aboutsummaryrefslogtreecommitdiff
path: root/src/gpu/cl/operators/ClFullyConnected.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/gpu/cl/operators/ClFullyConnected.cpp')
-rw-r--r--src/gpu/cl/operators/ClFullyConnected.cpp496
1 files changed, 496 insertions, 0 deletions
diff --git a/src/gpu/cl/operators/ClFullyConnected.cpp b/src/gpu/cl/operators/ClFullyConnected.cpp
new file mode 100644
index 0000000000..8b7e336c9f
--- /dev/null
+++ b/src/gpu/cl/operators/ClFullyConnected.cpp
@@ -0,0 +1,496 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/gpu/cl/operators/ClFullyConnected.h"
+
+#include "arm_compute/core/Size2D.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "arm_compute/runtime/CL/CLScheduler.h"
+#include "src/core/CL/kernels/CLFillBorderKernel.h"
+
+#include "src/core/helpers/MemoryHelpers.h"
+#include "src/gpu/cl/operators/ClConvertFullyConnectedWeights.h"
+#include "src/gpu/cl/operators/ClFlatten.h"
+#include "src/gpu/cl/operators/ClGemm.h"
+#include "src/gpu/cl/operators/ClGemmLowpMatrixMultiplyCore.h"
+#include "src/gpu/cl/operators/ClTranspose.h"
+#include "src/gpu/cl/utils/ClAuxTensorHandler.h"
+
+#include "support/Cast.h"
+
+#include <algorithm>
+
+namespace arm_compute
+{
+namespace opencl
+{
+using namespace arm_compute::experimental;
+using namespace arm_compute::misc::shape_calculator;
+
+namespace
+{
+Status construct_gemmlowp_output_stage(const ITensorInfo &src, const ITensorInfo &weights, const ITensorInfo &dst,
+ GEMMLowpOutputStageInfo &gemmlowp_output_stage, ActivationLayerInfo activation_info)
+{
+ gemmlowp_output_stage.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
+ gemmlowp_output_stage.gemmlowp_offset = 0;
+ gemmlowp_output_stage.gemmlowp_multiplier = 0;
+ gemmlowp_output_stage.gemmlowp_shift = 0;
+
+ const auto data_type = src.data_type();
+
+ // Configure output stage for quantized case
+ if(is_data_type_quantized_asymmetric(data_type))
+ {
+ const QuantizationInfo oq_info = dst.quantization_info();
+ const UniformQuantizationInfo iq_unif = src.quantization_info().uniform();
+ const UniformQuantizationInfo wq_unif = weights.quantization_info().uniform();
+ const UniformQuantizationInfo oq_unif = oq_info.uniform();
+
+ const auto output_quant_info = (dst.total_size() == 0) ? iq_unif : oq_unif;
+
+ const float multiplier = (iq_unif.scale * wq_unif.scale) / output_quant_info.scale;
+ int output_multiplier = 0;
+ int output_shift = 0;
+ ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(multiplier, &output_multiplier, &output_shift));
+
+ PixelValue type_min{};
+ PixelValue type_max{};
+ std::tie(type_min, type_max) = get_min_max(data_type);
+
+ if(activation_info.enabled())
+ {
+ std::tie(type_min, type_max) = get_quantized_activation_min_max(activation_info, data_type, output_quant_info);
+ }
+
+ // Set the GEMMLowp output stage info
+ gemmlowp_output_stage.gemmlowp_offset = output_quant_info.offset;
+ gemmlowp_output_stage.gemmlowp_multiplier = output_multiplier;
+ gemmlowp_output_stage.gemmlowp_shift = output_shift;
+ gemmlowp_output_stage.gemmlowp_multipliers.push_back(output_multiplier);
+ gemmlowp_output_stage.gemmlowp_shifts.push_back(output_shift);
+ type_min.get(gemmlowp_output_stage.gemmlowp_min_bound);
+ type_max.get(gemmlowp_output_stage.gemmlowp_max_bound);
+ }
+
+ return Status{};
+}
+
+Status validate_mm(const ITensorInfo &src, const ITensorInfo &weights, const ITensorInfo *bias, const ITensorInfo &dst, const FullyConnectedLayerInfo &fc_info)
+{
+ GEMMLowpOutputStageInfo gemmlowp_output_stage;
+ ARM_COMPUTE_RETURN_ON_ERROR(construct_gemmlowp_output_stage(src, weights, dst, gemmlowp_output_stage, fc_info.activation_info));
+
+ const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
+ false, // is_b_reshaped
+ true, // reshape_b_only_on_first_run
+ 0, // depth_output_gemm3d
+ false, // reinterpret_input_as_3d
+ fc_info.retain_internal_weights, // retain_internal_weights
+ gemmlowp_output_stage, // gemmlowp_output_stage
+ fc_info.fp_mixed_precision, // fp_mixed_precision
+ false, // fast_math
+ true, // broadcast_bias
+ ActivationLayerInfo()); // activation_info
+
+ if(is_data_type_quantized_asymmetric(src.data_type()))
+ {
+ const UniformQuantizationInfo iq_info = src.quantization_info().uniform();
+ const UniformQuantizationInfo wq_info = weights.quantization_info().uniform();
+
+ // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
+ // Extract and negate src and weights offset
+ const QuantizationInfo src_quantization_info(iq_info.scale, -iq_info.offset);
+ const QuantizationInfo weights_quantization_info(wq_info.scale, -wq_info.offset);
+
+ // Validate gemmlowp function
+ ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixMultiplyCore::validate(&src.clone()->set_quantization_info(src_quantization_info),
+ &weights.clone()->set_quantization_info(weights_quantization_info),
+ bias,
+ &dst,
+ gemm_info));
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ON_ERROR(ClGemm::validate(&src, &weights, bias, &dst, 1.f, 1.f, gemm_info));
+ }
+
+ return Status{};
+}
+} // namespace
+
+ClFullyConnected::ClFullyConnected()
+ : _convert_weights(nullptr),
+ _flatten(nullptr),
+ _reshape_weights(nullptr),
+ _mm_gemm(nullptr),
+ _mm_gemmlowp(nullptr),
+ _aux_mem(Count)
+{
+}
+
+ClFullyConnected::~ClFullyConnected() = default;
+
+void ClFullyConnected::configure_mm(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *dst,
+ const FullyConnectedLayerInfo &fc_info)
+{
+ GEMMLowpOutputStageInfo gemmlowp_output_stage;
+ construct_gemmlowp_output_stage(*src, *weights, *dst, gemmlowp_output_stage, fc_info.activation_info);
+
+ const GEMMInfo &gemm_info = GEMMInfo(false, // is_a_reshaped
+ false, // is_b_reshaped
+ true, // reshape_b_only_on_first_run
+ 0, // depth_output_gemm3d
+ false, // reinterpret_input_as_3d
+ fc_info.retain_internal_weights, // retain_internal_weights
+ gemmlowp_output_stage, // gemmlowp_output_stage
+ fc_info.fp_mixed_precision, // fp_mixed_precision
+ false, // fast_math
+ true, // broadcast_bias
+ fc_info.activation_info, // activation_info
+ fc_info.constant_weights); // constant_weights
+
+ if(_is_quantized)
+ {
+ // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
+ // Extract and negate input and weights offset
+ const QuantizationInfo src_quantization_info = src->quantization_info();
+ const QuantizationInfo weights_quantization_info = weights->quantization_info();
+
+ TensorInfo src_info = src->clone()->set_quantization_info(src_quantization_info);
+ TensorInfo weights_info = weights->clone()->set_quantization_info(weights_quantization_info);
+
+ src_info.set_quantization_info(QuantizationInfo(src_quantization_info.uniform().scale, -src_quantization_info.uniform().offset));
+ weights_info.set_quantization_info(QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset));
+
+ // Configure gemmlowp function
+ _mm_gemmlowp = std::make_unique<ClGemmLowpMatrixMultiplyCore>();
+ _mm_gemmlowp->configure(compile_context, &src_info, &weights_info, bias, dst, gemm_info);
+ }
+ else
+ {
+ // Configure matrix multiply kernel
+ _mm_gemm = std::make_unique<ClGemm>();
+ _mm_gemm->configure(compile_context, src, weights, bias, dst, 1.f, 1.f, gemm_info);
+ }
+}
+
+void ClFullyConnected::configure_conv_fc(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *dst,
+ const FullyConnectedLayerInfo &fc_info)
+{
+ ARM_COMPUTE_ERROR_ON((weights->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
+
+ // If the fully connected layer is called after a convolution layer, the input tensor must be linearized
+
+ // Initialize output tensor for flatten
+ _flattened_src = src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(src)).set_data_layout(DataLayout::NCHW);
+
+ // Configure flatten kernel
+ _flatten = std::make_unique<ClFlatten>();
+ _flatten->configure(compile_context, src, &_flattened_src);
+
+ // Configure matrix multiply kernel
+ configure_mm(compile_context, &_flattened_src, weights, bias, dst, fc_info);
+}
+
+void ClFullyConnected::configure_fc_fc(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *bias, ITensorInfo *dst,
+ const FullyConnectedLayerInfo &fc_info)
+{
+ ARM_COMPUTE_ERROR_ON(src->dimension(0) != weights->dimension(1));
+
+ // Configure matrix multiply kernel
+ configure_mm(compile_context, src, weights, bias, dst, fc_info);
+}
+
+void ClFullyConnected::configure(const CLCompileContext &compile_context, ITensorInfo *src, ITensorInfo *weights, ITensorInfo *biases, ITensorInfo *dst,
+ FullyConnectedLayerInfo fc_info)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
+
+ // Perform validate step
+ ARM_COMPUTE_ERROR_THROW_ON(ClFullyConnected::validate(src, weights, biases, dst, fc_info));
+
+ _are_weights_converted = true;
+ _are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
+ _is_fc_after_conv = true;
+ _is_quantized = is_data_type_quantized_asymmetric(src->data_type());
+ _is_prepared = fc_info.retain_internal_weights;
+ _weights_to_use = TensorInfo(*weights);
+ _weights_to_use_idx = ACL_SRC_1;
+
+ // With the Fully Connected layer we can have 4 different cases:
+ // 1) Convolution layer -> Fully Connected layer without batches
+ // 2) Fully Connected layer -> Fully Connected layer without batches
+ // 3) Convolution layer -> Fully Connected layer with batches
+ // 4) Fully Connected layer -> Fully Connected layer with batches
+
+ // Check if we have a fully connected layer with batches
+ const bool is_batched_fc_layer = dst->dimension(1) > 1;
+ if(is_batched_fc_layer)
+ {
+ _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
+ src->tensor_shape().cend(),
+ dst->tensor_shape().cbegin() + 1));
+ }
+ else
+ {
+ _is_fc_after_conv = src->num_dimensions() > 1;
+ }
+
+ ITensorInfo *weights_used = weights;
+
+ // Reshape weights if needed
+ if(!_are_weights_reshaped)
+ {
+ // Reshape the weights
+ _reshape_weights = std::make_unique<ClTranspose>();
+ _reshape_weights->configure(compile_context, weights, &_reshaped_weights);
+ weights_used = &_reshaped_weights;
+ _weights_to_use_idx = offset_int_vec(TransposedWeights);
+ }
+
+ // Convert weights if needed
+ if(_is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
+ {
+ // Convert weights
+ _convert_weights = std::make_unique<ClConvertFullyConnectedWeights>();
+ _convert_weights->configure(compile_context,
+ weights_used,
+ &_converted_weights,
+ src->tensor_shape(),
+ fc_info.weights_trained_layout);
+
+ weights_used = &_converted_weights;
+ _weights_to_use_idx = offset_int_vec(ConvertedWeights);
+ _are_weights_converted = false;
+ }
+
+ if(_is_fc_after_conv)
+ {
+ // Fully Connected layer after a Convolution Layer without batches
+ configure_conv_fc(compile_context, src, weights_used, biases, dst, fc_info);
+ }
+ else
+ {
+ // Fully Connected layer after a Fully Connected Layer without batches
+ configure_fc_fc(compile_context, src, weights_used, biases, dst, fc_info);
+ }
+ // Update TensorInfo of final weights used (Need to be done in the end due to padding expansion)
+ _weights_to_use = *weights_used;
+
+ // Set auxiliary memory requirements
+ auto gemm_mem_req = (_is_quantized) ? _mm_gemmlowp->workspace() : _mm_gemm->workspace();
+ for(unsigned int i = 0; i < gemm_mem_req.size(); ++i)
+ {
+ _aux_mem[i] = gemm_mem_req[i];
+ }
+ if(_aux_mem[1].size > 0 || _aux_mem[2].size > 0) // Persistent weights memory on GEMMs
+ {
+ // Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
+ _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), MemoryLifetime::Prepare, _reshaped_weights.total_size());
+ _aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), MemoryLifetime::Prepare, _converted_weights.total_size());
+ }
+ else
+ {
+ // Release permuted weights at the of prepare as they are further transposed by the assembly dispatch
+ const auto transposed_wei_lft = (_weights_to_use_idx == offset_int_vec(TransposedWeights)) ? MemoryLifetime::Persistent : MemoryLifetime::Prepare;
+ const auto converted_wei_lft = (_weights_to_use_idx == offset_int_vec(ConvertedWeights)) ? MemoryLifetime::Persistent : MemoryLifetime::Prepare;
+
+ _aux_mem[TransposedWeights] = MemoryInfo(offset_int_vec(TransposedWeights), transposed_wei_lft, _reshaped_weights.total_size());
+ _aux_mem[ConvertedWeights] = MemoryInfo(offset_int_vec(ConvertedWeights), converted_wei_lft, _converted_weights.total_size());
+ }
+ _aux_mem[FlattenedSrc] = MemoryInfo(offset_int_vec(FlattenedSrc), MemoryLifetime::Temporary, _flattened_src.total_size());
+}
+
+Status ClFullyConnected::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
+ FullyConnectedLayerInfo fc_info)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
+ ARM_COMPUTE_RETURN_ERROR_ON(fc_info.activation_info.enabled() && is_data_type_quantized(src->data_type()) && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::RELU
+ && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::BOUNDED_RELU && fc_info.activation_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU);
+ ARM_COMPUTE_RETURN_ERROR_ON(!fc_info.constant_weights && (!fc_info.are_weights_reshaped || fc_info.transpose_weights));
+
+ bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
+ bool is_fc_after_conv = true;
+
+ const ITensorInfo &flatten_src = TensorInfo(src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(src)).set_data_layout(DataLayout::NCHW));
+ const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
+ const ITensorInfo &converted_weights = weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding()) : TensorInfo(*reshaped_weights.clone());
+
+ // With the Fully Connected layer we can have 4 different cases:
+ // 1) Convolution layer -> Fully Connected layer without batches
+ // 2) Fully Connected layer -> Fully Connected layer without batches
+ // 3) Convolution layer -> Fully Connected layer with batches
+ // 4) Fully Connected layer -> Fully Connected layer with batches
+
+ const ITensorInfo *src_to_use = src;
+ const ITensorInfo *weights_to_use = weights;
+
+ // Check if we have a fully connected layer with batches
+ const bool is_batched_fc_layer = dst->dimension(1) > 1;
+ if(is_batched_fc_layer)
+ {
+ is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(src->tensor_shape().cbegin() + 3,
+ src->tensor_shape().cend(),
+ dst->tensor_shape().cbegin() + 1));
+ }
+ else
+ {
+ is_fc_after_conv = src->num_dimensions() > 1;
+ }
+
+ if(!weights_reshaped)
+ {
+ // Validate reshape weights kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(ClTranspose::validate(weights, &reshaped_weights));
+ weights_to_use = &reshaped_weights;
+ }
+
+ if(is_fc_after_conv && (src->data_layout() != fc_info.weights_trained_layout))
+ {
+ // Validate convert weights kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(ClConvertFullyConnectedWeights::validate(weights_to_use,
+ &converted_weights,
+ src->tensor_shape(),
+ fc_info.weights_trained_layout));
+ weights_to_use = &converted_weights;
+ }
+
+ if(is_fc_after_conv)
+ {
+ // Fully Connected layer after a Convolution Layer without batches
+ ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (src->dimension(0) * src->dimension(1) * src->dimension(2))));
+
+ // Validate flatten kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(ClFlatten::validate(src, &flatten_src));
+ src_to_use = &flatten_src;
+ }
+ else
+ {
+ // Fully Connected layer after a Fully Connected Layer without batches
+ ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != weights_to_use->dimension(1));
+ }
+
+ // Validate matrix multiply kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(*src_to_use, *weights_to_use, biases, *dst, fc_info));
+
+ return Status{};
+}
+
+void ClFullyConnected::run(ITensorPack &tensors)
+{
+ prepare(tensors);
+
+ auto src = tensors.get_const_tensor(ACL_SRC_0);
+
+ CLAuxTensorHandler flattened_src(offset_int_vec(FlattenedSrc), _flattened_src, tensors, false);
+ CLAuxTensorHandler weights(_weights_to_use_idx, _weights_to_use, tensors, false);
+
+ // Linearize input if it comes from a convolutional layer
+ if(_is_fc_after_conv)
+ {
+ ITensorPack flatten_pack{ { ACL_SRC, src }, { ACL_DST, flattened_src.get() } };
+ _flatten->run(flatten_pack);
+ }
+
+ ITensorPack gemm_pack = tensors;
+ gemm_pack.add_const_tensor(ACL_SRC_0, (_is_fc_after_conv) ? flattened_src.get() : src);
+ if(_weights_to_use_idx != ACL_SRC_1)
+ {
+ gemm_pack.add_const_tensor(ACL_SRC_1, weights.get());
+ }
+
+ // Run matrix multiply
+ if(_is_quantized)
+ {
+ _mm_gemmlowp->run(gemm_pack);
+ }
+ else
+ {
+ _mm_gemm->run(gemm_pack);
+ }
+}
+
+void ClFullyConnected::prepare(ITensorPack &tensors)
+{
+ if(!_is_prepared)
+ {
+ auto weights = tensors.get_const_tensor(ACL_SRC_1);
+
+ CLAuxTensorHandler reshaped_weights(offset_int_vec(TransposedWeights), _reshaped_weights, tensors, false);
+ CLAuxTensorHandler converted_weights(offset_int_vec(ConvertedWeights), _converted_weights, tensors, false);
+
+ // Pointer to current weights
+ const ITensor *cur_weights = weights;
+
+ // Reshape of the weights if needed (happens only once)
+ if(!_are_weights_reshaped)
+ {
+ // Run reshape weights kernel and mark weights as unused
+ ITensorPack transpose_pack{ { ACL_SRC, weights }, { ACL_DST, reshaped_weights.get() } };
+ _reshape_weights->run(transpose_pack);
+
+ cur_weights->mark_as_unused();
+ cur_weights = reshaped_weights.get();
+
+ _are_weights_reshaped = true;
+ }
+
+ // Convert weights if needed (happens only once)
+ if(!_are_weights_converted)
+ {
+ ITensorPack convert_pack{ { ACL_SRC, cur_weights }, { ACL_DST, converted_weights.get() } };
+ _convert_weights->run(convert_pack);
+
+ cur_weights->mark_as_unused();
+ cur_weights = converted_weights.get();
+
+ _are_weights_converted = true;
+ }
+
+ tensors.add_const_tensor(ACL_SRC_1, cur_weights);
+
+ // Prepare GEMM prepare and release unused weights
+ if(!_is_quantized)
+ {
+ _mm_gemm->prepare(tensors);
+ }
+ else
+ {
+ _mm_gemmlowp->prepare(tensors);
+ }
+ _is_prepared = true;
+ }
+}
+
+experimental::MemoryRequirements ClFullyConnected::workspace() const
+{
+ return _aux_mem;
+}
+} // namespace opencl
+} // namespace arm_compute