aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/cpu/operators/internal/CpuGemmAssemblyDispatch.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/cpu/operators/internal/CpuGemmAssemblyDispatch.cpp')
-rw-r--r--src/runtime/cpu/operators/internal/CpuGemmAssemblyDispatch.cpp869
1 files changed, 0 insertions, 869 deletions
diff --git a/src/runtime/cpu/operators/internal/CpuGemmAssemblyDispatch.cpp b/src/runtime/cpu/operators/internal/CpuGemmAssemblyDispatch.cpp
deleted file mode 100644
index ea3742fee5..0000000000
--- a/src/runtime/cpu/operators/internal/CpuGemmAssemblyDispatch.cpp
+++ /dev/null
@@ -1,869 +0,0 @@
-/*
- * Copyright (c) 2018-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/runtime/cpu/operators/internal/CpuGemmAssemblyDispatch.h"
-
-#include "arm_compute/runtime/NEON/NEScheduler.h"
-#include "src/core/CPP/Validate.h"
-#include "src/core/cpu/kernels/assembly/CpuGemmAssemblyWrapperKernel.h"
-#include "src/core/cpu/kernels/assembly/arm_gemm.hpp"
-
-#include <arm_neon.h>
-#include <cstdlib>
-
-namespace arm_compute
-{
-namespace cpu
-{
-namespace
-{
-struct free_delete
-{
- void operator()(void *x)
- {
- free(x);
- }
-};
-
-struct Params
-{
- unsigned int M;
- unsigned int N;
- unsigned int K;
- unsigned int batches;
- unsigned int multis;
- unsigned int sections;
- bool indirect;
-};
-
-Params extract_parameters(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *d, const AsmGemmInfo &info)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, d);
- Params p;
- p.M = d->tensor_shape().y();
- p.K = a->tensor_shape().x();
- p.N = d->tensor_shape().x();
- p.batches = 1;
- p.multis = 1;
- p.sections = 1;
- p.indirect = false;
-
- if(info.method == AsmConvMethod::Conv || info.method == AsmConvMethod::Indirect)
- {
- p.indirect = true;
- p.sections = b->tensor_shape()[2] * b->tensor_shape()[3];
- }
- else
- {
- p.multis = b->tensor_shape().z();
- p.batches = d->tensor_shape().total_size_upper(2) / p.multis;
- }
-
- // Update M in case of GEMM3D for output
- if(info.depth_output_gemm3d != 0)
- {
- p.M = d->tensor_shape().y() * d->tensor_shape().z();
- p.batches = d->tensor_shape().total_size_upper(3) / p.multis;
- }
-
- return p;
-}
-
-arm_gemm::Activation map_to_arm_gemm_activation(const ActivationLayerInfo &act)
-{
- arm_gemm::Activation gemm_act;
-
- // Early exit in case lower bound is other than 0, as it's not yet supported
- if(act.b() != 0.f)
- {
- return gemm_act;
- }
-
- switch(act.activation())
- {
- case ActivationLayerInfo::ActivationFunction::RELU:
- gemm_act.type = arm_gemm::Activation::Type::ReLU;
- break;
- case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
- gemm_act.type = arm_gemm::Activation::Type::BoundedReLU;
- gemm_act.param1 = act.a();
- gemm_act.param2 = 0.f;
- break;
- case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
- gemm_act.type = arm_gemm::Activation::Type::BoundedReLU;
- gemm_act.param1 = act.a();
- gemm_act.param2 = act.b();
- break;
- default:
- gemm_act.type = arm_gemm::Activation::Type::None;
- }
-
- return gemm_act;
-}
-
-IScheduler::Hints scheduling_hint_heuristic(arm_gemm::GemmMethod method, DataType data_type)
-{
- // Schedule assembly kernel
- const int granule_threshold = 200;
- IScheduler::Hints scheduling_hint = IScheduler::Hints(Window::DimX);
- if(method == arm_gemm::GemmMethod::GEMM_INTERLEAVED && data_type == DataType::F32)
- {
- scheduling_hint = IScheduler::Hints(Window::DimX, IScheduler::StrategyHint::DYNAMIC, granule_threshold);
- }
- else if(method == arm_gemm::GemmMethod::GEMM_INTERLEAVED_2D && (data_type == DataType::F32 || data_type == DataType::F16 || data_type == DataType::U8 || data_type == DataType::S8))
- {
- //GEMM_INTERLEAVED supports 2D parallelism, IScheduler::split_dimensions_all signals to parallelise over all window dimensions
- scheduling_hint = IScheduler::Hints(IScheduler::split_dimensions_all, IScheduler::StrategyHint::STATIC, granule_threshold);
- }
- else if(method == arm_gemm::GemmMethod::QUANTIZE_WRAPPER_2D && (data_type == DataType::QASYMM8 || data_type == DataType::QASYMM8_SIGNED))
- {
- //special case for QASYMM8 to support 2D parallelism, scheduler here may be tweaked differently compared to FP32 case
- scheduling_hint = IScheduler::Hints(IScheduler::split_dimensions_all, IScheduler::StrategyHint::STATIC, granule_threshold);
- }
-
- return scheduling_hint;
-}
-
-template <typename TypeInput, typename TypeOutput>
-class FallbackTransform : public ITransformWeights
-{
-public:
- FallbackTransform() noexcept {};
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- FallbackTransform(const FallbackTransform &) = delete;
- /** Default move constructor */
- FallbackTransform(FallbackTransform &&) = default;
- /** Prevent instances of this class from being copied (As this class contains pointers) */
- FallbackTransform &operator=(const FallbackTransform &) = delete;
- /** Default move assignment operator */
- FallbackTransform &operator=(FallbackTransform &&) = default;
- void run() override
- {
- _output.allocator()->allocate();
- ARM_COMPUTE_ERROR_ON(_output.buffer() == nullptr);
- _gemm_kernel_asm->pretranspose_B_array(_output.buffer(), _in1_ptr, _ldb, _multi_stride_b);
- _reshape_run = true;
- }
-
- void release() override
- {
- _output.allocator()->free();
- }
-
- ITensor *get_weights() override
- {
- return &_output;
- }
-
- uint32_t uid() override
- {
- uint32_t id = (_B_pretranspose_size | 0x80000000);
- return id;
- }
-
- void configure(size_t B_pretranspose_size, unsigned int alignment)
- {
- _output.allocator()->init(TensorInfo(TensorShape{ (B_pretranspose_size + alignment) }, 1, DataType::S8), alignment);
- _B_pretranspose_size = B_pretranspose_size;
- }
-
- void set_pretranspose(ITensor *tensor)
- {
- if(!_reshape_run)
- {
- _gemm_kernel_asm->set_pretransposed_B_data(tensor->buffer());
- }
- }
-
- void set_args(const int ldb, const TypeInput *in1_ptr, const int multi_stride_b, std::shared_ptr<arm_gemm::GemmCommon<TypeInput, TypeOutput>> gemm_kernel_asm)
- {
- _ldb = ldb;
- _in1_ptr = in1_ptr;
- _multi_stride_b = multi_stride_b;
- _gemm_kernel_asm = gemm_kernel_asm;
- }
-
-private:
- Tensor _output{};
- int _ldb{};
- const TypeInput *_in1_ptr{};
- int _multi_stride_b{};
- size_t _B_pretranspose_size{};
- std::shared_ptr<arm_gemm::GemmCommon<TypeInput, TypeOutput>> _gemm_kernel_asm{ nullptr };
-};
-
-/** Fallback in case ACL doesn't have a function */
-template <typename TypeInput, typename TypeOutput, class OutputStage = arm_gemm::Nothing>
-class Fallback : public CpuGemmAssemblyDispatch::IFallback
-{
-public:
- /** Destructor */
- ~Fallback()
- {
- if(_pretranspose && !(is_weight_managed()))
- {
- delete _pretranspose;
- }
- }
-
- /** Initialise the functions's input and output.
- *
- * @param[in] a Input tensor containing the Matrix A.
- * @param[in] b Input tensor containing the Matrix B.
- * @param[in] c Input tensor containing the Matrix C.
- * @param[out] d Output tensor to store the result of matrix multiplication.
- * @param[in] args Matrix multiplication information.
- * @param[in] gemm_info GEMM meta-data
- * @param[in] memory_group Memory group to be used by the function.
- * @param[in] weights_manager Weights manager to be used by the function.
- * @param[in] os Output stage meta-data.
- */
- void configure(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *d,
- arm_gemm::GemmArgs args, const AsmGemmInfo &gemm_info,
- MemoryGroup &memory_group, IWeightsManager *weights_manager, const OutputStage &os = {});
-
- /** Set requantization shifts to be used
- *
- * @param[in] shifts Requantization shifts
- *
- * @return Pointer to the shift data
- */
- /** Set requantization data to be used
- *
- *
- * @param shifts Requantization shifts
- * @param multipliers Requantization multipliers
- *
- * @return A tuple with the pointers to the shift and multiplier data respectively
- */
- std::tuple<bool, const int32_t *, const int32_t *, const int32_t *> set_requantize_data(const std::vector<int32_t> &shifts,
- const std::vector<int32_t> &multipliers);
-
- // Inherited methods overridden:
- void run(ITensorPack &tensors) override;
- void prepare(ITensorPack &tensors) override;
- bool is_configured() const override;
-
-private:
- /** Allocate a workspace tensor.
- *
- * @param[in] workspace_size Size to allocate.
- * @param[in] memory_group Tensor memory group.
- * @param[in] alignment Workspace memory alignment.
- */
- void allocate_workspace(size_t workspace_size, MemoryGroup &memory_group, size_t alignment);
- /** Configure the indirect buffer
- *
- * @param[in] a Input tensor containing the Matrix A.
- * @param[in] b Input tensor containing the Matrix B.
- * @param[out] d Output tensor to store the result of matrix multiplication.
- * @param[in] info GEMM meta-data
- */
- void configure_indirect(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *d, const AsmGemmInfo &info);
- /** Prepare the indirect buffer */
- void prepare_indirect_buffer(ITensorPack &tensors);
-
- /** Assembly Gemm kernel */
- std::shared_ptr<arm_gemm::GemmCommon<TypeInput, TypeOutput>> _gemm_kernel_asm{ nullptr };
- /** Optimised Arm® Neon™ kernel */
- std::unique_ptr<INEKernel> _optimised_kernel{ nullptr };
- /** GEMM workspace */
- Tensor _workspace{};
- /** Pre-transpose tensor */
- ITensor *_pretranspose{ nullptr };
- /** Prepared flag */
- bool _is_prepared{ false };
- /** GEMM meta-data */
- AsmGemmInfo _gemm_info{};
- /** Weights manager */
- IWeightsManager *_weights_manager{ nullptr };
- /** Weights transform object */
- FallbackTransform<TypeInput, TypeOutput> _weights_transform{};
- /** GEMM kernel description */
- arm_gemm::KernelDescription _kernel_info{};
- /** Per channel quantization shifts */
- std::vector<int32_t> _shifts{};
- std::vector<int32_t> right_shifts{};
- std::vector<int32_t> left_shifts{};
- /** Per channel quantization multipliers */
- std::vector<int32_t> _multipliers{};
- /** Indirect buffer */
- std::unique_ptr<const TypeInput *const *, free_delete> _indirect_arg{};
- std::unique_ptr<const TypeInput *, free_delete> _indirect_buf{};
- std::vector<TypeInput> _indirect_pad{};
- arm_gemm::ConvolutionParameters _cp{};
-
- bool is_weight_managed()
- {
- // TODO (COMPMID-4539): This function should do the following:
- // _weights_manager && _weights_manager->are_weights_managed(_b)
- // , where _b is the second Tensor that is used to be given to the configure().
- // Currently, however, weight manager is disabled to make this class stateless.
- // This should be revisited in the future.
- return false;
- }
-
- void acquire_managed_weight()
- {
- // TODO (COMPMID-4539): This function should do the following:
- // _pretranspose = _weights_manager->acquire(_b, &_weights_transform);
- // , where _b is the second Tensor that is used to be given to the configure().
- // Currently, however, weight manager is disabled to make this class stateless.
- _pretranspose = nullptr;
- }
-};
-
-template <typename TypeInput, typename TypeOutput, class OutputStage>
-std::tuple<bool, const int32_t *, const int32_t *, const int32_t *>
-Fallback<TypeInput, TypeOutput, OutputStage>::set_requantize_data(const std::vector<int32_t> &shifts, const std::vector<int32_t> &multipliers)
-{
- _multipliers = multipliers;
- _shifts = shifts;
- bool need_left = false;
- for(const auto s : _shifts)
- {
- left_shifts.push_back(std::max(-s, int32_t(0)));
- right_shifts.push_back(std::min(-s, int32_t(0)));
- if(s < 0 && !need_left)
- {
- need_left = true;
- }
- }
- return std::make_tuple(need_left, left_shifts.data(), right_shifts.data(), _multipliers.data());
-}
-
-template <typename TypeInput, typename TypeOutput, class OutputStage>
-void Fallback<TypeInput, TypeOutput, OutputStage>::prepare_indirect_buffer(ITensorPack &tensors)
-{
- auto a = tensors.get_const_tensor(TensorType::ACL_SRC_0);
- const TypeInput *A_ptr = reinterpret_cast<TypeInput *>(a->buffer());
- const int multis = 1;
- const int batches = a->info()->tensor_shape().total_size_upper(3);
- const size_t stride_A = a->info()->strides_in_bytes().y() / sizeof(TypeInput);
- const size_t batch_stride_A = a->info()->strides_in_bytes()[3] / sizeof(TypeInput);
- const size_t multi_stride_A = a->info()->strides_in_bytes()[4] / sizeof(TypeInput);
-
- const size_t output_hw = _cp.output_height * _cp.output_width;
- const int batch_size = _cp.kernel_height * _cp.kernel_width * output_hw * sizeof(TypeInput);
- const size_t batch_stride = batch_size / sizeof(TypeInput);
- const int multi_size = batch_size * batches;
- const size_t multi_stride = multi_size / sizeof(TypeInput);
-
- for(int64_t m = 0; m < multis; m++)
- {
- for(int64_t b = 0; b < batches; b++)
- {
- for(int64_t output_y = 0; output_y < _cp.output_height; output_y++)
- {
- for(int64_t output_x = 0; output_x < _cp.output_width; output_x++)
- {
- int64_t output_xy = (output_y * _cp.output_width) + output_x;
-
- for(int64_t kernel_y = 0; kernel_y < _cp.kernel_height; kernel_y++)
- {
- for(int64_t kernel_x = 0; kernel_x < _cp.kernel_width; kernel_x++)
- {
- int64_t input_x = (output_x * _cp.output_stride_w) + kernel_x - _cp.padding_left;
- int64_t input_y = (output_y * _cp.output_stride_h) + kernel_y - _cp.padding_top;
- int64_t kernel_xy = (kernel_y * _cp.kernel_width) + kernel_x;
- int64_t input_xy = (input_y * _cp.input_width) + input_x;
-
- if(input_x < 0 || input_x >= _cp.input_width || input_y < 0 || input_y >= _cp.input_height)
- {
- _indirect_buf.get()[m * multi_stride + b * batch_stride + kernel_xy * output_hw + output_xy] = _indirect_pad.data();
- }
- else
- {
- _indirect_buf.get()[m * multi_stride + b * batch_stride + kernel_xy * output_hw + output_xy] =
- A_ptr + (m * multi_stride_A + b * batch_stride_A + input_xy * stride_A);
- }
- }
- }
- }
- }
- }
- }
-}
-
-template <typename TypeInput, typename TypeOutput, class OutputStage>
-void Fallback<TypeInput, TypeOutput, OutputStage>::configure_indirect(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *d, const AsmGemmInfo &info)
-{
- ARM_COMPUTE_ERROR_ON(!(info.method == AsmConvMethod::Conv || info.method == AsmConvMethod::Indirect));
-
- float zeropad = 0.f;
- if(is_data_type_quantized(a->data_type()))
- {
- zeropad = a->quantization_info().uniform().offset;
- }
-
- const int64_t input_width = static_cast<int64_t>(a->tensor_shape()[1]);
- const int64_t input_height = static_cast<int64_t>(a->tensor_shape()[2]);
- const int64_t input_channels = static_cast<int64_t>(a->tensor_shape()[0]);
- const int64_t kernel_width = static_cast<int64_t>(b->tensor_shape()[2]);
- const int64_t kernel_height = static_cast<int64_t>(b->tensor_shape()[3]);
- const int64_t output_width = static_cast<int64_t>(d->tensor_shape()[1]);
- const int64_t output_height = static_cast<int64_t>(d->tensor_shape()[2]);
-
- _cp = { input_width, input_height, input_channels, kernel_width, kernel_height, output_width, output_height,
- info.ps_info.stride().first, info.ps_info.stride().second, info.padding_top, info.padding_left, zeropad
- };
-
- if(info.method == AsmConvMethod::Conv)
- {
- _gemm_kernel_asm->set_convolution_parameters(_cp);
- }
-
- if(info.method == AsmConvMethod::Indirect)
- {
- const unsigned int multis = 1;
- const unsigned int batches = a->tensor_shape().total_size_upper(3);
- const unsigned int kernel_hw = _cp.kernel_width * _cp.kernel_height;
- const unsigned int output_hw = _cp.output_width * _cp.output_height;
-
- using TypeInputPtr = TypeInput *;
- const int batch_size = kernel_hw * output_hw * sizeof(TypeInputPtr);
- const size_t batch_stride = batch_size / sizeof(TypeInputPtr);
- const int multi_size = batch_size * batches;
- const size_t multi_stride = multi_size / sizeof(TypeInputPtr);
-
- _indirect_buf = std::unique_ptr<const TypeInput *, free_delete>(reinterpret_cast<const TypeInput **>(malloc(multi_size * multis)));
- _indirect_arg = std::unique_ptr<const TypeInput *const *, free_delete>(reinterpret_cast<const TypeInput *const **>(malloc(sizeof(TypeInput **) * kernel_hw * multis * batches)));
- _indirect_pad = std::vector<TypeInput>(_cp.input_channels, TypeInput(zeropad));
-
- // Set indirect argument
- int64_t pos = 0;
- for(int64_t m = 0; m < multis; m++)
- {
- for(int64_t b = 0; b < batches; b++)
- {
- for(int64_t kernel_xy = 0; kernel_xy < kernel_hw; kernel_xy++)
- {
- (_indirect_arg.get())[pos++] = _indirect_buf.get() + m * multi_stride + b * batch_stride + kernel_xy * output_hw;
- }
- }
- }
-
- _gemm_kernel_asm->set_indirect_parameters(a->tensor_shape()[0], _indirect_arg.get());
- }
-}
-
-template <typename TypeInput, typename TypeOutput, class OutputStage>
-void Fallback<TypeInput, TypeOutput, OutputStage>::configure(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *d,
- arm_gemm::GemmArgs args, const AsmGemmInfo &gemm_info,
- MemoryGroup &memory_group, IWeightsManager *weights_manager, const OutputStage &os)
-{
- ARM_COMPUTE_UNUSED(c);
- arm_gemm::GemmConfig gemm_cfg;
- _kernel_info = arm_gemm::get_gemm_method<TypeInput, TypeOutput, OutputStage>(args, os);
- _weights_manager = weights_manager;
- if(_kernel_info.method != arm_gemm::GemmMethod::GEMV_BATCHED)
- {
- gemm_cfg.filter = _kernel_info.name;
- args._cfg = &gemm_cfg;
- }
- _gemm_kernel_asm = arm_gemm::gemm<TypeInput, TypeOutput, OutputStage>(args, os);
- if(_gemm_kernel_asm == nullptr)
- {
- //configuration not supported: Leave function unconfigured:
- return;
- }
-
- // arm_compute wrapper for the Gemm object (see above)
- auto acl_gemm_wrapper = std::make_unique<kernel::CpuGemmAssemblyWrapperKernel<TypeInput, TypeOutput>>();
- ARM_COMPUTE_ERROR_ON(acl_gemm_wrapper == nullptr);
- acl_gemm_wrapper->configure(_gemm_kernel_asm.get(), gemm_cfg.filter);
- const size_t workspace_size = _gemm_kernel_asm->get_working_size();
- if(workspace_size > 0)
- {
- // Allocate workspace
- const unsigned int alignment = 4096;
- allocate_workspace(workspace_size, memory_group, alignment);
- }
-
- //if we disable this code below in brackets then ConvLayer deadlocks when threads > 1 and
- //the shapes are In=1x1x1024 Weights=1x1x1024x1001 Biases=1001 Out=1x1x1001
- {
- const unsigned int window_size = _gemm_kernel_asm->get_window_size().total_size();
- if(window_size < static_cast<unsigned int>(args._maxthreads))
- {
- _gemm_kernel_asm->set_nthreads(window_size);
- }
- }
-
- _optimised_kernel = std::move(acl_gemm_wrapper);
- _gemm_info = gemm_info;
- // Check for pre-transposed support
- if(_gemm_kernel_asm->B_pretranspose_required())
- {
- // Forcing 128-byte alignment (required by 32-bit kernels)
- const unsigned int alignment = 128;
- const size_t B_pretranspose_size = _gemm_kernel_asm->get_B_pretransposed_array_size();
- if(is_weight_managed())
- {
- _weights_transform.configure(B_pretranspose_size, alignment);
- acquire_managed_weight();
- }
- else
- {
- _pretranspose = new Tensor();
- static_cast<Tensor *>(_pretranspose)->allocator()->init(TensorInfo(TensorShape{ (B_pretranspose_size + alignment) }, 1, DataType::S8), alignment);
- }
- }
-
- // Handle indirect GEMM convolution
- if(gemm_info.method == AsmConvMethod::Conv || gemm_info.method == AsmConvMethod::Indirect)
- {
- configure_indirect(a, b, d, gemm_info);
- }
-}
-
-template <typename TypeInput, typename TypeOutput, class OutputStage>
-void Fallback<TypeInput, TypeOutput, OutputStage>::prepare(ITensorPack &tensors)
-{
- auto b = tensors.get_const_tensor(TensorType::ACL_SRC_1);
- auto c = tensors.get_const_tensor(TensorType::ACL_SRC_2);
- if(!_is_prepared)
- {
- // Setup up matrix bias in the assembly kernel, it's just a pointer to matrix C.
- if(c && c->info()->data_type() == DataType::S32)
- {
- _gemm_kernel_asm->set_quantized_bias(reinterpret_cast<const int32_t *>(c->buffer() + c->info()->offset_first_element_in_bytes()), 0);
- }
-
- // Pretranspose B if required
- if(_gemm_kernel_asm->B_pretranspose_required())
- {
- const int ldb = b->info()->strides_in_bytes().y() / sizeof(TypeInput);
- const auto in1_ptr = reinterpret_cast<const TypeInput *>(b->buffer() + b->info()->offset_first_element_in_bytes());
- const int multi_stride_b = b->info()->strides_in_bytes().z() / sizeof(TypeInput);
-
- if(is_weight_managed())
- {
- _weights_transform.set_args(ldb, in1_ptr, multi_stride_b, _gemm_kernel_asm);
- _weights_manager->run(b, &_weights_transform);
-
- // If we didn't run the reshape function, set the pretransposed buffer
- if(!_weights_transform.is_reshape_run())
- {
- _weights_transform.set_pretranspose(_pretranspose);
- }
- }
- else
- {
- static_cast<Tensor *>(_pretranspose)->allocator()->allocate();
- ARM_COMPUTE_ERROR_ON(_pretranspose->buffer() == nullptr);
- _gemm_kernel_asm->pretranspose_B_array(_pretranspose->buffer(), in1_ptr, ldb, multi_stride_b);
- b->mark_as_unused();
- }
- }
-
- if(_gemm_info.method == AsmConvMethod::Indirect)
- {
- prepare_indirect_buffer(tensors);
- }
-
- _is_prepared = true;
- }
-}
-
-template <typename TypeInput, typename TypeOutput, class OutputStage>
-void Fallback<TypeInput, TypeOutput, OutputStage>::allocate_workspace(size_t workspace_size, MemoryGroup &memory_group, size_t alignment)
-{
- ARM_COMPUTE_ERROR_ON_MSG(workspace_size == 0, "size cannot be 0");
- _workspace.allocator()->init(TensorInfo(TensorShape{ (workspace_size + alignment) }, 1, DataType::S8), alignment);
- memory_group.manage(&_workspace);
- _workspace.allocator()->allocate();
-}
-
-template <typename TypeInput, typename TypeOutput, class OutputStage>
-bool Fallback<TypeInput, TypeOutput, OutputStage>::is_configured() const
-{
- return _optimised_kernel != nullptr;
-}
-
-template <typename TypeInput, typename TypeOutput, class OutputStage>
-void Fallback<TypeInput, TypeOutput, OutputStage>::run(ITensorPack &tensors)
-{
- auto a = tensors.get_const_tensor(TensorType::ACL_SRC_0);
- auto b = tensors.get_const_tensor(TensorType::ACL_SRC_1);
- auto c = tensors.get_const_tensor(TensorType::ACL_SRC_2);
- auto d = tensors.get_tensor(TensorType::ACL_DST);
-
- int lda = a->info()->strides_in_bytes().y() / sizeof(TypeInput);
- int ldb = 0;
- const int ldd = d->info()->strides_in_bytes().y() / sizeof(TypeOutput);
-
- const size_t a_batch_idx = _gemm_info.reinterpret_input_as_3d != 0 ? 3 : 2;
- const size_t a_multi_idx = a_batch_idx + 1;
- const size_t d_batch_idx = _gemm_info.depth_output_gemm3d != 0 ? 3 : 2;
- const size_t d_multi_idx = d_batch_idx + 1;
-
- int batch_stride_a = a->info()->strides_in_bytes()[a_batch_idx] / sizeof(TypeInput);
- const int batch_stride_d = d->info()->strides_in_bytes()[d_batch_idx] / sizeof(TypeOutput);
-
- int multi_stride_a = a->info()->strides_in_bytes()[a_multi_idx] / sizeof(TypeInput);
- int multi_stride_b = 0;
- const int multi_stride_d = d->info()->strides_in_bytes()[d_multi_idx] / sizeof(TypeOutput);
-
- auto in0_ptr = reinterpret_cast<const TypeInput *>(a->buffer() + a->info()->offset_first_element_in_bytes());
- const TypeInput *in1_ptr = nullptr;
- auto out_ptr = reinterpret_cast<TypeOutput *>(d->buffer() + d->info()->offset_first_element_in_bytes());
-
- // Check if B is pre-tranposed and de-reference if not
- if(!_gemm_kernel_asm->B_is_pretransposed())
- {
- ldb = b->info()->strides_in_bytes().y() / sizeof(TypeInput);
- multi_stride_b = b->info()->strides_in_bytes().z() / sizeof(TypeInput);
- in1_ptr = reinterpret_cast<const TypeInput *>(b->buffer() + b->info()->offset_first_element_in_bytes());
- }
-
- const auto scheduling_hint = scheduling_hint_heuristic(_kernel_info.method, d->info()->data_type());
-
- // Set workspace if needed and reset number of threads as buffer manager gets re-created with max_threads
- if(_workspace.buffer() != nullptr)
- {
- _gemm_kernel_asm->set_working_space(reinterpret_cast<void *>(_workspace.buffer()));
- const unsigned int split_dim = scheduling_hint.split_dimension();
- const unsigned int window_size = _gemm_kernel_asm->get_window_size().total_size();
- unsigned int num_threads = NEScheduler::get().num_threads();
- if(window_size < num_threads)
- {
- num_threads = window_size;
- }
- if(split_dim != IScheduler::split_dimensions_all)
- {
- // Make sure the kernel does not expect more threads than we can actually spawn
- const unsigned int num_iterations = _optimised_kernel.get()->window().num_iterations(split_dim);
- num_threads = std::min(num_iterations, num_threads);
- }
- _gemm_kernel_asm->set_nthreads(num_threads);
- }
-
- // Prepare assembly kernel
- prepare(tensors);
-
- // Setup up matrix bias in the assembly kernel, it's just a pointer to matrix C.
- TypeOutput *bias = nullptr;
- if(c && c->info()->data_type() != DataType::S32)
- {
- bias = reinterpret_cast<TypeOutput *>(c->buffer() + c->info()->offset_first_element_in_bytes());
- }
-
- if(_gemm_info.method == AsmConvMethod::Indirect)
- {
- in0_ptr = nullptr;
- lda = 0;
- batch_stride_a = 0;
- multi_stride_a = 0;
- }
-
- // Set gemm parameters
- _gemm_kernel_asm->set_arrays(in0_ptr, lda, batch_stride_a, multi_stride_a,
- in1_ptr, ldb, multi_stride_b,
- out_ptr, ldd, batch_stride_d, multi_stride_d,
- bias, 0);
- // Schedule
- NEScheduler::get().schedule(_optimised_kernel.get(), scheduling_hint);
-}
-
-template <typename TypeInput, typename TypeOutput>
-void create_arm_gemm(std::unique_ptr<CpuGemmAssemblyDispatch::IFallback> &arm_gemm, MemoryGroup &memory_group,
- const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *d, arm_gemm::Activation activation, const AsmGemmInfo &info,
- IWeightsManager *weights_manager)
-{
- Params p = extract_parameters(a, b, d, info);
- const CPUInfo &ci = NEScheduler::get().cpu_info();
- unsigned int num_threads = NEScheduler::get().num_threads();
-
- arm_gemm::GemmArgs args(&ci, p.M, p.N, p.K, p.sections, p.batches, p.multis, p.indirect, activation, num_threads);
-
- // Create arm_gemm fallback
- auto fallback = std::make_unique<Fallback<TypeInput, TypeOutput>>();
- fallback->configure(a, b, c, d, args, info, memory_group, weights_manager);
- arm_gemm = std::move(fallback);
-}
-
-template <typename TypeInput, typename TypeOutput>
-void create_arm_gemm_quant(std::unique_ptr<CpuGemmAssemblyDispatch::IFallback> &arm_gemm, MemoryGroup &memory_group,
- const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *d, arm_gemm::Activation activation, const AsmGemmInfo &info,
- IWeightsManager *weights_manager)
-{
- ARM_COMPUTE_UNUSED(activation);
- Params p = extract_parameters(a, b, d, info);
- const CPUInfo &ci = NEScheduler::get().cpu_info();
- unsigned int num_threads = NEScheduler::get().num_threads();
-
- arm_gemm::GemmArgs args(&ci, p.M, p.N, p.K, p.sections, p.batches, p.multis, p.indirect, activation, num_threads);
-
- // Create arm_gemm fallback
- auto fallback = std::make_unique<Fallback<TypeInput, TypeOutput, arm_gemm::Requantize32>>();
-
- // Configure requantization info
- const int32_t negation = info.negated_offsets ? 1 : -1;
- const int32_t a_offset = -a->quantization_info().uniform().offset * negation;
- const int32_t b_offset = -b->quantization_info().uniform().offset * negation;
- const GEMMLowpOutputStageInfo os_info = info.output_stage;
-
- arm_gemm::Requantize32 gemm_requant_info{};
- if(os_info.gemmlowp_shifts.size() > 1)
- {
- const auto requantize_data = fallback->set_requantize_data(os_info.gemmlowp_shifts, os_info.gemmlowp_multipliers);
- gemm_requant_info = arm_gemm::Requantize32(nullptr, 0,
- a_offset, b_offset, os_info.gemmlowp_offset,
- (std::get<0>(requantize_data)) ? std::get<1>(requantize_data) : nullptr,
- std::get<2>(requantize_data),
- std::get<3>(requantize_data),
- os_info.gemmlowp_min_bound, os_info.gemmlowp_max_bound);
- }
- else
- {
- gemm_requant_info = arm_gemm::Requantize32(nullptr, 0,
- a_offset, b_offset, os_info.gemmlowp_offset,
- -os_info.gemmlowp_shift, os_info.gemmlowp_multiplier,
- os_info.gemmlowp_min_bound, os_info.gemmlowp_max_bound);
- }
-
- // Configure fallback
- fallback->configure(a, b, c, d, args, info, memory_group, weights_manager, gemm_requant_info);
- arm_gemm = std::move(fallback);
-}
-
-} //namespace
-
-CpuGemmAssemblyDispatch::CpuGemmAssemblyDispatch(std::shared_ptr<IMemoryManager> memory_manager, IWeightsManager *weights_manager)
- : _arm_gemm(nullptr), _memory_group(std::move(memory_manager)), _weights_manager(weights_manager)
-{
-}
-
-Status CpuGemmAssemblyDispatch::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *d, const AsmGemmInfo &info)
-{
- ARM_COMPUTE_UNUSED(c, info);
- ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(a, b, d);
- ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(a);
- ARM_COMPUTE_RETURN_ERROR_ON_CPU_BF16_UNSUPPORTED(a);
-
-#ifndef __aarch64__
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->element_size() == 1, "8bit integer types only supported for aarch64");
-#endif /* __aarch64__ */
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S8,
- DataType::BFLOAT16, DataType::F16, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(b, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL, DataType::S8,
- DataType::BFLOAT16, DataType::F16, DataType::F32);
- if(is_data_type_quantized_per_channel(b->data_type()))
- {
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8_SIGNED, DataType::S8);
- }
- else
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b);
- }
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::F32 && d->data_type() != DataType::F32, "Only F32 output supported for F32 input");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::F16 && d->data_type() != DataType::F16, "Only F16 output supported for F16 input");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::BFLOAT16 && d->data_type() != DataType::F32, "Only F32 output supported for BFLOAT16 input");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::U8 && d->data_type() != DataType::U32, "Only U32 output supported for U8 input");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::S8 && d->data_type() != DataType::S32, "Only S32 output supported for S8 input");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::QASYMM8 && d->data_type() != DataType::QASYMM8, "Only QASYMM8 output supported for QASYMM8 input");
- return Status{};
-}
-
-bool CpuGemmAssemblyDispatch::is_activation_supported(const ActivationLayerInfo &activation)
-{
- arm_gemm::Activation act = map_to_arm_gemm_activation(activation);
- return act.type != arm_gemm::Activation::Type::None;
-}
-
-void CpuGemmAssemblyDispatch::configure(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *d, const AsmGemmInfo &info)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, d);
- arm_gemm::Activation act = map_to_arm_gemm_activation(info.activation_info);
-
- //If we don't support a combination of data types, silently return: it is the caller's responsibility to check if configure() was successful via is_configured()
- if(!CpuGemmAssemblyDispatch::validate(a, b, c, d, info))
- {
- return;
- }
-
- switch(a->data_type())
- {
- case DataType::F32:
- create_arm_gemm<float, float>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
- break;
-#ifdef __aarch64__
- case DataType::U8:
- case DataType::QASYMM8:
- if(d->data_type() == DataType::S32)
- {
- create_arm_gemm<uint8_t, uint32_t>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
- }
- else
- {
- create_arm_gemm_quant<uint8_t, uint8_t>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
- }
- break;
- case DataType::S8:
- case DataType::QASYMM8_SIGNED:
- if(d->data_type() == DataType::S32)
- {
- create_arm_gemm<int8_t, int32_t>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
- }
- else
- {
- create_arm_gemm_quant<int8_t, int8_t>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
- }
- break;
-#endif /* __aarch64__ */
-#if defined(__ARM_FEATURE_BF16_VECTOR_ARITHMETIC) || defined(ARM_COMPUTE_FORCE_BF16)
- case DataType::BFLOAT16:
- create_arm_gemm<bfloat16, float>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
- break;
-#endif /* defined(__ARM_FEATURE_BF16_VECTOR_ARITHMETIC) || defined(ARM_COMPUTE_FORCE_BF16) */
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- case DataType::F16:
- create_arm_gemm<float16_t, float16_t>(_arm_gemm, _memory_group, a, b, c, d, act, info, _weights_manager);
- break;
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- default:
- break;
- }
-}
-
-void CpuGemmAssemblyDispatch::prepare(ITensorPack &tensors)
-{
- ARM_COMPUTE_ERROR_ON(_arm_gemm == nullptr);
- _arm_gemm->prepare(tensors);
-}
-
-bool CpuGemmAssemblyDispatch::is_configured() const
-{
- return _arm_gemm != nullptr && _arm_gemm->is_configured();
-}
-
-void CpuGemmAssemblyDispatch::run(ITensorPack &tensors)
-{
- MemoryGroupResourceScope scope_mg(_memory_group);
-
- ARM_COMPUTE_ERROR_ON(_arm_gemm == nullptr);
- _arm_gemm->run(tensors);
-}
-} // namespace cpu
-} // namespace arm_compute