aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/GEMMLowpFixture.h
diff options
context:
space:
mode:
Diffstat (limited to 'tests/validation/fixtures/GEMMLowpFixture.h')
-rw-r--r--tests/validation/fixtures/GEMMLowpFixture.h319
1 files changed, 189 insertions, 130 deletions
diff --git a/tests/validation/fixtures/GEMMLowpFixture.h b/tests/validation/fixtures/GEMMLowpFixture.h
index 1492ac6945..a65a1e6bd8 100644
--- a/tests/validation/fixtures/GEMMLowpFixture.h
+++ b/tests/validation/fixtures/GEMMLowpFixture.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017-2023 Arm Limited.
+ * Copyright (c) 2017-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -21,14 +21,19 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
-#ifndef ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE
-#define ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE
+#ifndef ACL_TESTS_VALIDATION_FIXTURES_GEMMLOWPFIXTURE_H
+#define ACL_TESTS_VALIDATION_FIXTURES_GEMMLOWPFIXTURE_H
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "src/core/utils/quantization/AsymmHelpers.h"
+#include "tests/validation/Helpers.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Validation.h"
#include "tests/validation/reference/GEMMLowp.h"
+#include <cstdint>
+#include <vector>
+
namespace arm_compute
{
namespace test
@@ -37,82 +42,46 @@ namespace validation
{
namespace
{
+
template <typename U>
void fill(U &&tensor, int i)
{
- switch(tensor.data_type())
- {
- case DataType::QSYMM8_PER_CHANNEL:
- {
- int min_bound = 128;
- int max_bound = -127;
- for(size_t j = 0; j < tensor.quantization_info().scale().size(); j++)
- {
- std::pair<int, int> bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f, i);
- if(bounds.first < min_bound)
- {
- min_bound = bounds.first;
- }
- if(bounds.second > max_bound)
- {
- max_bound = bounds.second;
- }
- }
- std::uniform_int_distribution<int32_t> distribution(min_bound, max_bound);
- library->fill(tensor, distribution, i);
- break;
- }
- case DataType::QASYMM8:
- {
- std::uniform_int_distribution<uint32_t> distribution(1, 254);
- library->fill(tensor, distribution, i);
- break;
- }
- case DataType::S32:
- {
- std::uniform_int_distribution<int32_t> distribution(-20000, 20000);
- library->fill(tensor, distribution, i);
- break;
- }
- case DataType::F16:
- {
- arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
- library->fill(tensor, distribution, i);
- break;
- }
- case DataType::F32:
- {
- std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
- library->fill(tensor, distribution, i);
- break;
- }
- default:
- library->fill_tensor_uniform(tensor, i);
- }
+ ARM_COMPUTE_ASSERT(is_data_type_quantized(tensor.data_type()));
+ library->fill_tensor_uniform(tensor, i);
}
+template <typename U>
+void fill_bias_s32(U &&tensor, int i, int32_t min, int32_t max)
+{
+ ARM_COMPUTE_ASSERT(tensor.data_type() == DataType::S32);
+ std::uniform_int_distribution<int32_t> distribution(min, max);
+ library->fill(tensor, distribution, i);
+}
+
+/** Information about how to fill tensors */
+struct TensorFillInfo
+{
+ // Bias fill range. Default values are arbitrary
+ int32_t min_bias {-20000};
+ int32_t max_bias {20000};
+ // Optional extra hash to randomize tensor filling
+ int32_t hash {0};
+};
+
template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d, bool reinterpret_output_as_3d, typename OutputType, bool is_fused = false, bool run_twice = false>
-TensorType compute_gemmlowp_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset,
- GEMMLowpOutputStageInfo output_stage = GEMMLowpOutputStageInfo(), DataType data_type_a = DataType::QASYMM8, DataType data_type_b = DataType::QASYMM8,
- QuantizationInfo b_qinfo = QuantizationInfo(), bool reshape_b_only_on_first_run = false)
+TensorType compute_gemmlowp_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo,
+ const QuantizationInfo& output_qinfo, DataType data_type_a = DataType::QASYMM8, DataType data_type_b = DataType::QASYMM8,
+ GEMMLowpOutputStageInfo output_stage = GEMMLowpOutputStageInfo(), bool reshape_b_only_on_first_run = false, const TensorFillInfo& finfo = TensorFillInfo() )
{
+ ARM_COMPUTE_ASSERT(is_data_type_quantized_asymmetric(data_type_a));
+ ARM_COMPUTE_ASSERT(data_type_a == data_type_b);
// Create tensors
- DataType data_type_output = output_stage.type == GEMMLowpOutputStageType::NONE ? DataType::S32 : data_type_a;
+ const DataType data_type_output = output_stage.type == GEMMLowpOutputStageType::NONE ? DataType::S32 : data_type_a;
- TensorType a = create_tensor<TensorType>(shape_a, data_type_a, 1);
- TensorType b = create_tensor<TensorType>(shape_b, data_type_b, 1); // gemm output before output stage mismatch if i pass data_layout_output here. to be investigated
- TensorType output = create_tensor<TensorType>(shape_output, data_type_output, 1);
+ TensorType a = create_tensor<TensorType>(shape_a, data_type_a, 1, a_qinfo);
+ TensorType b = create_tensor<TensorType>(shape_b, data_type_b, 1, b_qinfo); // gemm output before output stage mismatch if i pass data_layout_output here. to be investigated
+ TensorType output = create_tensor<TensorType>(shape_output, data_type_output, 1, output_qinfo /* output_qinfo will be ignored when output stage type is None */);
- a.info()->set_quantization_info(QuantizationInfo(1.0f / 255, a_offset));
-
- if(data_type_b == DataType::QSYMM8_PER_CHANNEL)
- {
- b.info()->set_quantization_info(b_qinfo);
- }
- else
- {
- b.info()->set_quantization_info(QuantizationInfo(1.0f / 255, b_offset));
- }
TensorType bias;
if(is_fused)
{
@@ -142,26 +111,26 @@ TensorType compute_gemmlowp_target(const TensorShape &shape_a, const TensorShape
ARM_COMPUTE_ASSERT(!output.info()->is_resizable());
// Fill tensors
- fill(AccessorType(a), 0);
- fill(AccessorType(b), 1);
+ fill(AccessorType(a), 0 + finfo.hash);
+ fill(AccessorType(b), 1 + finfo.hash);
if(is_fused)
{
ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
bias.allocator()->allocate();
ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
- fill(AccessorType(bias), 2);
+ fill_bias_s32(AccessorType(bias), 2 + finfo.hash, finfo.min_bias, finfo.max_bias);
}
// Run with variable inputs.
if(run_twice)
{
gemmlowp.run();
- fill(AccessorType(a), 3); // Fill tensors with new seed after run
- fill(AccessorType(b), 4);
+ fill(AccessorType(a), 3 + finfo.hash); // Fill tensors with new seed after run
+ fill(AccessorType(b), 4 + finfo.hash);
if(is_fused)
{
- fill(AccessorType(bias), 5);
+ fill_bias_s32(AccessorType(bias), 5 + finfo.hash, finfo.min_bias, finfo.max_bias);
}
}
@@ -171,9 +140,11 @@ TensorType compute_gemmlowp_target(const TensorShape &shape_a, const TensorShape
}
template <bool reinterpret_input_as_3d, typename TI = uint8_t, typename TW = uint8_t, bool pretranspose_A = false, bool pretranspose_B = false, bool run_twice = false>
-SimpleTensor<int32_t> compute_gemmlowp_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset,
- DataType data_type_a = DataType::QASYMM8, DataType data_type_b = DataType::QASYMM8, QuantizationInfo b_qinfo = QuantizationInfo())
+SimpleTensor<int32_t> compute_gemmlowp_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo,
+ DataType data_type_a = DataType::QASYMM8, DataType data_type_b = DataType::QASYMM8, const TensorFillInfo& finfo = TensorFillInfo())
{
+ ARM_COMPUTE_ASSERT(is_data_type_quantized_asymmetric(data_type_a));
+ ARM_COMPUTE_ASSERT(data_type_a == data_type_b);
TensorShape shape_a_to_use = shape_a;
if(reinterpret_input_as_3d)
{
@@ -182,8 +153,8 @@ SimpleTensor<int32_t> compute_gemmlowp_reference(const TensorShape &shape_a, con
}
// Create reference
- SimpleTensor<TI> a{ shape_a_to_use, data_type_a, 1 };
- SimpleTensor<TW> b{ shape_b, data_type_b, 1, data_type_b == DataType::QSYMM8_PER_CHANNEL ? b_qinfo : QuantizationInfo(1.0f / 255, b_offset) };
+ SimpleTensor<TI> a{ shape_a_to_use, data_type_a, 1, a_qinfo };
+ SimpleTensor<TW> b{ shape_b, data_type_b, 1, b_qinfo };
TensorShape shape_a_to_use_transposed{ shape_a_to_use };
TensorShape shape_b_transposed{ shape_b };
@@ -193,12 +164,12 @@ SimpleTensor<int32_t> compute_gemmlowp_reference(const TensorShape &shape_a, con
shape_b_transposed.set(0, shape_b[1]);
shape_b_transposed.set(1, shape_b[0]);
- SimpleTensor<TI> a_transposed{ shape_a_to_use_transposed, data_type_a, 1 };
- SimpleTensor<TW> b_transposed{ shape_b_transposed, data_type_b, 1, data_type_b == DataType::QSYMM8_PER_CHANNEL ? b_qinfo : QuantizationInfo(1.0f / 255, b_offset) };
+ SimpleTensor<TI> a_transposed{ shape_a_to_use_transposed, data_type_a, 1, a_qinfo };
+ SimpleTensor<TW> b_transposed{ shape_b_transposed, data_type_b, 1, b_qinfo };
// Fill reference
- fill(a, 0);
- fill(b, 1);
+ fill(a, 0 + finfo.hash);
+ fill(b, 1 + finfo.hash);
// Transpose reference if required
/* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if pretranspose_A is set to true, then A is assumed to be (B x K x M),
@@ -216,16 +187,18 @@ SimpleTensor<int32_t> compute_gemmlowp_reference(const TensorShape &shape_a, con
}
// Run with variable inputs.
+ const int32_t a_offset = a_qinfo.uniform().offset;
+ const int32_t b_offset = b_qinfo.uniform().offset;
if(run_twice)
{
reference::gemmlowp_matrix_multiply_core<int32_t, TI, TW>((pretranspose_A ? a_transposed : a), (pretranspose_B ? b_transposed : b), shape_output, a_offset, b_offset);
- fill((pretranspose_A) ? a_transposed : a, 3);
- fill((pretranspose_B) ? b_transposed : b, 4);
+ fill((pretranspose_A) ? a_transposed : a, 3 + finfo.hash);
+ fill((pretranspose_B) ? b_transposed : b, 4 + finfo.hash);
}
return reference::gemmlowp_matrix_multiply_core<int32_t, TI, TW>((pretranspose_A ? a_transposed : a), (pretranspose_B ? b_transposed : b), shape_output, a_offset, b_offset);
}
-}
+} // namespace
template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false, bool run_twice = false>
class GEMMLowpMatrixMultiplyCoreValidationFixture : public framework::Fixture
@@ -233,20 +206,22 @@ class GEMMLowpMatrixMultiplyCoreValidationFixture : public framework::Fixture
public:
void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset)
{
- _target = compute_target(shape_a, shape_b, shape_output, a_offset, b_offset);
- _reference = compute_reference(shape_a, shape_b, shape_output, a_offset, b_offset);
+ const auto a_qinfo = QuantizationInfo(1.0f / 255, a_offset);
+ const auto b_qinfo = QuantizationInfo(1.0f / 255, b_offset);
+ _target = compute_target(shape_a, shape_b, shape_output, a_qinfo, b_qinfo);
+ _reference = compute_reference(shape_a, shape_b, shape_output, a_qinfo, b_qinfo);
}
protected:
- TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset)
+ TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo)
{
- return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, int32_t, false, run_twice>(shape_a, shape_b, shape_output, a_offset,
- b_offset);
+ const auto output_qinfo = QuantizationInfo(); // No output stage
+ return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, int32_t, false, run_twice>(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, output_qinfo);
}
- SimpleTensor<int32_t> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset)
+ SimpleTensor<int32_t> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo)
{
- return compute_gemmlowp_reference<reinterpret_input_as_3d, uint8_t, uint8_t, false, false, run_twice>(shape_a, shape_b, shape_output, a_offset, b_offset);
+ return compute_gemmlowp_reference<reinterpret_input_as_3d, uint8_t, uint8_t, false, false, run_twice>(shape_a, shape_b, shape_output, a_qinfo, b_qinfo);
}
TensorType _target{};
@@ -257,54 +232,138 @@ template <typename TensorType, typename AccessorType, typename FunctionType, boo
class GEMMLowpMatrixMultiplyCoreFusedOffsetOutputGenericValidationFixture : public framework::Fixture
{
public:
- void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage, DataType data_type_b,
+ /** Dynamically initialize the quantization info with saturation awareness
+ */
+ template <typename T>
+ static void setup_quantization(DataType data_type, const TensorShape& shape_a, const TensorShape& shape_b, QuantizationInfo& a_qinfo, QuantizationInfo& b_qinfo, QuantizationInfo& output_qinfo, TensorFillInfo& finfo)
+ {
+ // This hash is used by random generators. There may be hash collisions but
+ // this is intentional as it's a very easy way to make the the current
+ // random generation process almost different for many test configurations,
+ // which were using the same set of values before.
+ finfo.hash = shape_a[0] + shape_a[1] + shape_b[0] + shape_b[1];
+
+ const int32_t t_max = static_cast<int32_t>(std::numeric_limits<T>::max());
+ const int32_t t_min = static_cast<int32_t>(std::numeric_limits<T>::min());
+
+ std::mt19937 generator(library->seed() + finfo.hash);
+ std::uniform_real_distribution<float> distribution_float(-5.0f, 3.0f);
+ std::uniform_int_distribution<int32_t> distribution_t(t_min, t_max);
+
+ const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
+ const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
+
+ const int32_t offset_lhs = distribution_t(generator);
+ const int32_t offset_rhs = distribution_t(generator);
+
+ a_qinfo = QuantizationInfo(scale_lhs, offset_lhs);
+ b_qinfo = QuantizationInfo(scale_rhs, offset_rhs);
+
+ // reinterpret_input_as_3d or reinterpret_output_as_3d can be ignored, as the underlying gemm / matmul computation
+ // is equivalent to a standard 2D one with m-n-k dimensions
+ const int m = shape_a.y();
+ const int n = shape_b.x();
+ const int k = shape_a.x();
+
+ const float bias_fraction = 0.5f; // We enabled is_fused in compute_gemmlowp_target below, thus bias is included
+
+ QuantizationHint q_hint = suggest_matmul_dst_q_info_and_bias(a_qinfo, b_qinfo, m, n, k, data_type, bias_fraction);
+ output_qinfo = q_hint.q_info;
+ finfo.min_bias = q_hint.bias_min;
+ finfo.max_bias = q_hint.bias_max;
+
+ // Both target and reference implementations use negated offsets, i.e.
+ // float_val = (int_val + offset) * scale
+ // instead of
+ // float_val = (int_val - offset) * scale
+ // as usual. Therefore, after calculating the output quantization above, we
+ // negate the offsets of inputs' offsets.
+ a_qinfo = QuantizationInfo(scale_lhs, -offset_lhs);
+ b_qinfo = QuantizationInfo(scale_rhs, -offset_rhs);
+ }
+
+ /** Initialize output stage info from quantization info */
+ static Status init_gemmlowp_output_stage_info(
+ DataType data_type,
+ const QuantizationInfo& a_qinfo,
+ const QuantizationInfo& b_qinfo,
+ const QuantizationInfo& output_qinfo,
+ GEMMLowpOutputStageType type,
+ GEMMLowpOutputStageInfo &gemmlowp_output_stage_info)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(!is_data_type_quantized_asymmetric(data_type));
+
+ const UniformQuantizationInfo aq_unif = a_qinfo.uniform();
+ const UniformQuantizationInfo bq_unif = b_qinfo.uniform();
+ const UniformQuantizationInfo oq_unif = output_qinfo.uniform();
+
+ float multiplier = (aq_unif.scale * bq_unif.scale) / oq_unif.scale;
+ int32_t int_multiplier;
+ int32_t shift;
+
+ ARM_COMPUTE_RETURN_ON_ERROR(
+ quantization::calculate_quantized_multiplier(multiplier, &int_multiplier, &shift));
+
+ int32_t type_min = 0;
+ int32_t type_max = 0;
+ std::tie(type_min, type_max) = quantization::get_quantized_asymmetric_output_min_max(output_qinfo, ActivationLayerInfo(), data_type);
+
+ gemmlowp_output_stage_info.gemmlowp_real_multiplier = multiplier;
+ gemmlowp_output_stage_info.gemmlowp_multiplier = int_multiplier;
+ gemmlowp_output_stage_info.gemmlowp_multipliers = { int_multiplier };
+ gemmlowp_output_stage_info.gemmlowp_shift = shift;
+ gemmlowp_output_stage_info.gemmlowp_shifts = { shift };
+ gemmlowp_output_stage_info.gemmlowp_offset = oq_unif.offset;
+ gemmlowp_output_stage_info.type = type;
+ gemmlowp_output_stage_info.gemmlowp_min_bound = type_min;
+ gemmlowp_output_stage_info.gemmlowp_max_bound = type_max;
+
+ return Status{};
+ }
+
+ /** Currently this fixture only tests the following data type configurations:
+ *
+ * 1. a and b are of the same data type
+ * 2. The data type is quantized asymmetric
+ *
+ */
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, GEMMLowpOutputStageType output_stage_type, DataType data_type,
bool reshape_b_only_on_first_run)
{
- ARM_COMPUTE_ASSERT(output_stage.type != GEMMLowpOutputStageType::NONE);
- DataType data_type_a = data_type_b == DataType::QASYMM8_SIGNED ? DataType::QASYMM8_SIGNED : DataType::QASYMM8;
+ ARM_COMPUTE_ASSERT(output_stage_type != GEMMLowpOutputStageType::NONE);
+ ARM_COMPUTE_ASSERT(is_data_type_quantized_asymmetric(data_type));
- if(data_type_b == DataType::QSYMM8_PER_CHANNEL)
- {
- output_stage.is_quantized_per_channel = true;
- const size_t num_channels = shape_b[0];
- std::vector<float> scales(num_channels);
- std::uniform_real_distribution<float> distribution(0.f, 1.f);
- library->fill(scales, distribution, 0);
- output_stage.gemmlowp_multipliers.resize(num_channels);
- output_stage.gemmlowp_shifts.resize(num_channels);
- for(size_t i = 0; i < num_channels; ++i)
- {
- quantization::calculate_quantized_multiplier(scales[i], &output_stage.gemmlowp_multipliers[i], &output_stage.gemmlowp_shifts[i]);
- }
+ // Randomized dynamic quantization: randomize quantization info in a way that ensures no result saturation
+ // most of the time
+ QuantizationInfo a_qinfo;
+ QuantizationInfo b_qinfo;
+ QuantizationInfo output_qinfo;
+ TensorFillInfo finfo;
+ setup_quantization<TI>(data_type, shape_a, shape_b, a_qinfo, b_qinfo, output_qinfo, finfo);
- _reference = compute_reference(shape_a, shape_b, shape_output, a_offset, 0, output_stage, data_type_a, data_type_b, QuantizationInfo(scales));
- _target = compute_target(shape_a, shape_b, shape_output, a_offset, 0, output_stage, data_type_a, data_type_b, QuantizationInfo(scales), reshape_b_only_on_first_run);
- }
- else
- {
- _reference = compute_reference(shape_a, shape_b, shape_output, a_offset, b_offset, output_stage, data_type_a, data_type_b, QuantizationInfo());
- _target = compute_target(shape_a, shape_b, shape_output, a_offset, b_offset, output_stage, data_type_a, data_type_b, QuantizationInfo(), reshape_b_only_on_first_run);
- }
+ GEMMLowpOutputStageInfo output_stage;
+ init_gemmlowp_output_stage_info(data_type, a_qinfo, b_qinfo, output_qinfo, output_stage_type, output_stage);
+
+ _reference = compute_reference(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, data_type, data_type, output_stage, finfo);
+ _target = compute_target(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, output_qinfo, data_type, data_type, output_stage, reshape_b_only_on_first_run, finfo);
}
protected:
- TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage,
- DataType data_type_a, DataType data_type_b, QuantizationInfo b_qinfo, bool reshape_b_only_on_first_run = false)
+ TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo, const QuantizationInfo& output_qinfo,
+ DataType data_type_a, DataType data_type_b, const GEMMLowpOutputStageInfo& output_stage, bool reshape_b_only_on_first_run = false, const TensorFillInfo& finfo = TensorFillInfo())
{
- return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, qasymm8_t, true, run_twice>(shape_a, shape_b, shape_output, a_offset,
- b_offset,
- output_stage, data_type_a, data_type_b, b_qinfo, reshape_b_only_on_first_run);
+ return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, qasymm8_t, true, run_twice>(shape_a, shape_b, shape_output, a_qinfo,
+ b_qinfo, output_qinfo, data_type_a, data_type_b, output_stage, reshape_b_only_on_first_run, finfo);
}
- SimpleTensor<TI> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset,
- GEMMLowpOutputStageInfo output_stage, DataType data_type_a, DataType data_type_b, QuantizationInfo b_qinfo)
+ SimpleTensor<TI> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo,
+ DataType data_type_a, DataType data_type_b, const GEMMLowpOutputStageInfo& output_stage, const TensorFillInfo& finfo = TensorFillInfo())
{
- SimpleTensor<int32_t> output = compute_gemmlowp_reference<reinterpret_input_as_3d, TI, TW, false, false, run_twice>(shape_a, shape_b, shape_output, a_offset, b_offset, data_type_a, data_type_b,
- b_qinfo);
+ SimpleTensor<int32_t> output = compute_gemmlowp_reference<reinterpret_input_as_3d, TI, TW, false, false, run_twice>(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, data_type_a, data_type_b, finfo);
TensorShape bias_shape(shape_b[0]);
SimpleTensor<int32_t> bias{ bias_shape, DataType::S32, 1 };
- (run_twice) ? fill(bias, 5) : fill(bias, 2); // Fill bias with same seed as last run of gemmlowp_target
+ (run_twice) ? fill_bias_s32(bias, 5 + finfo.hash, finfo.min_bias, finfo.max_bias) : fill_bias_s32(bias, 2 + finfo.hash, finfo.min_bias, finfo.max_bias); // Fill bias with same seed as last run of gemmlowp_target
switch(output_stage.type)
{
@@ -330,10 +389,10 @@ class GEMMLowpMatrixMultiplyCoreFusedOffsetOutputValidationFixture : public
GEMMLowpMatrixMultiplyCoreFusedOffsetOutputGenericValidationFixture<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, TI, TW>
{
public:
- void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage, DataType data_type_b)
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, GEMMLowpOutputStageType output_stage_type, DataType data_type)
{
GEMMLowpMatrixMultiplyCoreFusedOffsetOutputGenericValidationFixture<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, TI, TW>::setup(shape_a, shape_b,
- shape_output, a_offset, b_offset, output_stage, data_type_b, false);
+ shape_output, output_stage_type, data_type, false /* reshape_b_only_on_first_run */);
}
};
@@ -2076,4 +2135,4 @@ protected:
} // namespace validation
} // namespace test
} // namespace arm_compute
-#endif /* ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE */
+#endif // ACL_TESTS_VALIDATION_FIXTURES_GEMMLOWPFIXTURE_H