reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, TT>(
+ tmp, output_multipliers, output_shifts, oq.offset, std::numeric_limits<int32_t>::lowest(),
+ std::numeric_limits<int32_t>::max());
+ output.quantization_info(o_qinfo);
+
+ return output;
+ }
+
+ SimpleTensor<T> compute_reference(const TensorShape &a_shape,
+ const TensorShape &b_shape,
+ const TensorShape &output_shape,
+ bool transpose_a,
+ bool transpose_b,
+ DataType data_type,
+ ActivationLayerInfo act_info,
+ QuantizationInfo a_qinfo,
+ QuantizationInfo b_qinfo,
+ QuantizationInfo o_qinfo)
+ {
+ // We collapse dimensions > 2 onto dimension 2, i.e. 4D+ tensors will look like 3D
+ // This is necessary unless we choose to extend gemm reference for 4D+ tensors
+ TensorShape output_shape_collapsed = output_shape.collapsed_from(Window::DimZ);
+ TensorShape a_shape_collapsed = a_shape.collapsed_from(Window::DimZ);
+ TensorShape b_shape_collapsed = b_shape.collapsed_from(Window::DimZ);
+
+ // Create reference
+ SimpleTensor<T> a{a_shape_collapsed, data_type, 1, a_qinfo};
+ SimpleTensor<T> b{b_shape_collapsed, data_type, 1, b_qinfo};
+ SimpleTensor<T> c{output_shape_collapsed, data_type, 1};
+
+ // Fill reference
+ fill(a, 2);
+ fill(b, 3);
+
+ /* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if transpose_a is set to true, then A is assumed to be (B x K x M),
+ therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K)
+ in order to be able to call reference implementation that works with (B x M x K) input.
+ Similarly, if transpose_b is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */
+
+ // Define transposed shapes
+ TensorShape a_transposed_shape(a.shape());
+ a_transposed_shape.set(0, a.shape().y());
+ a_transposed_shape.set(1, a.shape().x());
+
+ TensorShape b_transposed_shape(b.shape());
+ b_transposed_shape.set(0, b.shape().y());
+ b_transposed_shape.set(1, b.shape().x());
+
+ // Define transposed tensors
+ SimpleTensor<T> a_transposed{a_transposed_shape, data_type};
+ SimpleTensor<T> b_transposed{b_transposed_shape, data_type};
+
+ // pretranspose a if necessary
+ if (transpose_a)
+ {
+ a_transposed = reference::permute<T>(a, PermutationVector(1U, 0U));
+ }
+ // pretranspose b if necessary
+ if (transpose_b)
+ {
+ b_transposed = reference::permute<T>(b, PermutationVector(1U, 0U));
+ }
+
+ // Setting beta to 0 will effectively disable C for the
+ // computation of the reference: alpha * A * B + 0 * C
+ // Use transposed tensors if boolean enabled else use original tensors
+ auto result = compute_reference_gemm<T>((transpose_a) ? a_transposed : a, (transpose_b) ? b_transposed : b, c,
+ 1.0f, 0.f, o_qinfo);
+
+ result = reference::activation_layer<T>(result, act_info, o_qinfo);
+
+ // We reshape the gemm output back if the tensor is high dimensional
+ if (output_shape_collapsed != output_shape)
+ {
+ result = reference::reshape_layer(result, output_shape);
+ }
+
+ return result;
+ }
+
+ TensorType _target{};
+ SimpleTensor<T> _reference{};
+};
+
+/// TODO: (ONCPUML-1451) The current state of this fixture is interim and a longer-term testing method will be implemented later.
+/// @note: Currently we support only a 2x2 test due to the lack of reorder ref. implementation.
+template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
+class MatMulFixedFormatFixture
+ : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
+{
+public:
+ TensorType compute_target(const TensorShape &shape_a,
+ const TensorShape &shape_b,
+ const TensorShape &output_shape,
+ bool transpose_a,
+ bool transpose_b,
+ DataType data_type,
+ ActivationLayerInfo act_info,
+ int num_extra_runs,
+ const Settings &settings,
+ QuantizationInfo a_qinfo,
+ QuantizationInfo b_qinfo,
+ QuantizationInfo o_qinfo) override
+ {
+ // 1. Create Classes and configure function
+ // ----------------------------------------------------
+ // Create tensors
+ // Configure relevant classes and matmul function
+ TensorType a = create_tensor<TensorType>(shape_a, data_type, 1, a_qinfo);
+ TensorType b = create_tensor<TensorType>(shape_b, data_type, 1, b_qinfo);
+ TensorType dst = create_tensor<TensorType>(output_shape, data_type, 1, o_qinfo);
+
+ const auto weight_tensor_info = TensorInfo(*b.info());
+ const TensorInfo new_tensor_info = prepare_weights(weight_tensor_info);
+ TensorType weights_transformed = create_tensor<TensorType>(new_tensor_info);
+
+ // Configure MatMulInfo class
+ MatMulInfo mm_info;
+ mm_info.adj_lhs(transpose_a).adj_rhs(transpose_b);
+
+ // Ensure values are dynamic
+ a.info()->set_are_values_constant(false);
+ b.info()->set_are_values_constant(false);
+ weights_transformed.info()->set_are_values_constant(false);
+
+ FunctionType matmul;
+
+ // Configure operator
+ matmul.configure(&a, &weights_transformed, &dst, mm_info, settings, act_info);
+
+ // Assertions
+ ARM_COMPUTE_ASSERT(a.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(b.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(weights_transformed.info()->is_resizable());
+
+ // Allocate tensors
+ a.allocator()->allocate();
+ b.allocator()->allocate();
+ dst.allocator()->allocate();
+ weights_transformed.allocator()->allocate();
+
+ ARM_COMPUTE_ASSERT(!a.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!b.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!weights_transformed.info()->is_resizable());
+
+ // For multiple runs.
+ for (int i = 0; i < num_extra_runs; i++)
+ {
+ // Stress dynamic tensors by running multiple times.
+ // --------------------------------------------------------
+ // Fill tensors with new seed
+ // Run function
+ const int seed_offset = num_extra_runs * 100;
+ this->fill(AccessorType(a), seed_offset);
+ this->fill(AccessorType(b), seed_offset + 1);
+
+ matmul.run();
+ }
+
+ // 2. Final Run for reference comparison
+ // --------------------------------------------------------
+ // Re-fill tensors same seed as reference run
+ // Compute MatMul operation
+ this->fill(AccessorType(a), 2);
+ this->fill(AccessorType(b), 3);
+
+ rearrange_data(AccessorType(b), AccessorType(weights_transformed));
+
+ matmul.run();
+
+ return dst;
+ }
+
+ void setup(TensorShape shape_a,
+ TensorShape shape_b,
+ TensorShape output_shape,
+ bool transpose_a,
+ bool transpose_b,
+ DataType data_type,
+ ActivationLayerInfo act_info,
+ int num_extra_runs,
+ Settings settings,
+ QuantizationInfo a_qinfo,
+ QuantizationInfo b_qinfo,
+ QuantizationInfo o_qinfo)
+ {
+ if (CPUInfo::get().has_bf16())
+ {
+ MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
+ shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, settings,
+ a_qinfo, b_qinfo, o_qinfo);
+ }
+ }
+
+private:
+ TensorInfo prepare_weights(const TensorInfo tensor_info)
+ {
+ const DataLayout data_layout = tensor_info.data_layout();
+ ARM_COMPUTE_EXPECT(data_layout == DataLayout::NCHW, framework::LogLevel::ERRORS);
+ const DataType data_type = tensor_info.data_type();
+ const TensorShape tensor_shape = tensor_info.tensor_shape();
+ const int H = tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)];
+ const int W = tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)];
+ ARM_COMPUTE_EXPECT(H <= 2 && W <= 2, framework::LogLevel::ERRORS);
+
+ arm_compute::Strides strides_in_bytes = tensor_info.strides_in_bytes();
+ strides_in_bytes.set(1, 32);
+ strides_in_bytes.set(2, 32);
+
+ const size_t offset_first_element_in_bytes = tensor_info.offset_first_element_in_bytes();
+ const size_t total_size_in_bytes = 32;
+
+ const TensorShape TS(H, W);
+
+ TensorInfo new_tensor_info = tensor_info;
+ new_tensor_info.init(TS, tensor_info.num_channels(), data_type, strides_in_bytes, offset_first_element_in_bytes,
+ total_size_in_bytes);
+
+ return new_tensor_info;
+ }
+
+ void rearrange_data(const AccessorType src, AccessorType dst)
+ {
+ const TensorShape src_tensor_shape = src.shape();
+ const DataLayout data_layout = src.data_layout();
+ ARM_COMPUTE_EXPECT(data_layout == DataLayout::NCHW, framework::LogLevel::ERRORS);
+ const unsigned int O =
+ src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES)]; // N=O
+ const unsigned int H =
+ src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT)];
+ const unsigned int W =
+ src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH)];
+ const unsigned int I =
+ src_tensor_shape[get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL)]; // C=I
+ ARM_COMPUTE_EXPECT(H <= 2 && W <= 2, framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(I == 1 && O == 1, framework::LogLevel::ERRORS);
+ ARM_COMPUTE_EXPECT(src.num_elements() <= dst.num_elements(), framework::LogLevel::ERRORS);
+
+ const T *src_ptr = reinterpret_cast<const T *>(src.data());
+ T *dst_ptr = reinterpret_cast<T *>(dst.data());
+
+ // rearrange indexes for 2x2 input and weight
+ int dst_idx[] = {0, 4, 1, 5};
+ for (int i = 0; i < 4; i++)
+ {
+ dst_ptr[dst_idx[i]] = src_ptr[i];
+ }
+ }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
+class MatMulValidationFixture
+ : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
+{
+public:
+ void setup(TensorShape shape_a,
+ TensorShape shape_b,
+ TensorShape output_shape,
+ bool transpose_a,
+ bool transpose_b,
+ DataType data_type)
+ {
+ MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
+ shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, ActivationLayerInfo(), 0, Settings());
+ }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
+class MatMulValidationWithDynamicTensorsFixture
+ : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
+{
+public:
+ void setup(TensorShape shape_a,
+ TensorShape shape_b,
+ TensorShape output_shape,
+ bool transpose_a,
+ bool transpose_b,
+ DataType data_type,
+ ActivationLayerInfo act_info,
+ int num_extra_runs)
+ {
+ MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
+ shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings());
+ }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
+class QuantizedMatMulValidationFixture
+ : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
+{
+public:
+ void setup(TensorShape shape_a,
+ TensorShape shape_b,
+ TensorShape output_shape,
+ bool transpose_a,
+ bool transpose_b,
+ DataType data_type,
+ ActivationLayerInfo act_info,
+ int num_extra_runs,
+ QuantizationInfo a_qinfo,
+ QuantizationInfo b_qinfo,
+ QuantizationInfo o_qinfo)
+ {
+ MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
+ shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings(),
+ a_qinfo, b_qinfo, o_qinfo);
+ }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
+class MatMulValidationWithActivationFixture
+ : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
+{
+public:
+ void setup(TensorShape shape_a,
+ TensorShape shape_b,
+ TensorShape output_shape,
+ bool transpose_a,
+ bool transpose_b,
+ DataType data_type,
+ ActivationLayerInfo act_info)
+ {
+ MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
+ shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, 0, Settings());
+ }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
+class MatMulValidationWithActivationAlphaBetaFixture
+ : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
+{
+public:
+ void setup(TensorShape shape_a,
+ TensorShape shape_b,
+ TensorShape output_shape,
+ bool transpose_a,
+ bool transpose_b,
+ DataType data_type,
+ ActivationLayerInfo::ActivationFunction function,
+ float alpha_beta)
+ {
+ ActivationLayerInfo act_info(function, alpha_beta, alpha_beta);
+ MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
+ shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, 0, Settings());
+ }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, typename Settings, typename T>
+class QuantizedMatMulValidationWithActivationFixture
+ : public MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>
+{
+public:
+ void setup(TensorShape shape_a,
+ TensorShape shape_b,
+ TensorShape output_shape,
+ bool transpose_a,
+ bool transpose_b,
+ DataType data_type,
+ ActivationLayerInfo::ActivationFunction function,
+ float alpha_beta,
+ int num_extra_runs,
+ QuantizationInfo a_qinfo,
+ QuantizationInfo b_qinfo,
+ QuantizationInfo o_qinfo)
+ {
+ ActivationLayerInfo act_info(function, alpha_beta, alpha_beta);
+ MatMulGenericValidationFixture<TensorType, AccessorType, FunctionType, Settings, T>::setup(
+ shape_a, shape_b, output_shape, transpose_a, transpose_b, data_type, act_info, num_extra_runs, Settings(),
+ a_qinfo, b_qinfo, o_qinfo);
+ }
+};
+
+} // namespace validation
+} // namespace test
+} // namespace arm_compute
+#endif // ACL_TESTS_VALIDATION_FIXTURES_MATMULFIXTURE_H