aboutsummaryrefslogtreecommitdiff
path: root/tests/validation/fixtures/GEMMLowpFixture.h
diff options
context:
space:
mode:
Diffstat (limited to 'tests/validation/fixtures/GEMMLowpFixture.h')
-rw-r--r--tests/validation/fixtures/GEMMLowpFixture.h927
1 files changed, 771 insertions, 156 deletions
diff --git a/tests/validation/fixtures/GEMMLowpFixture.h b/tests/validation/fixtures/GEMMLowpFixture.h
index 5cf210bab4..aa4eedb75d 100644
--- a/tests/validation/fixtures/GEMMLowpFixture.h
+++ b/tests/validation/fixtures/GEMMLowpFixture.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017-2021 Arm Limited.
+ * Copyright (c) 2017-2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -21,22 +21,20 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
-#ifndef ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE
-#define ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE
+#ifndef ACL_TESTS_VALIDATION_FIXTURES_GEMMLOWPFIXTURE_H
+#define ACL_TESTS_VALIDATION_FIXTURES_GEMMLOWPFIXTURE_H
-#include "arm_compute/core/KernelDescriptors.h"
-#include "arm_compute/core/TensorShape.h"
-#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
-#include "tests/AssetsLibrary.h"
-#include "tests/Globals.h"
-#include "tests/IAccessor.h"
-#include "tests/framework/Asserts.h"
-#include "tests/framework/Fixture.h"
+#include "src/core/utils/quantization/AsymmHelpers.h"
#include "tests/validation/Helpers.h"
+#include "tests/framework/Fixture.h"
+#include "tests/validation/Validation.h"
#include "tests/validation/reference/GEMMLowp.h"
+#include "tests/validation/reference/ArithmeticOperations.h"
+#include "tests/validation/reference/DequantizationLayer.h"
-#include <random>
+#include <cstdint>
+#include <vector>
namespace arm_compute
{
@@ -49,84 +47,88 @@ namespace
template <typename U>
void fill(U &&tensor, int i)
{
- switch(tensor.data_type())
- {
- case DataType::QSYMM8_PER_CHANNEL:
- {
- int min_bound = 128;
- int max_bound = -127;
- for(size_t j = 0; j < tensor.quantization_info().scale().size(); j++)
- {
- std::pair<int, int> bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f, i);
- if(bounds.first < min_bound)
- {
- min_bound = bounds.first;
- }
- if(bounds.second > max_bound)
- {
- max_bound = bounds.second;
- }
- }
- std::uniform_int_distribution<int8_t> distribution(min_bound, max_bound);
- library->fill(tensor, distribution, i);
- break;
- }
- case DataType::QASYMM8:
- {
- std::uniform_int_distribution<uint8_t> distribution(1, 254);
- library->fill(tensor, distribution, i);
- break;
- }
- case DataType::F16:
- {
- arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
- library->fill(tensor, distribution, i);
- break;
- }
- case DataType::F32:
- {
- std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
- library->fill(tensor, distribution, i);
- break;
- }
- default:
- library->fill_tensor_uniform(tensor, i);
- }
+ library->fill_tensor_uniform(tensor, i);
}
-template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d, bool reinterpret_output_as_3d, typename OutputType, bool is_fused = false>
-TensorType compute_gemmlowp_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset,
- GEMMLowpOutputStageInfo output_stage = GEMMLowpOutputStageInfo(), DataType data_type_a = DataType::QASYMM8, DataType data_type_b = DataType::QASYMM8,
- QuantizationInfo b_qinfo = QuantizationInfo())
+template <typename U>
+void fill_quantized(U &&tensor, int i)
{
- // Create tensors
- DataType data_type_output = output_stage.type == GEMMLowpOutputStageType::NONE ? DataType::S32 : data_type_a;
-
- TensorType a = create_tensor<TensorType>(shape_a, data_type_a, 1);
- TensorType b = create_tensor<TensorType>(shape_b, data_type_b, 1); // gemm output before output stage mismatch if i pass data_layout_output here. to be investigated
- TensorType output = create_tensor<TensorType>(shape_output, data_type_output, 1);
-
- a.info()->set_quantization_info(QuantizationInfo(1.0f / 255, a_offset));
+ ARM_COMPUTE_ASSERT(is_data_type_quantized(tensor.data_type()));
+ library->fill_tensor_uniform(tensor, i);
+}
- if(data_type_b == DataType::QSYMM8_PER_CHANNEL)
+template <typename U>
+void fill(U &&tensor, int i, int32_t min, int32_t max)
+{
+ if (tensor.data_type() == DataType::S32) {
+ std::uniform_int_distribution<int32_t> distribution(min, max);
+ library->fill(tensor, distribution, i);
+ }
+ else if(tensor.data_type() == DataType::F32)
{
- b.info()->set_quantization_info(b_qinfo);
+ std::uniform_real_distribution<float> distribution((float)min, (float)max);
+ library->fill(tensor, distribution, i);
}
else
{
- b.info()->set_quantization_info(QuantizationInfo(1.0f / 255, b_offset));
+ ARM_COMPUTE_ERROR("NOT SUPPORTED!");
+ }
+}
+
+/** Information about how to fill tensors */
+struct TensorFillInfo
+{
+ // Bias fill range. Default values are arbitrary
+ int32_t min_bias {-20000};
+ int32_t max_bias {20000};
+
+ // Output fill range. Default values are arbitrary
+ int32_t min_output {-20000};
+ int32_t max_output {20000};
+
+ // Optional extra hash to randomize tensor filling
+ int32_t hash {0};
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d, bool reinterpret_output_as_3d, typename OutputType, bool is_fused = false, bool run_twice = false>
+TensorType compute_gemmlowp_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo,
+ const QuantizationInfo& output_qinfo, DataType data_type_a = DataType::QASYMM8, DataType data_type_b = DataType::QASYMM8,
+ GEMMLowpOutputStageInfo output_stage = GEMMLowpOutputStageInfo(), bool reshape_b_only_on_first_run = false, const TensorFillInfo& finfo = TensorFillInfo(),
+ bool accumulate = false, bool dynamic_qinfo = false, DataType data_type_output = DataType::UNKNOWN)
+{
+ ARM_COMPUTE_ASSERT(is_data_type_quantized_asymmetric(data_type_a));
+ ARM_COMPUTE_ASSERT(data_type_a == data_type_b);
+ // If unknown, set to sensible defaults
+ if (data_type_output == DataType::UNKNOWN) {
+ data_type_output = output_stage.type == GEMMLowpOutputStageType::NONE ? DataType::S32 : data_type_a;
}
+
+ // Create tensors
+ TensorType a = create_tensor<TensorType>(shape_a, data_type_a, 1, dynamic_qinfo ? QuantizationInfo(1.0,0,true) : a_qinfo);
+ TensorType b = create_tensor<TensorType>(shape_b, data_type_b, 1, dynamic_qinfo ? QuantizationInfo(1.0,0,true) : b_qinfo); // gemm output before output stage mismatch if i pass data_layout_output here. to be investigated
+ TensorType output = create_tensor<TensorType>(shape_output, data_type_output, 1, output_qinfo /* output_qinfo will be ignored when output stage type is None */);
+
TensorType bias;
if(is_fused)
{
TensorShape bias_shape(shape_b[0]);
- bias = create_tensor<TensorType>(bias_shape, DataType::S32, 1);
+ bias = create_tensor<TensorType>(bias_shape,data_type_output == DataType::F32 ? DataType::F32 : DataType::S32, 1);
}
// Create and configure function
// The GEMMinfo includes the values of the depth in case of reinterpreted 3d input/output
FunctionType gemmlowp;
- gemmlowp.configure(&a, &b, is_fused ? &bias : nullptr, &output, GEMMInfo(false, false, false, (reinterpret_output_as_3d ? shape_output[2] : 0), reinterpret_input_as_3d, false, output_stage));
+ gemmlowp.configure(&a, &b, is_fused ? &bias : nullptr, &output, GEMMInfo(false, false, reshape_b_only_on_first_run, (reinterpret_output_as_3d ? shape_output[2] : 0), reinterpret_input_as_3d, false,
+ output_stage, false /*fp_mixed_precision*/, false /*fast_math*/, false /*broadcast_bias*/,
+ arm_compute::ActivationLayerInfo(), false /* fixed_format */, arm_compute::WeightFormat::UNSPECIFIED,
+ false /* pretranspose_B */, accumulate));
+
+ // If the QuantizationInfo is dynamic, it needs to be settable after configure (note that we also force it to be dynamic)
+ if (dynamic_qinfo)
+ {
+ a.info()->set_quantization_info(QuantizationInfo(a_qinfo.scale(), a_qinfo.offset(), true));
+ b.info()->set_quantization_info(QuantizationInfo(b_qinfo.scale(), b_qinfo.offset(), true));
+ }
ARM_COMPUTE_ASSERT(a.info()->is_resizable());
ARM_COMPUTE_ASSERT(b.info()->is_resizable());
@@ -144,25 +146,46 @@ TensorType compute_gemmlowp_target(const TensorShape &shape_a, const TensorShape
ARM_COMPUTE_ASSERT(!output.info()->is_resizable());
// Fill tensors
- fill(AccessorType(a), 0);
- fill(AccessorType(b), 1);
+ fill_quantized(AccessorType(a), 0 + finfo.hash);
+ fill_quantized(AccessorType(b), 1 + finfo.hash);
+
+ if (accumulate)
+ {
+ ARM_COMPUTE_ASSERT(accumulate != run_twice);
+ fill(AccessorType(output), 6 + finfo.hash, finfo.min_output, finfo.max_output);
+ }
if(is_fused)
{
ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
bias.allocator()->allocate();
ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
- fill(AccessorType(bias), 2);
+ fill(AccessorType(bias), 2 + finfo.hash, finfo.min_bias, finfo.max_bias);
}
+
+ // Run with variable inputs.
+ if(run_twice)
+ {
+ gemmlowp.run();
+ fill_quantized(AccessorType(a), 3 + finfo.hash); // Fill tensors with new seed after run
+ fill_quantized(AccessorType(b), 4 + finfo.hash);
+ if(is_fused)
+ {
+ fill(AccessorType(bias), 5 + finfo.hash, finfo.min_bias, finfo.max_bias);
+ }
+ }
+
// Compute GEMM function
gemmlowp.run();
return output;
}
-template <bool reinterpret_input_as_3d, typename TI = uint8_t, typename TW = uint8_t>
-SimpleTensor<int32_t> compute_gemmlowp_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset,
- DataType data_type_a = DataType::QASYMM8, DataType data_type_b = DataType::QASYMM8, QuantizationInfo b_qinfo = QuantizationInfo())
+template <bool reinterpret_input_as_3d, typename TI = uint8_t, typename TW = uint8_t, bool pretranspose_A = false, bool pretranspose_B = false, bool run_twice = false>
+SimpleTensor<int32_t> compute_gemmlowp_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo,
+ DataType data_type_a = DataType::QASYMM8, DataType data_type_b = DataType::QASYMM8, const TensorFillInfo& finfo = TensorFillInfo())
{
+ ARM_COMPUTE_ASSERT(is_data_type_quantized_asymmetric(data_type_a));
+ ARM_COMPUTE_ASSERT(data_type_a == data_type_b);
TensorShape shape_a_to_use = shape_a;
if(reinterpret_input_as_3d)
{
@@ -171,101 +194,269 @@ SimpleTensor<int32_t> compute_gemmlowp_reference(const TensorShape &shape_a, con
}
// Create reference
- SimpleTensor<TI> a{ shape_a_to_use, data_type_a, 1 };
- SimpleTensor<TW> b{ shape_b, data_type_b, 1, data_type_b == DataType::QSYMM8_PER_CHANNEL ? b_qinfo : QuantizationInfo(1.0f / 255, b_offset) };
+ SimpleTensor<TI> a{ shape_a_to_use, data_type_a, 1, a_qinfo };
+ SimpleTensor<TW> b{ shape_b, data_type_b, 1, b_qinfo };
+
+ TensorShape shape_a_to_use_transposed{ shape_a_to_use };
+ TensorShape shape_b_transposed{ shape_b };
+
+ shape_a_to_use_transposed.set(0, shape_a_to_use[1]);
+ shape_a_to_use_transposed.set(1, shape_a_to_use[0]);
+ shape_b_transposed.set(0, shape_b[1]);
+ shape_b_transposed.set(1, shape_b[0]);
+
+ SimpleTensor<TI> a_transposed{ shape_a_to_use_transposed, data_type_a, 1, a_qinfo };
+ SimpleTensor<TW> b_transposed{ shape_b_transposed, data_type_b, 1, b_qinfo };
// Fill reference
- fill(a, 0);
- fill(b, 1);
- return reference::gemmlowp_matrix_multiply_core<int32_t, TI, TW>(a, b, shape_output, a_offset, b_offset);
-}
+ fill_quantized(a, 0 + finfo.hash);
+ fill_quantized(b, 1 + finfo.hash);
+
+ // Transpose reference if required
+ /* Note: Assuming the usual batch matmul dimensions A = (B x M x K), B = (B x K x N), if pretranspose_A is set to true, then A is assumed to be (B x K x M),
+ therefore, A must be pre-transposed before passing it to the fixture. And, we transpose A again in the fixture to make it (B x M x K)
+ in order to be able to call reference implementation that works with (B x M x K) input.
+ Similarly, if pretranspose_B is set to true, then B is assumed to be (B x N x K), B must be pre-transposed before passing it to the fixture. */
+ if(pretranspose_A)
+ {
+ transpose_matrix<TI>(a, a_transposed);
+ }
+
+ if(pretranspose_B)
+ {
+ transpose_matrix<TW>(b, b_transposed);
+ }
+
+ // Run with variable inputs.
+ const int32_t a_offset = a_qinfo.uniform().offset;
+ const int32_t b_offset = b_qinfo.uniform().offset;
+
+ if(run_twice)
+ {
+ reference::gemmlowp_matrix_multiply_core<int32_t, TI, TW>((pretranspose_A ? a_transposed : a), (pretranspose_B ? b_transposed : b), shape_output, a_offset, b_offset);
+ fill_quantized((pretranspose_A) ? a_transposed : a, 3 + finfo.hash);
+ fill_quantized((pretranspose_B) ? b_transposed : b, 4 + finfo.hash);
+ }
+
+ return reference::gemmlowp_matrix_multiply_core<int32_t, TI, TW>((pretranspose_A ? a_transposed : a), (pretranspose_B ? b_transposed : b), shape_output, a_offset, b_offset);
}
+} // namespace
-template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false>
-class GEMMLowpMatrixMultiplyCoreValidationFixture : public framework::Fixture
+template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false, bool run_twice = false>
+class GEMMLowpGenericMatrixMultiplyCoreValidationFixture : public framework::Fixture
{
public:
- template <typename...>
- void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset)
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset, bool accumulate=false, bool dynamic_qinfo = false)
{
- _target = compute_target(shape_a, shape_b, shape_output, a_offset, b_offset);
- _reference = compute_reference(shape_a, shape_b, shape_output, a_offset, b_offset);
+ const auto a_qinfo = QuantizationInfo(1.0f / 255, a_offset);
+ const auto b_qinfo = QuantizationInfo(1.0f / 255, b_offset);
+ TensorFillInfo finfo;
+ _target = compute_target(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, finfo, accumulate, dynamic_qinfo);
+ _reference = compute_reference(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, finfo, accumulate);
}
protected:
- TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset)
+ TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo, const TensorFillInfo& finfo, const bool accumulate, const bool dynamic_qinfo)
{
- return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, int32_t>(shape_a, shape_b, shape_output, a_offset, b_offset);
+ const auto output_qinfo = QuantizationInfo(); // No output stage
+ return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, int32_t, false, run_twice>(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, output_qinfo, DataType::QASYMM8, DataType::QASYMM8, GEMMLowpOutputStageInfo(), false, finfo, accumulate, dynamic_qinfo);
}
- SimpleTensor<int32_t> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset)
+ SimpleTensor<int32_t> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo, const TensorFillInfo& finfo, bool accumulate)
{
- return compute_gemmlowp_reference<reinterpret_input_as_3d>(shape_a, shape_b, shape_output, a_offset, b_offset);
+ SimpleTensor<int32_t> ref_output = compute_gemmlowp_reference<reinterpret_input_as_3d, uint8_t, uint8_t, false, false, run_twice>(shape_a, shape_b, shape_output, a_qinfo, b_qinfo,
+ DataType::QASYMM8, DataType::QASYMM8, finfo);
+
+ if (accumulate)
+ {
+ SimpleTensor<int32_t> output{ shape_output, DataType::S32, 1 };
+ fill(output, 6 + finfo.hash, finfo.min_output, finfo.max_output);
+ reference::arithmetic_operation<int32_t>(reference::ArithmeticOperation::ADD, output, ref_output, output, ConvertPolicy::SATURATE);
+ return output;
+ }
+
+ return ref_output;
}
TensorType _target{};
SimpleTensor<int32_t> _reference{};
};
-template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false, typename TI = uint8_t, typename TW = uint8_t>
-class GEMMLowpMatrixMultiplyCoreFusedOffsetOutputValidationFixture : public framework::Fixture
+template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false, bool run_twice = false>
+class GEMMLowpMatrixMultiplyCoreValidationFixture : protected GEMMLowpGenericMatrixMultiplyCoreValidationFixture<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, run_twice>
{
public:
- template <typename...>
- void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage, DataType data_type_b)
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset)
{
- ARM_COMPUTE_ASSERT(output_stage.type != GEMMLowpOutputStageType::NONE);
- DataType data_type_a = data_type_b == DataType::QASYMM8_SIGNED ? DataType::QASYMM8_SIGNED : DataType::QASYMM8;
+ GEMMLowpGenericMatrixMultiplyCoreValidationFixture<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, run_twice>::setup(shape_a, shape_b, shape_output, a_offset, b_offset, false /* accumulate */);
+ }
+};
- if(data_type_b == DataType::QSYMM8_PER_CHANNEL)
- {
- output_stage.is_quantized_per_channel = true;
- const size_t num_channels = shape_b[0];
- std::vector<float> scales(num_channels);
- std::uniform_real_distribution<float> distribution(0.f, 1.f);
- library->fill(scales, distribution, 0);
- output_stage.gemmlowp_multipliers.resize(num_channels);
- output_stage.gemmlowp_shifts.resize(num_channels);
- for(size_t i = 0; i < num_channels; ++i)
- {
- quantization::calculate_quantized_multiplier(scales[i], &output_stage.gemmlowp_multipliers[i], &output_stage.gemmlowp_shifts[i]);
- }
+template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false, bool run_twice = false>
+class GEMMLowpMatrixMultiplyAccumulateValidationFixture : protected GEMMLowpGenericMatrixMultiplyCoreValidationFixture<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, run_twice>
+{
+public:
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset)
+ {
+ GEMMLowpGenericMatrixMultiplyCoreValidationFixture<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, run_twice>::setup(shape_a, shape_b, shape_output, a_offset, b_offset, true /* accumulate */);
+ }
+};
- _reference = compute_reference(shape_a, shape_b, shape_output, a_offset, 0, output_stage, data_type_a, data_type_b, QuantizationInfo(scales));
- _target = compute_target(shape_a, shape_b, shape_output, a_offset, 0, output_stage, data_type_a, data_type_b, QuantizationInfo(scales));
- }
- else
- {
- _reference = compute_reference(shape_a, shape_b, shape_output, a_offset, b_offset, output_stage, data_type_a, data_type_b, QuantizationInfo());
- _target = compute_target(shape_a, shape_b, shape_output, a_offset, b_offset, output_stage, data_type_a, data_type_b, QuantizationInfo());
- }
+template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false, bool run_twice = false>
+class GEMMLowpMatrixMultiplyCoreDynamicQuantizationFixture : protected GEMMLowpGenericMatrixMultiplyCoreValidationFixture<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, run_twice>
+{
+public:
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset)
+ {
+ GEMMLowpGenericMatrixMultiplyCoreValidationFixture<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, run_twice>::setup(shape_a, shape_b, shape_output, a_offset, b_offset, false /* accumulate */, true /* dynamic_qinfo */);
+ }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false, typename TI = uint8_t, typename TW = uint8_t, bool run_twice = false>
+class GEMMLowpGenericMatrixMultiplyCoreFusedOffsetOutputValidationFixture : public framework::Fixture
+{
+public:
+ /** Dynamically initialize the quantization info with saturation awareness
+ */
+ template <typename T>
+ static void setup_quantization(DataType data_type, const TensorShape& shape_a, const TensorShape& shape_b, QuantizationInfo& a_qinfo, QuantizationInfo& b_qinfo, QuantizationInfo& output_qinfo, TensorFillInfo& finfo)
+ {
+ // This hash is used by random generators. There may be hash collisions but
+ // this is intentional as it's a very easy way to make the the current
+ // random generation process almost different for many test configurations,
+ // which were using the same set of values before.
+ finfo.hash = shape_a[0] + shape_a[1] + shape_b[0] + shape_b[1];
+
+ const int32_t t_max = static_cast<int32_t>(std::numeric_limits<T>::max());
+ const int32_t t_min = static_cast<int32_t>(std::numeric_limits<T>::min());
+
+ std::mt19937 generator(library->seed() + finfo.hash);
+ std::uniform_real_distribution<float> distribution_float(-5.0f, 3.0f);
+ std::uniform_int_distribution<int32_t> distribution_t(t_min, t_max);
+
+ const float scale_lhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
+ const float scale_rhs = pow(2, distribution_float(generator)); // [2^-5, 2^3]
+
+ const int32_t offset_lhs = distribution_t(generator);
+ const int32_t offset_rhs = distribution_t(generator);
+
+ a_qinfo = QuantizationInfo(scale_lhs, offset_lhs);
+ b_qinfo = QuantizationInfo(scale_rhs, offset_rhs);
+
+ // reinterpret_input_as_3d or reinterpret_output_as_3d can be ignored, as the underlying gemm / matmul computation
+ // is equivalent to a standard 2D one with m-n-k dimensions
+ const int m = shape_a.y();
+ const int n = shape_b.x();
+ const int k = shape_a.x();
+
+ const float bias_fraction = 0.5f; // We enabled is_fused in compute_gemmlowp_target below, thus bias is included
+
+ QuantizationHint q_hint = suggest_matmul_dst_q_info_and_bias(a_qinfo, b_qinfo, m, n, k, data_type, bias_fraction);
+ output_qinfo = q_hint.q_info;
+ finfo.min_bias = q_hint.bias_min;
+ finfo.max_bias = q_hint.bias_max;
+
+ // Both target and reference implementations use negated offsets, i.e.
+ // float_val = (int_val + offset) * scale
+ // instead of
+ // float_val = (int_val - offset) * scale
+ // as usual. Therefore, after calculating the output quantization above, we
+ // negate the offsets of inputs' offsets.
+ a_qinfo = QuantizationInfo(scale_lhs, -offset_lhs);
+ b_qinfo = QuantizationInfo(scale_rhs, -offset_rhs);
+ }
+
+ /** Initialize output stage info from quantization info */
+ static Status init_gemmlowp_output_stage_info(
+ DataType data_type,
+ const QuantizationInfo& a_qinfo,
+ const QuantizationInfo& b_qinfo,
+ const QuantizationInfo& output_qinfo,
+ GEMMLowpOutputStageType type,
+ GEMMLowpOutputStageInfo &gemmlowp_output_stage_info)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(!is_data_type_quantized_asymmetric(data_type));
+
+ const UniformQuantizationInfo aq_unif = a_qinfo.uniform();
+ const UniformQuantizationInfo bq_unif = b_qinfo.uniform();
+ const UniformQuantizationInfo oq_unif = output_qinfo.uniform();
+
+ float multiplier = (aq_unif.scale * bq_unif.scale) / oq_unif.scale;
+ int32_t int_multiplier;
+ int32_t shift;
+
+ ARM_COMPUTE_RETURN_ON_ERROR(
+ quantization::calculate_quantized_multiplier(multiplier, &int_multiplier, &shift));
+
+ int32_t type_min = 0;
+ int32_t type_max = 0;
+ std::tie(type_min, type_max) = quantization::get_quantized_asymmetric_output_min_max(output_qinfo, ActivationLayerInfo(), data_type);
+
+ gemmlowp_output_stage_info.gemmlowp_real_multiplier = multiplier;
+ gemmlowp_output_stage_info.gemmlowp_multiplier = int_multiplier;
+ gemmlowp_output_stage_info.gemmlowp_multipliers = { int_multiplier };
+ gemmlowp_output_stage_info.gemmlowp_shift = shift;
+ gemmlowp_output_stage_info.gemmlowp_shifts = { shift };
+ gemmlowp_output_stage_info.gemmlowp_offset = oq_unif.offset;
+ gemmlowp_output_stage_info.type = type;
+ gemmlowp_output_stage_info.gemmlowp_min_bound = type_min;
+ gemmlowp_output_stage_info.gemmlowp_max_bound = type_max;
+
+ return Status{};
+ }
+
+ /** Currently this fixture only tests the following data type configurations:
+ *
+ * 1. a and b are of the same data type
+ * 2. The data type is quantized asymmetric
+ *
+ */
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, GEMMLowpOutputStageType output_stage_type, DataType data_type,
+ bool reshape_b_only_on_first_run)
+ {
+ ARM_COMPUTE_ASSERT(output_stage_type != GEMMLowpOutputStageType::NONE);
+ ARM_COMPUTE_ASSERT(is_data_type_quantized_asymmetric(data_type));
+
+ // Randomized dynamic quantization: randomize quantization info in a way that ensures no result saturation
+ // most of the time
+ QuantizationInfo a_qinfo;
+ QuantizationInfo b_qinfo;
+ QuantizationInfo output_qinfo;
+ TensorFillInfo finfo;
+ setup_quantization<TI>(data_type, shape_a, shape_b, a_qinfo, b_qinfo, output_qinfo, finfo);
+
+ GEMMLowpOutputStageInfo output_stage;
+ init_gemmlowp_output_stage_info(data_type, a_qinfo, b_qinfo, output_qinfo, output_stage_type, output_stage);
+
+ _reference = compute_reference(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, data_type, data_type, output_stage, finfo);
+ _target = compute_target(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, output_qinfo, data_type, data_type, output_stage, reshape_b_only_on_first_run, finfo);
}
protected:
- TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset, GEMMLowpOutputStageInfo output_stage,
- DataType data_type_a, DataType data_type_b, QuantizationInfo b_qinfo)
+ TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo, const QuantizationInfo& output_qinfo,
+ DataType data_type_a, DataType data_type_b, const GEMMLowpOutputStageInfo& output_stage, bool reshape_b_only_on_first_run = false, const TensorFillInfo& finfo = TensorFillInfo())
{
- return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, qasymm8_t, true>(shape_a, shape_b, shape_output, a_offset, b_offset,
- output_stage, data_type_a, data_type_b, b_qinfo);
+ return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, qasymm8_t, true, run_twice>(shape_a, shape_b, shape_output, a_qinfo,
+ b_qinfo, output_qinfo, data_type_a, data_type_b, output_stage, reshape_b_only_on_first_run, finfo);
}
- SimpleTensor<TI> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, int32_t a_offset, int32_t b_offset,
- GEMMLowpOutputStageInfo output_stage, DataType data_type_a, DataType data_type_b, QuantizationInfo b_qinfo)
+ SimpleTensor<TI> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo,
+ DataType data_type_a, DataType data_type_b, const GEMMLowpOutputStageInfo& output_stage, const TensorFillInfo& finfo = TensorFillInfo())
{
- SimpleTensor<int32_t> output = compute_gemmlowp_reference<reinterpret_input_as_3d, TI, TW>(shape_a, shape_b, shape_output, a_offset, b_offset, data_type_a, data_type_b, b_qinfo);
+ SimpleTensor<int32_t> output = compute_gemmlowp_reference<reinterpret_input_as_3d, TI, TW, false, false, run_twice>(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, data_type_a, data_type_b, finfo);
TensorShape bias_shape(shape_b[0]);
SimpleTensor<int32_t> bias{ bias_shape, DataType::S32, 1 };
- fill(bias, 2);
+ (run_twice) ? fill(bias, 5 + finfo.hash, finfo.min_bias, finfo.max_bias) : fill(bias, 2 + finfo.hash, finfo.min_bias, finfo.max_bias); // Fill bias with same seed as last run of gemmlowp_target
switch(output_stage.type)
{
case GEMMLowpOutputStageType::QUANTIZE_DOWN:
- return reference::gemmlowp_quantize_down_scale<int32_t, TW>(output, bias,
+ return reference::gemmlowp_quantize_down_scale<int32_t, TI>(output, bias,
output_stage.gemmlowp_offset, output_stage.gemmlowp_multipliers, output_stage.gemmlowp_shifts, output_stage.gemmlowp_min_bound, output_stage.gemmlowp_max_bound);
break;
case GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT:
- return reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, TW>(output, bias,
+ return reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, TI>(output, bias,
output_stage.gemmlowp_multipliers, output_stage.gemmlowp_shifts, output_stage.gemmlowp_offset, output_stage.gemmlowp_min_bound, output_stage.gemmlowp_max_bound);
break;
default:
@@ -277,11 +468,78 @@ protected:
SimpleTensor<TI> _reference{};
};
+template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false, bool run_twice = false>
+class GEMMLowpDequantizedMatrixMultiplyValidationFixture : public framework::Fixture
+{
+public:
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, int32_t a_offset, int32_t b_offset, bool accumulate)
+ {
+ const bool dynamic_qinfo = false;
+ const auto a_qinfo = QuantizationInfo(1.0f / 255, a_offset);
+ const auto b_qinfo = QuantizationInfo(5.0f / 255, b_offset);
+ TensorFillInfo finfo;
+ _target = compute_target(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, finfo, accumulate, dynamic_qinfo);
+ _reference = compute_reference(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, finfo, accumulate, dynamic_qinfo);
+ }
+
+protected:
+ TensorType compute_target(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo, const TensorFillInfo& finfo, const bool accumulate, const bool dynamic_qinfo)
+ {
+ const auto output_qinfo = QuantizationInfo();
+ return compute_gemmlowp_target<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, int32_t, false, run_twice>(shape_a, shape_b, shape_output, a_qinfo, b_qinfo, output_qinfo, DataType::QASYMM8_SIGNED, DataType::QASYMM8_SIGNED, GEMMLowpOutputStageInfo(), false, finfo, accumulate, dynamic_qinfo, DataType::F32);
+ }
+
+ SimpleTensor<float> compute_reference(const TensorShape &shape_a, const TensorShape &shape_b, const TensorShape &shape_output, const QuantizationInfo& a_qinfo, const QuantizationInfo& b_qinfo, const TensorFillInfo& finfo, bool accumulate, const bool dynamic_qinfo)
+ {
+ QuantizationInfo s32_ref_output_quant_info = QuantizationInfo(a_qinfo.uniform().scale * b_qinfo.uniform().scale, 0, dynamic_qinfo);
+
+ SimpleTensor<int32_t> s32_ref_output = compute_gemmlowp_reference<reinterpret_input_as_3d, int8_t, int8_t, false, false, run_twice>(shape_a, shape_b, shape_output, a_qinfo, b_qinfo,
+ DataType::QASYMM8_SIGNED, DataType::QASYMM8_SIGNED, finfo);
+ s32_ref_output.quantization_info(s32_ref_output_quant_info);
+
+ SimpleTensor<float> f32_ref_output(s32_ref_output.shape(), DataType::F32);
+ f32_ref_output = reference::dequantization_layer<float, int32_t>(s32_ref_output);
+
+ if (accumulate)
+ {
+ SimpleTensor<float> output{ shape_output, DataType::F32, 1 };
+ fill(output, 6 + finfo.hash, finfo.min_output, finfo.max_output);
+ reference::arithmetic_operation<float>(reference::ArithmeticOperation::ADD, output, f32_ref_output, output, ConvertPolicy::SATURATE);
+ return output;
+ }
+
+ return f32_ref_output;
+ }
+
+ TensorType _target{};
+ SimpleTensor<float> _reference{};
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false, typename TI = uint8_t, typename TW = uint8_t, bool run_twice = false>
+class GEMMLowpMatrixMultiplyCoreFusedOffsetOutputValidationFixture : public GEMMLowpGenericMatrixMultiplyCoreFusedOffsetOutputValidationFixture<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, TI, TW, run_twice>
+{
+public:
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, GEMMLowpOutputStageType output_stage_type, DataType data_type, bool reshape_b_only_on_first_run)
+ {
+ GEMMLowpGenericMatrixMultiplyCoreFusedOffsetOutputValidationFixture<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, TI, TW, run_twice>::setup(shape_a, shape_b,
+ shape_output, output_stage_type, data_type, reshape_b_only_on_first_run);
+ }
+};
+
+template <typename TensorType, typename AccessorType, typename FunctionType, bool reinterpret_input_as_3d = false, bool reinterpret_output_as_3d = false, typename TI = uint8_t, typename TW = uint8_t, bool run_twice = false>
+class GEMMLowpBatchedMatrixMultiplyCoreFusedOffsetOutputFixture : public GEMMLowpGenericMatrixMultiplyCoreFusedOffsetOutputValidationFixture<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, TI, TW, run_twice>
+{
+public:
+ void setup(TensorShape shape_a, TensorShape shape_b, TensorShape shape_output, GEMMLowpOutputStageType output_stage_type, DataType data_type, bool reshape_b_only_on_first_run)
+ {
+ GEMMLowpGenericMatrixMultiplyCoreFusedOffsetOutputValidationFixture<TensorType, AccessorType, FunctionType, reinterpret_input_as_3d, reinterpret_output_as_3d, TI, TW, run_twice>::setup(shape_a, shape_b, shape_output, output_stage_type, data_type, reshape_b_only_on_first_run);
+ }
+};
+
template <typename TensorType, typename AccessorType, typename FunctionType>
class GEMMLowpQuantizeDownInt32ToUint8ScaleValidationFixture : public framework::Fixture
{
public:
- template <typename...>
void setup(TensorShape shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
{
_target = compute_target(shape, result_offset, result_mult_int, result_shift, min, max, add_bias);
@@ -383,7 +641,6 @@ template <typename TensorType, typename AccessorType, typename FunctionType>
class GEMMLowpQuantizeDownInt32ToInt8ScaleValidationFixture : public framework::Fixture
{
public:
- template <typename...>
void setup(TensorShape shape, int32_t result_offset, int32_t result_mult_int, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
{
_target = compute_target(shape, result_offset, result_mult_int, result_shift, min, max, add_bias);
@@ -485,7 +742,6 @@ template <typename TensorType, typename AccessorType, typename FunctionType>
class GEMMLowpQuantizeDownInt32ToInt8ScaleByFixedPointValidationFixture : public framework::Fixture
{
public:
- template <typename...>
void setup(TensorShape shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias)
{
_target = compute_target(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias);
@@ -580,7 +836,6 @@ template <typename TensorType, typename AccessorType, typename FunctionType>
class GEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointValidationFixture : public framework::Fixture
{
public:
- template <typename...>
void setup(TensorShape shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t result_offset_after_shift, int32_t min, int32_t max, bool add_bias)
{
_target = compute_target(shape, result_fixedpoint_multiplier, result_shift, result_offset_after_shift, min, max, add_bias);
@@ -675,7 +930,6 @@ template <typename TensorType, typename AccessorType, typename FunctionType, typ
class GEMMLowpQuantizeDownInt32ScaleByFloatValidationFixture : public framework::Fixture
{
public:
- template <typename...>
void setup(DataType data_type, TensorShape shape, float result_real_multiplier, int32_t result_offset, int32_t min, int32_t max, bool add_bias)
{
_target = compute_target(data_type, shape, result_real_multiplier, result_offset, min, max, add_bias);
@@ -778,7 +1032,6 @@ template <typename TensorType, typename AccessorType, typename FunctionType>
class GEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointValidationFixture : public framework::Fixture
{
public:
- template <typename...>
void setup(TensorShape shape, int32_t result_fixedpoint_multiplier, int32_t result_shift, int32_t min, int32_t max, bool add_bias)
{
_target = compute_target(shape, result_fixedpoint_multiplier, result_shift, min, max, add_bias);
@@ -873,7 +1126,6 @@ template <typename TensorType, typename AccessorType, typename ReshapeLHSOperato
class GEMMLowpMatrixMultiplyReshapedValidationFixture : public framework::Fixture
{
public:
- template <typename...>
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0, bool interleave_lhs,
bool interleave_rhs, DataType data_type)
{
@@ -944,7 +1196,7 @@ protected:
GEMMFunctionType gemm;
reshape_lhs.configure(lhs.info(), lhs_reshaped.info(), lhs_info);
reshape_rhs.configure(rhs.info(), rhs_reshaped.info(), rhs_info);
- gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K));
+ gemm.configure(lhs_reshaped.info(), rhs_reshaped.info(), dst.info(), lhs_info, rhs_info, GEMMReshapeInfo(M, N, K));
ARM_COMPUTE_ASSERT(lhs.info()->is_resizable());
ARM_COMPUTE_ASSERT(rhs.info()->is_resizable());
@@ -973,7 +1225,8 @@ protected:
reshape_lhs.run(reshape_lhs_pack);
ITensorPack reshape_rhs_pack = { { ACL_SRC, &rhs }, { ACL_DST, &rhs_reshaped } };
reshape_rhs.run(reshape_rhs_pack);
- gemm.run();
+ ITensorPack gemm_pack({ { ACL_SRC_0, &lhs_reshaped }, { ACL_SRC_1, &rhs_reshaped }, { ACL_DST, &dst } });
+ gemm.run(gemm_pack);
return dst;
}
@@ -1023,7 +1276,6 @@ template <typename TensorType, typename AccessorType, typename ReshapeLHSOperato
class GEMMLowpMatrixMultiplyReshaped3DValidationFixture : public framework::Fixture
{
public:
- template <typename...>
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0, unsigned int v0, unsigned int h0,
bool interleave_lhs, bool interleave_rhs, DataType data_type)
{
@@ -1098,7 +1350,7 @@ protected:
GEMMFunctionType gemm;
reshape_lhs.configure(lhs.info(), lhs_reshaped.info(), lhs_info);
reshape_rhs.configure(rhs.info(), rhs_reshaped.info(), rhs_info);
- gemm.configure(&lhs_reshaped, &rhs_reshaped, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K, 1, 1, m_h));
+ gemm.configure(lhs_reshaped.info(), rhs_reshaped.info(), dst.info(), lhs_info, rhs_info, GEMMReshapeInfo(M, N, K, 1, 1, m_h));
ARM_COMPUTE_ASSERT(lhs.info()->is_resizable());
ARM_COMPUTE_ASSERT(rhs.info()->is_resizable());
@@ -1127,7 +1379,8 @@ protected:
reshape_lhs.run(reshape_lhs_pack);
ITensorPack reshape_rhs_pack = { { ACL_SRC, &rhs }, { ACL_DST, &rhs_reshaped } };
reshape_rhs.run(reshape_rhs_pack);
- gemm.run();
+ ITensorPack gemm_pack({ { ACL_SRC_0, &lhs_reshaped }, { ACL_SRC_1, &rhs_reshaped }, { ACL_DST, &dst } });
+ gemm.run(gemm_pack);
return dst;
}
@@ -1179,7 +1432,6 @@ template <typename TensorType, typename AccessorType, typename ReshapeRHSOperato
class GEMMLowpMatrixMultiplyReshapedOnlyRHSValidationFixture : public framework::Fixture
{
public:
- template <typename...>
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0,
unsigned int k0, unsigned int h0, bool interleave_rhs, bool transpose_rhs, DataType data_type)
{
@@ -1251,7 +1503,7 @@ protected:
ReshapeRHSOperatorType reshape_rhs;
GEMMFunctionType gemm;
reshape_rhs.configure(rhs.info(), rhs_reshaped.info(), rhs_info);
- gemm.configure(&lhs, &rhs_reshaped, &dst, gemm_info);
+ gemm.configure(lhs.info(), rhs_reshaped.info(), dst.info(), gemm_info);
ARM_COMPUTE_ASSERT(lhs.info()->is_resizable());
ARM_COMPUTE_ASSERT(rhs.info()->is_resizable());
@@ -1276,7 +1528,8 @@ protected:
// Compute GEMM
ITensorPack reshape_rhs_pack = { { ACL_SRC, &rhs }, { ACL_DST, &rhs_reshaped } };
reshape_rhs.run(reshape_rhs_pack);
- gemm.run();
+ ITensorPack gemm_pack({ { ACL_SRC_0, &lhs }, { ACL_SRC_1, &rhs_reshaped }, { ACL_DST, &dst } });
+ gemm.run(gemm_pack);
return dst;
}
@@ -1317,11 +1570,372 @@ protected:
SimpleTensor<int32_t> _reference{};
};
+template <typename T, typename TensorType, typename AccessorType, typename ReshapeRHSOperatorType, typename GEMMFunctionType, typename ReduceOperation, typename CastOperation>
+class GEMMLowpMatrixMultiplyReshapedOnlyRHSMMULOutputStageValidationFixture : public framework::Fixture
+{
+public:
+ void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0,
+ unsigned int k0, unsigned int h0, bool interleave_rhs, bool transpose_rhs, bool broadcast_bias, DataType data_type)
+ {
+ GEMMLowpOutputStageInfo output_stage;
+ output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
+ output_stage.output_data_type = data_type;
+ output_stage.gemmlowp_multipliers = std::vector<int32_t> { 1 };
+ output_stage.gemmlowp_shifts = std::vector<int32_t> { 1 };
+ output_stage.gemmlowp_multipliers[0] = 1;
+ output_stage.gemmlowp_shifts[0] = 1;
+ output_stage.gemmlowp_offset = 0;
+ constexpr float scale = 0.001f;
+ quantization::calculate_quantized_multiplier(scale, &output_stage.gemmlowp_multipliers[0], &output_stage.gemmlowp_shifts[0]);
+ output_stage.gemmlowp_min_bound = -100;
+ output_stage.gemmlowp_max_bound = 100;
+
+ GEMMLHSMatrixInfo lhs_info;
+ lhs_info.m0 = m0;
+ lhs_info.k0 = k0;
+
+ GEMMRHSMatrixInfo rhs_info;
+ rhs_info.n0 = n0;
+ rhs_info.k0 = k0;
+ rhs_info.h0 = h0;
+ rhs_info.interleave = interleave_rhs;
+ rhs_info.transpose = transpose_rhs;
+
+ int a_offset = 1;
+ int b_offset = 1;
+
+ // Set the tensor shapes for LHS and RHS matrices
+ const TensorShape lhs_shape(k, m, batch_size);
+ const TensorShape rhs_shape(n, k, batch_size);
+ const TensorShape bias_shape(n,
+ broadcast_bias ? 1 : m,
+ broadcast_bias ? 1 : batch_size);
+
+ _target = compute_target(lhs_shape, rhs_shape, bias_shape, lhs_info, rhs_info, data_type, output_stage, a_offset, b_offset);
+ if(gemm_validated == true)
+ {
+ _reference = compute_reference(lhs_shape, rhs_shape, bias_shape, data_type, output_stage, a_offset, b_offset);
+ }
+ }
+
+protected:
+ template <typename U>
+ void fill(U &&tensor, int i)
+ {
+ switch(tensor.data_type())
+ {
+ case DataType::QASYMM8:
+ {
+ // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
+ std::uniform_int_distribution<> distribution(1, 254);
+ library->fill(tensor, distribution, i);
+ }
+ break;
+ case DataType::QASYMM8_SIGNED:
+ {
+ std::uniform_int_distribution<> distribution(-127, 126);
+ library->fill(tensor, distribution, i);
+ }
+ break;
+ case DataType::S32:
+ {
+ std::uniform_int_distribution<> distribution(-10000, 10000);
+ library->fill(tensor, distribution, i);
+ }
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Unsupported data type");
+ }
+ }
+
+ TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, const GEMMLHSMatrixInfo &lhs_info,
+ const GEMMRHSMatrixInfo &rhs_info, DataType data_type, GEMMLowpOutputStageInfo output_stage, const int a_offset, const int b_offset)
+ {
+ // Create tensors
+ TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1, QuantizationInfo(1.0f / 255, a_offset));
+ TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1, QuantizationInfo(1.0f / 255, b_offset));
+ TensorType bias = create_tensor<TensorType>(bias_shape, DataType::S32, 1);
+ TensorType dst;
+ TensorType rhs_reshaped;
+
+ const unsigned int M = lhs_shape[1];
+ const unsigned int N = rhs_shape[0];
+ const unsigned int K = lhs_shape[0];
+
+ // Tensors for precomputing sum of lhs rows / rhs columns
+ TensorType vec_sum_rows = create_tensor<TensorType>(TensorShape(M, 1, lhs_shape[2]), DataType::S32, 1);
+ TensorType vec_sum_cols = create_tensor<TensorType>(TensorShape(N, 1, rhs_shape[2]), DataType::S32, 1);
+
+ GEMMKernelInfo gemm_info;
+ gemm_info.m = M;
+ gemm_info.n = N;
+ gemm_info.k = K;
+ gemm_info.lhs_info = lhs_info;
+ gemm_info.rhs_info = rhs_info;
+ gemm_info.output_stage = output_stage;
+ gemm_info.a_offset = a_offset;
+ gemm_info.b_offset = b_offset;
+ // The output tensor will be auto-initialized within the function
+
+ // Create and configure function
+ ReshapeRHSOperatorType reshape_rhs;
+ GEMMFunctionType gemm;
+ reshape_rhs.configure(rhs.info(), rhs_reshaped.info(), rhs_info);
+
+ // If GEMM is not validated, do not try to run. The validation will check
+ // if the technology supports this extension. If not, the test will be skipped.
+ // If it supports, the test will fail anyway because target and reference
+ // will not match.
+ gemm_validated = bool(gemm.validate(lhs.info(), rhs_reshaped.info(), dst.info(), gemm_info, vec_sum_cols.info(), vec_sum_rows.info(), bias.info()));
+ if(gemm_validated == true)
+ {
+ gemm.configure(lhs.info(), rhs_reshaped.info(), dst.info(), gemm_info, vec_sum_cols.info(), vec_sum_rows.info(), bias.info());
+
+ ARM_COMPUTE_ASSERT(lhs.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(rhs.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
+
+ // Allocate tensors
+ lhs.allocator()->allocate();
+ rhs.allocator()->allocate();
+ rhs_reshaped.allocator()->allocate();
+ bias.allocator()->allocate();
+ vec_sum_cols.allocator()->allocate();
+ vec_sum_rows.allocator()->allocate();
+ dst.allocator()->allocate();
+
+ ARM_COMPUTE_ASSERT(!lhs.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!rhs.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!rhs_reshaped.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!vec_sum_cols.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!vec_sum_rows.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
+
+ // Fill tensors
+ fill(AccessorType(lhs), 0);
+ fill(AccessorType(rhs), 1);
+ fill(AccessorType(bias), 2);
+
+ TensorType lhs_32 = create_tensor<TensorType>(lhs_shape, DataType::S32, 1);
+ TensorType rhs_32 = create_tensor<TensorType>(rhs_shape, DataType::S32, 1);
+ CastOperation cast_lhs;
+ CastOperation cast_rhs;
+ cast_lhs.configure(&lhs, &lhs_32, ConvertPolicy::SATURATE);
+ cast_rhs.configure(&rhs, &rhs_32, ConvertPolicy::SATURATE);
+ lhs_32.allocator()->allocate();
+ rhs_32.allocator()->allocate();
+ cast_lhs.run();
+ cast_rhs.run();
+
+ ReduceOperation lhs_sum_rows;
+ ReduceOperation rhs_sum_cols;
+
+ lhs_sum_rows.configure(&lhs_32, &vec_sum_rows, 0, ReductionOperation::SUM, false);
+ rhs_sum_cols.configure(&rhs_32, &vec_sum_cols, 1, ReductionOperation::SUM);
+
+ lhs_sum_rows.run();
+ rhs_sum_cols.run();
+
+ // Compute GEMM
+ ITensorPack reshape_rhs_pack = { { ACL_SRC, &rhs }, { ACL_DST, &rhs_reshaped } };
+ reshape_rhs.run(reshape_rhs_pack);
+ ITensorPack gemm_pack({ { ACL_SRC_0, &lhs }, { ACL_SRC_1, &rhs_reshaped }, { ACL_SRC_2, &bias }, { ACL_DST, &dst }, { ACL_VEC_COL_SUM, &vec_sum_cols }, { ACL_VEC_ROW_SUM, &vec_sum_rows } });
+ gemm.run(gemm_pack);
+ }
+
+ return dst;
+ }
+
+ SimpleTensor<T> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const TensorShape &bias_shape, DataType data_type, GEMMLowpOutputStageInfo output_stage,
+ const int a_offset, const int b_offset)
+ {
+ TensorShape dst_shape = lhs_shape;
+ dst_shape[0] = rhs_shape[0];
+ dst_shape[1] = lhs_shape[1];
+
+ // Create reference
+ SimpleTensor<T> lhs{ lhs_shape, data_type, 1, QuantizationInfo(1.0f / 255, a_offset) };
+ SimpleTensor<T> rhs{ rhs_shape, data_type, 1, QuantizationInfo(1.0f / 255, b_offset) };
+ SimpleTensor<int32_t> bias{ bias_shape, DataType::S32, 1 };
+ SimpleTensor<int32_t> dst{ dst_shape, DataType::S32, 1 };
+ SimpleTensor<T> dst_final{ dst_shape, data_type, 1 };
+
+ // Fill reference
+ fill(lhs, 0);
+ fill(rhs, 1);
+ fill(bias, 2);
+
+ dst = reference::gemmlowp_matrix_multiply_core<int32_t, T>(lhs, rhs, dst_shape, a_offset, b_offset);
+ dst_final = reference::gemmlowp_quantize_down_scale_by_fixedpoint<int32_t, T>(dst, bias,
+ output_stage.gemmlowp_multipliers, output_stage.gemmlowp_shifts, output_stage.gemmlowp_offset, output_stage.gemmlowp_min_bound, output_stage.gemmlowp_max_bound);
+ return dst_final;
+ }
+
+ bool gemm_validated = true;
+ TensorType _target{};
+ SimpleTensor<T> _reference{};
+};
+
+template <typename TensorType, typename AccessorType, typename ReshapeRHSOperatorType, typename GEMMFunctionType>
+class GEMMLowpMatrixMultiplyReshapedOnlyRHSMMULValidationFixture : public framework::Fixture
+{
+public:
+ void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0,
+ unsigned int k0, unsigned int h0, bool interleave_rhs, bool transpose_rhs, DataType data_type)
+ {
+ GEMMLHSMatrixInfo lhs_info;
+ lhs_info.m0 = m0;
+ lhs_info.k0 = k0;
+
+ GEMMRHSMatrixInfo rhs_info;
+ rhs_info.n0 = n0;
+ rhs_info.k0 = k0;
+ rhs_info.h0 = h0;
+ rhs_info.interleave = interleave_rhs;
+ rhs_info.transpose = transpose_rhs;
+
+ // Set the tensor shapes for LHS and RHS matrices
+ const TensorShape lhs_shape(k, m, batch_size);
+ const TensorShape rhs_shape(n, k, batch_size);
+
+ _target = compute_target(lhs_shape, rhs_shape, lhs_info, rhs_info, data_type);
+ if(gemm_validated == true)
+ {
+ _reference = compute_reference(lhs_shape, rhs_shape, data_type);
+ }
+ }
+
+protected:
+ template <typename U>
+ void fill(U &&tensor, int i)
+ {
+ switch(tensor.data_type())
+ {
+ case DataType::QASYMM8:
+ {
+ // Between 1 and 254 in order to avoid having -128 and 128 for the DOT product path
+ std::uniform_int_distribution<> distribution(1, 254);
+ library->fill(tensor, distribution, i);
+ }
+ break;
+ case DataType::QASYMM8_SIGNED:
+ {
+ std::uniform_int_distribution<> distribution(-127, 126);
+ library->fill(tensor, distribution, i);
+ }
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Unsupported data type");
+ }
+ }
+
+ TensorType compute_target(const TensorShape &lhs_shape, const TensorShape &rhs_shape, const GEMMLHSMatrixInfo &lhs_info,
+ const GEMMRHSMatrixInfo &rhs_info, DataType data_type)
+ {
+ // Create tensors
+ TensorType lhs = create_tensor<TensorType>(lhs_shape, data_type, 1);
+ TensorType rhs = create_tensor<TensorType>(rhs_shape, data_type, 1);
+ TensorType rhs_reshaped;
+ TensorType dst;
+
+ const unsigned int M = lhs_shape[1];
+ const unsigned int N = rhs_shape[0];
+ const unsigned int K = lhs_shape[0];
+
+ GEMMKernelInfo gemm_info;
+ gemm_info.m = M;
+ gemm_info.n = N;
+ gemm_info.k = K;
+ gemm_info.lhs_info = lhs_info;
+ gemm_info.rhs_info = rhs_info;
+ // The output tensor will be auto-initialized within the function
+
+ // Create and configure function
+ ReshapeRHSOperatorType reshape_rhs;
+ GEMMFunctionType gemm;
+ reshape_rhs.configure(rhs.info(), rhs_reshaped.info(), rhs_info);
+
+ // If GEMM is not validated, do not try to run. The validation will check
+ // if the technology supports this extension. If not, the test will be skipped.
+ // If it supports, the test will fail anyway because target and reference
+ // will not match.
+ gemm_validated = bool(gemm.validate(lhs.info(), rhs_reshaped.info(), dst.info(), gemm_info, nullptr, nullptr, nullptr));
+ if(gemm_validated == true)
+ {
+ gemm.configure(lhs.info(), rhs_reshaped.info(), dst.info(), gemm_info, nullptr, nullptr, nullptr);
+
+ ARM_COMPUTE_ASSERT(lhs.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(rhs.info()->is_resizable());
+
+ // Allocate tensors
+ lhs.allocator()->allocate();
+ rhs.allocator()->allocate();
+ rhs_reshaped.allocator()->allocate();
+ dst.allocator()->allocate();
+
+ ARM_COMPUTE_ASSERT(!lhs.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!rhs.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!rhs_reshaped.info()->is_resizable());
+ ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
+
+ // Fill tensors
+ fill(AccessorType(lhs), 0);
+ fill(AccessorType(rhs), 1);
+
+ // Compute GEMM
+ ITensorPack reshape_rhs_pack = { { ACL_SRC, &rhs }, { ACL_DST, &rhs_reshaped } };
+ reshape_rhs.run(reshape_rhs_pack);
+ ITensorPack gemm_pack({ { ACL_SRC_0, &lhs }, { ACL_SRC_1, &rhs_reshaped }, { ACL_DST, &dst } });
+ gemm.run(gemm_pack);
+ }
+
+ return dst;
+ }
+
+ SimpleTensor<int32_t> compute_reference(const TensorShape &lhs_shape, const TensorShape &rhs_shape, DataType data_type)
+ {
+ TensorShape dst_shape = lhs_shape;
+ dst_shape[0] = rhs_shape[0];
+ dst_shape[1] = lhs_shape[1];
+
+ if(data_type == DataType::QASYMM8)
+ {
+ // Create reference
+ SimpleTensor<uint8_t> lhs{ lhs_shape, data_type, 1 };
+ SimpleTensor<uint8_t> rhs{ rhs_shape, data_type, 1 };
+ SimpleTensor<int32_t> dst{ dst_shape, DataType::S32, 1 };
+
+ // Fill reference
+ fill(lhs, 0);
+ fill(rhs, 1);
+
+ return reference::gemmlowp_matrix_multiply_core<int32_t, uint8_t>(lhs, rhs, dst_shape, 0, 0);
+ }
+ else
+ {
+ // Create reference
+ SimpleTensor<int8_t> lhs{ lhs_shape, data_type, 1 };
+ SimpleTensor<int8_t> rhs{ rhs_shape, data_type, 1 };
+ SimpleTensor<int32_t> dst{ dst_shape, DataType::S32, 1 };
+
+ // Fill reference
+ fill(lhs, 0);
+ fill(rhs, 1);
+
+ return reference::gemmlowp_matrix_multiply_core<int32_t, int8_t>(lhs, rhs, dst_shape, 0, 0);
+ }
+ }
+
+ bool gemm_validated = true;
+ TensorType _target{};
+ SimpleTensor<int32_t> _reference{};
+};
+
template <typename TensorType, typename AccessorType, typename ReshapeRHSOperatorType, typename GEMMFunctionType>
class GEMMLowpMatrixMultiplyReshapedOnlyRHS3DValidationFixture : public framework::Fixture
{
public:
- template <typename...>
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0,
unsigned int k0, unsigned int h0, bool interleave_rhs, bool transpose_rhs, DataType data_type)
{
@@ -1397,7 +2011,7 @@ protected:
ReshapeRHSOperatorType reshape_rhs;
GEMMFunctionType gemm;
reshape_rhs.configure(rhs.info(), rhs_reshaped.info(), rhs_info);
- gemm.configure(&lhs, &rhs_reshaped, &dst, gemm_info);
+ gemm.configure(lhs.info(), rhs_reshaped.info(), dst.info(), gemm_info);
ARM_COMPUTE_ASSERT(lhs.info()->is_resizable());
ARM_COMPUTE_ASSERT(rhs.info()->is_resizable());
@@ -1422,7 +2036,8 @@ protected:
// Compute GEMM
ITensorPack reshape_rhs_pack = { { ACL_SRC, &rhs }, { ACL_DST, &rhs_reshaped } };
reshape_rhs.run(reshape_rhs_pack);
- gemm.run();
+ ITensorPack gemm_pack({ { ACL_SRC_0, &lhs }, { ACL_SRC_1, &rhs_reshaped }, { ACL_DST, &dst } });
+ gemm.run(gemm_pack);
return dst;
}
@@ -1469,7 +2084,6 @@ template <typename TensorType, typename AccessorType, typename GEMMFunctionType>
class GEMMLowpMatrixMultiplyNativeValidationFixture : public framework::Fixture
{
public:
- template <typename...>
void setup(unsigned int m, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0)
{
GEMMLHSMatrixInfo lhs_info;
@@ -1512,7 +2126,7 @@ protected:
// Create and configure function
GEMMFunctionType gemm;
- gemm.configure(&lhs, &rhs, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K));
+ gemm.configure(lhs.info(), rhs.info(), dst.info(), lhs_info, rhs_info, GEMMReshapeInfo(M, N, K));
ARM_COMPUTE_ASSERT(lhs.info()->is_resizable());
ARM_COMPUTE_ASSERT(rhs.info()->is_resizable());
@@ -1533,7 +2147,8 @@ protected:
fill(AccessorType(rhs), 1);
// Compute GEMM
- gemm.run();
+ ITensorPack gemm_pack({ { ACL_SRC_0, &lhs }, { ACL_SRC_1, &rhs }, { ACL_DST, &dst } });
+ gemm.run(gemm_pack);
return dst;
}
@@ -1563,7 +2178,6 @@ template <typename TensorType, typename AccessorType, typename GEMMFunctionType>
class GEMMLowpMatrixMultiplyNative3DValidationFixture : public framework::Fixture
{
public:
- template <typename...>
void setup(unsigned int m_w, unsigned int m_h, unsigned int n, unsigned int k, unsigned int batch_size, unsigned int m0, unsigned int n0, unsigned int k0)
{
GEMMLHSMatrixInfo lhs_info;
@@ -1609,7 +2223,7 @@ protected:
// Create and configure function
GEMMFunctionType gemm;
- gemm.configure(&lhs, &rhs, &dst, lhs_info, rhs_info, GEMMReshapeInfo(M, N, K, 1, 1, m_h));
+ gemm.configure(lhs.info(), rhs.info(), dst.info(), lhs_info, rhs_info, GEMMReshapeInfo(M, N, K, 1, 1, m_h));
ARM_COMPUTE_ASSERT(lhs.info()->is_resizable());
ARM_COMPUTE_ASSERT(rhs.info()->is_resizable());
@@ -1630,7 +2244,8 @@ protected:
fill(AccessorType(rhs), 1);
// Compute GEMM
- gemm.run();
+ ITensorPack gemm_pack({ { ACL_SRC_0, &lhs }, { ACL_SRC_1, &rhs }, { ACL_DST, &dst } });
+ gemm.run(gemm_pack);
return dst;
}
@@ -1660,4 +2275,4 @@ protected:
} // namespace validation
} // namespace test
} // namespace arm_compute
-#endif /* ARM_COMPUTE_TEST_GEMMLOWP_FIXTURE */
+#endif // ACL_TESTS_VALIDATION_FIXTURES_GEMMLOWPFIXTURE_H