aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/cpu/operators/CpuFullyConnected.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/runtime/cpu/operators/CpuFullyConnected.cpp')
-rw-r--r--src/runtime/cpu/operators/CpuFullyConnected.cpp483
1 files changed, 483 insertions, 0 deletions
diff --git a/src/runtime/cpu/operators/CpuFullyConnected.cpp b/src/runtime/cpu/operators/CpuFullyConnected.cpp
new file mode 100644
index 0000000000..2b6d051482
--- /dev/null
+++ b/src/runtime/cpu/operators/CpuFullyConnected.cpp
@@ -0,0 +1,483 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/runtime/cpu/operators/CpuFullyConnected.h"
+
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensorPack.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+#include "src/core/cpu/kernels/CpuTransposeKernel.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/MemoryHelpers.h"
+#include "src/runtime/cpu/operators/CpuConvertFullyConnectedWeights.h"
+#include "src/runtime/cpu/operators/CpuFlatten.h"
+#include "src/runtime/cpu/operators/CpuGemm.h"
+#include "src/runtime/cpu/operators/CpuGemmLowpMatrixMultiplyCore.h"
+#include "src/runtime/cpu/utils/CpuAuxTensorHandler.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+using namespace arm_compute::experimental;
+using namespace arm_compute::misc::shape_calculator;
+
+namespace
+{
+// Get min, max bound of a quantized asymmetric dst tensor, with the effect of fused activation
+std::pair<PixelValue, PixelValue> get_quantized_asymmetric_output_min_max(const QuantizationInfo &q_info, const ActivationLayerInfo &act_info, DataType data_type)
+{
+ PixelValue type_min{};
+ PixelValue type_max{};
+ std::tie(type_min, type_max) = get_min_max(data_type);
+ const UniformQuantizationInfo q_unif = q_info.uniform();
+
+ if(act_info.enabled())
+ {
+ switch(act_info.activation())
+ {
+ case ActivationLayerInfo::ActivationFunction::RELU:
+ type_min = PixelValue(q_unif.offset);
+ break;
+ case ActivationLayerInfo::ActivationFunction::BOUNDED_RELU:
+ type_min = PixelValue(q_unif.offset);
+ type_max = PixelValue(act_info.a(), data_type, q_info);
+ break;
+ case ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU:
+ type_min = PixelValue(act_info.b(), data_type, q_info);
+ type_max = PixelValue(act_info.a(), data_type, q_info);
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Activation function not supported.");
+ break;
+ }
+ }
+
+ return std::make_pair(type_min, type_max);
+}
+
+Status get_gemmlowp_output_stage_info(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const ActivationLayerInfo &act,
+ GEMMLowpOutputStageInfo &gemmlowp_output_stage_info)
+{
+ const auto data_type = src->data_type();
+ const QuantizationInfo oq_info = dst->quantization_info();
+ const UniformQuantizationInfo iq_unif = src->quantization_info().uniform();
+ const UniformQuantizationInfo wq_unif = weights->quantization_info().uniform();
+ const UniformQuantizationInfo oq_unif = oq_info.uniform();
+
+ float multiplier = (iq_unif.scale * wq_unif.scale) / oq_unif.scale;
+ int32_t output_multiplier;
+ int32_t output_shift;
+
+ ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
+
+ PixelValue type_min{};
+ PixelValue type_max{};
+ std::tie(type_min, type_max) = get_quantized_asymmetric_output_min_max(oq_info, act, data_type);
+
+ gemmlowp_output_stage_info.gemmlowp_multiplier = output_multiplier;
+ gemmlowp_output_stage_info.gemmlowp_shift = output_shift;
+ gemmlowp_output_stage_info.gemmlowp_offset = oq_unif.offset;
+ gemmlowp_output_stage_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
+ gemmlowp_output_stage_info.gemmlowp_min_bound = type_min.get<int32_t>();
+ gemmlowp_output_stage_info.gemmlowp_max_bound = type_max.get<int32_t>();
+
+ return Status{};
+}
+
+Status validate_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const ActivationLayerInfo &act)
+{
+ if(is_data_type_quantized_asymmetric(src->data_type()))
+ {
+ // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
+ // Extract and negate src and weights offset
+ const QuantizationInfo src_quantization_info(src->quantization_info().uniform().scale, -src->quantization_info().uniform().offset);
+ const QuantizationInfo weights_quantization_info(weights->quantization_info().uniform().scale, -weights->quantization_info().uniform().offset);
+
+ GEMMLowpOutputStageInfo gemmlowp_output_stage_info;
+ ARM_COMPUTE_RETURN_ON_ERROR(get_gemmlowp_output_stage_info(src, weights, dst, act, gemmlowp_output_stage_info));
+
+ GEMMInfo gemm_info;
+ gemm_info.set_gemmlowp_output_stage(gemmlowp_output_stage_info);
+
+ // Validate gemmlowp function
+ TensorInfo src_info = src->clone()->set_quantization_info(src_quantization_info);
+ TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);
+ ARM_COMPUTE_RETURN_ON_ERROR(CpuGemmLowpMatrixMultiplyCore::validate(&src_info,
+ &weights_info,
+ biases,
+ dst,
+ gemm_info));
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ON_ERROR(CpuGemm::validate(src, weights, biases, dst, 1.f, 1.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run */)));
+ }
+
+ return Status{};
+}
+} // namespace
+
+CpuFullyConnected::CpuFullyConnected()
+ : _flatten(nullptr),
+ _convert_weights(nullptr),
+ _transpose_weights(nullptr),
+ _mm_gemm(nullptr),
+ _mm_gemmlowp(nullptr),
+ _flattened_src(),
+ _converted_weights(),
+ _reshaped_weights(),
+ _aux_mem(Count),
+ _are_weights_converted(false),
+ _are_weights_reshaped(false),
+ _is_fc_after_conv(false),
+ _is_quantized_asymmetric(false),
+ _is_prepared(false)
+
+{
+}
+
+CpuFullyConnected::~CpuFullyConnected() = default;
+
+void CpuFullyConnected::configure_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act)
+{
+ if(_is_quantized_asymmetric)
+ {
+ // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
+ // Extract and negate src and weights offset
+ const QuantizationInfo src_quantization_info(src->quantization_info().uniform().scale, -src->quantization_info().uniform().offset);
+ const QuantizationInfo weights_quantization_info(weights->quantization_info().uniform().scale, -weights->quantization_info().uniform().offset);
+
+ TensorInfo src_info = src->clone()->set_quantization_info(src_quantization_info);
+ TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);
+
+ // Configure gemmlowp function and output stage for asymmetric quantized types
+ GEMMLowpOutputStageInfo gemmlowp_output_stage_info;
+ const Status status = get_gemmlowp_output_stage_info(&src_info, &weights_info, dst, act, gemmlowp_output_stage_info);
+ ARM_COMPUTE_ERROR_ON(status.error_code() != ErrorCode::OK);
+
+ GEMMInfo gemm_info;
+ gemm_info.set_gemmlowp_output_stage(gemmlowp_output_stage_info);
+ gemm_info.set_activation_info(act);
+ _mm_gemmlowp = std::make_unique<CpuGemmLowpMatrixMultiplyCore>();
+ _mm_gemmlowp->configure(&src_info, &weights_info, biases, dst, gemm_info);
+ }
+ else
+ {
+ // Configure matrix multiply kernel
+ GEMMInfo gemm_info(false, false, true /* Reshape weights only for the first run */);
+ gemm_info.set_activation_info(act);
+ _mm_gemm = std::make_unique<CpuGemm>();
+ _mm_gemm->configure(src, weights, biases, dst, 1.f, 1.0f, gemm_info);
+ }
+}
+
+void CpuFullyConnected::configure_conv_fc(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act)
+{
+ ARM_COMPUTE_ERROR_ON((weights->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
+
+ // If the fully connected layer is called after a convolution layer, the src tensor must be linearized
+
+ // Initialize output tensor for flatten
+ auto_init_if_empty(_flattened_src, src->clone()->set_tensor_shape(compute_flatten_shape(src)));
+
+ _flatten = std::make_unique<CpuFlatten>();
+ _flatten->configure(src, &_flattened_src);
+
+ // Configure matrix multiply kernel
+ configure_mm(&_flattened_src, weights, biases, dst, act);
+}
+
+void CpuFullyConnected::configure_fc_fc(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act)
+{
+ ARM_COMPUTE_ERROR_ON(src->dimension(0) != weights->dimension(1));
+
+ // Configure matrix multiply kernel
+ configure_mm(src, weights, biases, dst, act);
+}
+
+void CpuFullyConnected::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst,
+ FullyConnectedLayerInfo fc_info)
+{
+ // Perform validate step
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
+ ARM_COMPUTE_ERROR_THROW_ON(CpuFullyConnected::validate(src,
+ weights,
+ biases != nullptr ? biases : nullptr,
+ dst,
+ fc_info));
+
+ _are_weights_converted = true;
+ _are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
+ _is_fc_after_conv = true;
+ _is_quantized_asymmetric = is_data_type_quantized_asymmetric(src->data_type());
+ _is_prepared = false;
+
+ // With the Fully Connected layer we can have 4 different cases:
+ // 1) Convolution layer -> Fully Connected layer without batches
+ // 2) Fully Connected layer -> Fully Connected layer without batches
+ // 3) Convolution layer -> Fully Connected layer with batches
+ // 4) Fully Connected layer -> Fully Connected layer with batches
+
+ const ITensorInfo *weights_to_use = weights;
+
+ // Check if we have a fully connected layer with batches
+ const bool is_batched_fc_layer = dst->dimension(1) > 1;
+ if(is_batched_fc_layer)
+ {
+ _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
+ src->tensor_shape().cend(),
+ dst->tensor_shape().cbegin() + 1));
+ }
+ else
+ {
+ _is_fc_after_conv = src->num_dimensions() > 1;
+ }
+
+ // Reshape weights if needed
+ if(!_are_weights_reshaped)
+ {
+ // Reshape the weights
+ _transpose_weights = std::make_unique<kernels::CpuTransposeKernel>();
+ _transpose_weights->configure(weights, &_reshaped_weights);
+ weights_to_use = &_reshaped_weights;
+ }
+
+ // Convert weights if needed
+ if(_is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
+ {
+ // Convert weights
+ _convert_weights = std::make_unique<CpuConvertFullyConnectedWeights>();
+ _convert_weights->configure(weights_to_use,
+ &_converted_weights,
+ src->tensor_shape(),
+ fc_info.weights_trained_layout);
+
+ weights_to_use = &_converted_weights;
+ _are_weights_converted = false;
+ }
+
+ if(_is_fc_after_conv)
+ {
+ // Fully Connected layer after a Convolution Layer without batches
+ configure_conv_fc(src, weights_to_use, biases, dst, fc_info.activation_info);
+ }
+ else
+ {
+ // Fully Connected layer after a Fully Connected Layer without batches
+ configure_fc_fc(src, weights_to_use, biases, dst, fc_info.activation_info);
+ }
+
+ _are_weights_reshaped = _are_weights_reshaped || fc_info.retain_internal_weights;
+
+ // Set auxiliary memory requirements
+ auto gemm_mem_req = (_is_quantized_asymmetric) ? _mm_gemmlowp->workspace() : _mm_gemm->workspace();
+ for(unsigned int i = 0; i < gemm_mem_req.size(); ++i)
+ {
+ _aux_mem[i] = gemm_mem_req[i];
+ }
+
+ if(_aux_mem[Pretranspose].size > 0)
+ {
+ // Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
+ _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), MemoryLifetime::Prepare, _reshaped_weights.total_size());
+ _aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Prepare, _converted_weights.total_size());
+ }
+ else
+ {
+ _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), MemoryLifetime::Persistent, _reshaped_weights.total_size());
+ _aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Persistent, _converted_weights.total_size());
+ }
+ _aux_mem[FlattenedSrc] = MemoryInfo(offset_int_vec(FlattenedSrc), MemoryLifetime::Temporary, _flattened_src.total_size());
+}
+
+Status CpuFullyConnected::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
+ FullyConnectedLayerInfo fc_info)
+{
+ ARM_COMPUTE_UNUSED(fc_info.retain_internal_weights);
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
+ ARM_COMPUTE_RETURN_ERROR_ON(biases != nullptr && biases->num_dimensions() > 1);
+ ARM_COMPUTE_RETURN_ERROR_ON(fc_info.activation_info.enabled() && is_data_type_quantized(src->data_type()) && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::RELU
+ && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
+
+ bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
+ bool is_fc_after_conv = true;
+
+ const ITensorInfo &flatten_src = TensorInfo(src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(src)));
+ const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
+ const ITensorInfo &converted_weights = weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding()) : TensorInfo(*reshaped_weights.clone());
+
+ // With the Fully Connected layer we can have 4 different cases:
+ // 1) Convolution layer -> Fully Connected layer without batches
+ // 2) Fully Connected layer -> Fully Connected layer without batches
+ // 3) Convolution layer -> Fully Connected layer with batches
+ // 4) Fully Connected layer -> Fully Connected layer with batches
+
+ const ITensorInfo *src_to_use = src;
+ const ITensorInfo *weights_to_use = weights;
+
+ // Check if we have a fully connected layer with batches
+ const bool is_batched_fc_layer = dst->dimension(1) > 1;
+
+ if(is_batched_fc_layer)
+ {
+ is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
+ src->tensor_shape().cend(),
+ dst->tensor_shape().cbegin() + 1));
+ }
+ else
+ {
+ is_fc_after_conv = src->num_dimensions() > 1;
+ }
+
+ if(!weights_reshaped)
+ {
+ // Validate reshape weights kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuTransposeKernel::validate(weights, &reshaped_weights));
+ weights_to_use = &reshaped_weights;
+ }
+
+ if(is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
+ {
+ // Validate convert weights kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(CpuConvertFullyConnectedWeights::validate(weights_to_use,
+ &converted_weights,
+ src->tensor_shape(),
+ fc_info.weights_trained_layout));
+ weights_to_use = &converted_weights;
+ }
+
+ if(is_fc_after_conv)
+ {
+ // Fully Connected layer after a Convolution Layer without batches
+ ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
+
+ // Validate flatten kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(CpuFlatten::validate(src, &flatten_src));
+ src_to_use = &flatten_src;
+ }
+ else
+ {
+ // Fully Connected layer after a Fully Connected Layer without batches
+ ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != weights_to_use->dimension(1));
+ }
+ // Validate matrix multiply kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(src_to_use, weights_to_use, biases, dst, fc_info.activation_info));
+
+ return Status{};
+}
+
+void CpuFullyConnected::run(ITensorPack &tensors)
+{
+ prepare(tensors);
+
+ auto src = tensors.get_const_tensor(ACL_SRC_0);
+
+ CpuAuxTensorHandler flattened_src(offset_int_vec(FlattenedSrc), _flattened_src, tensors, false);
+
+ // Linearize src if it comes from a convolutional layer
+ if(_is_fc_after_conv)
+ {
+ ITensorPack flatten_pack{ { ACL_SRC, src }, { ACL_DST, flattened_src.get() } };
+ _flatten->run(flatten_pack);
+ }
+
+ ITensorPack gemm_pack = tensors;
+ gemm_pack.add_const_tensor(ACL_SRC_0, (_is_fc_after_conv) ? flattened_src.get() : src);
+
+ // Run matrix multiply
+ if(_is_quantized_asymmetric)
+ {
+ _mm_gemmlowp->run(gemm_pack);
+ }
+ else
+ {
+ _mm_gemm->run(gemm_pack);
+ }
+}
+
+void CpuFullyConnected::prepare(ITensorPack &tensors)
+{
+ if(!_is_prepared)
+ {
+ auto weights = tensors.get_const_tensor(ACL_SRC_1);
+
+ CpuAuxTensorHandler reshaped_weights(offset_int_vec(TransposedWeights), _reshaped_weights, tensors, false);
+ CpuAuxTensorHandler converted_weights(offset_int_vec(ConvertedWeights), _converted_weights, tensors, false);
+
+ // Pointer to current weights
+ const ITensor *cur_weights = weights;
+
+ // Reshape of the weights (happens only once)
+ if(!_are_weights_reshaped)
+ {
+ // Run reshape weights kernel and mark weights as unused
+ ITensorPack transpose_pack{ { ACL_SRC, weights }, { ACL_DST, reshaped_weights.get() } };
+ NEScheduler::get().schedule_op(_transpose_weights.get(), Window::DimY, _transpose_weights->window(), transpose_pack);
+
+ cur_weights->mark_as_unused();
+ cur_weights = reshaped_weights.get();
+
+ _are_weights_reshaped = true;
+ }
+
+ // Convert weights if needed (happens only once)
+ if(!_are_weights_converted)
+ {
+ ITensorPack convert_pack{ { ACL_SRC, cur_weights }, { ACL_DST, converted_weights.get() } };
+ _convert_weights->run(convert_pack);
+
+ cur_weights->mark_as_unused();
+ cur_weights = converted_weights.get();
+
+ _are_weights_converted = true;
+ }
+
+ tensors.add_const_tensor(ACL_SRC_1, cur_weights);
+
+ // Prepare GEMM prepare and release unused weights
+ if(!_is_quantized_asymmetric)
+ {
+ _mm_gemm->prepare(tensors);
+ }
+ else
+ {
+ _mm_gemmlowp->prepare(tensors);
+ }
+
+ _is_prepared = true;
+ }
+}
+
+experimental::MemoryRequirements CpuFullyConnected::workspace() const
+{
+ return _aux_mem;
+}
+} // namespace cpu
+} // namespace arm_compute