aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/operators/internal/CpuGemmAssemblyDispatch.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/operators/internal/CpuGemmAssemblyDispatch.cpp')
-rw-r--r--src/cpu/operators/internal/CpuGemmAssemblyDispatch.cpp1138
1 files changed, 1138 insertions, 0 deletions
diff --git a/src/cpu/operators/internal/CpuGemmAssemblyDispatch.cpp b/src/cpu/operators/internal/CpuGemmAssemblyDispatch.cpp
new file mode 100644
index 0000000000..7d85885654
--- /dev/null
+++ b/src/cpu/operators/internal/CpuGemmAssemblyDispatch.cpp
@@ -0,0 +1,1138 @@
+/*
+ * Copyright (c) 2018-2024 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/cpu/operators/internal/CpuGemmAssemblyDispatch.h"
+
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+
+#include "src/core/CPP/Validate.h"
+#include "src/core/helpers/MemoryHelpers.h"
+#include "src/core/NEON/kernels/arm_gemm/utils.hpp"
+#include "src/core/utils/AssemblyUtils.h"
+#include "src/cpu/kernels/assembly/arm_gemm.hpp"
+#include "src/cpu/kernels/assembly/CpuGemmAssemblyWrapperKernel.h"
+#include "src/cpu/operators/CpuTranspose.h"
+#include "src/cpu/utils/CpuAuxTensorHandler.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace
+{
+/** Run pretranspose_B_array in parallel (1D static scheduling)
+ *
+ * @tparam TypeInput
+ * @tparam TypeOutput
+ *
+ * @param[in] gemm_asm GemmCommon kernel to run
+ * @param[in] dst Pretransposed B array
+ * @param[in] src B array to be pretransposed
+ * @param[in] src_ld Stride in y
+ * @param[in] src_multi_stride Stride in z ("multi")
+ * @param[in] num_threads Number of threads to run this method. Must be >= 1
+ */
+template <typename TypeInput, typename TypeOutput>
+void run_parallel_pretranspose_B_array(arm_gemm::GemmCommon<TypeInput, TypeOutput> *gemm_asm,
+ ITensor *dst,
+ const TypeInput *src,
+ int src_ld,
+ int src_multi_stride,
+ unsigned int num_threads,
+ bool transpose)
+{
+ ARM_COMPUTE_ERROR_ON(gemm_asm == nullptr);
+ ARM_COMPUTE_ERROR_ON(num_threads == 0);
+ // The window size is also the total workload size
+ const unsigned int wsize = gemm_asm->get_B_pretranspose_window_size();
+
+ std::vector<IScheduler::Workload> workloads(num_threads);
+ for (unsigned int t = 0; t < num_threads; ++t)
+ {
+ workloads[t] = [=](const ThreadInfo &info)
+ {
+ const unsigned int start = (info.thread_id * wsize) / num_threads;
+ const unsigned int end = ((info.thread_id + 1) * wsize) / num_threads;
+
+ if (start < end)
+ {
+ gemm_asm->pretranspose_B_array_part(dst->buffer(), src, src_ld, src_multi_stride, transpose, start,
+ end);
+ }
+ };
+ }
+ NEScheduler::get().run_tagged_workloads(workloads, "CpuGemmAssemblyDispatch/pretranspose_B_array");
+}
+} // namespace
+
+using namespace arm_compute::experimental;
+
+namespace
+{
+struct free_delete
+{
+ void operator()(void *x)
+ {
+ free(x);
+ }
+};
+
+struct Params
+{
+ unsigned int M;
+ unsigned int N;
+ unsigned int K;
+ unsigned int batches;
+ unsigned int multis;
+ unsigned int sections;
+ bool indirect;
+};
+
+Params extract_parameters(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *d, const AsmGemmInfo &info)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, d);
+ Params p;
+ p.M = d->tensor_shape().y();
+ p.K = a->tensor_shape().x();
+ p.N = d->tensor_shape().x();
+ p.batches = 1;
+ p.multis = 1;
+ p.sections = 1;
+ p.indirect = false;
+
+ if (info.method == AsmConvMethod::Conv || info.method == AsmConvMethod::Indirect)
+ {
+ p.indirect = true;
+ p.sections = b->tensor_shape()[2] * b->tensor_shape()[3];
+ }
+ else
+ {
+ p.multis = b->tensor_shape().z();
+ p.batches = d->tensor_shape().total_size_upper(2) / p.multis;
+ }
+
+ // Update M in case of GEMM3D for output
+ if (info.depth_output_gemm3d != 0)
+ {
+ p.M = d->tensor_shape().y() * d->tensor_shape().z();
+ p.batches = d->tensor_shape().total_size_upper(3) / p.multis;
+ }
+
+ return p;
+}
+
+IScheduler::Hints scheduling_hint_heuristic(arm_gemm::GemmMethod method, DataType data_type)
+{
+ // Schedule assembly kernel
+ const int granule_threshold = 200;
+ IScheduler::Hints scheduling_hint = IScheduler::Hints(Window::DimX);
+ if (method == arm_gemm::GemmMethod::GEMM_INTERLEAVED && data_type == DataType::F32)
+ {
+ scheduling_hint = IScheduler::Hints(Window::DimX, IScheduler::StrategyHint::DYNAMIC, granule_threshold);
+ }
+ else if (method == arm_gemm::GemmMethod::GEMM_INTERLEAVED_2D &&
+ (data_type == DataType::F32 || data_type == DataType::F16 || data_type == DataType::U8 ||
+ data_type == DataType::S8))
+ {
+ //GEMM_INTERLEAVED supports 2D parallelism, IScheduler::split_dimensions_all signals to parallelise over all window dimensions
+ scheduling_hint =
+ IScheduler::Hints(IScheduler::split_dimensions_all, IScheduler::StrategyHint::STATIC, granule_threshold);
+ }
+ else if (method == arm_gemm::GemmMethod::QUANTIZE_WRAPPER_2D &&
+ (data_type == DataType::QASYMM8 || data_type == DataType::QASYMM8_SIGNED))
+ {
+ //special case for QASYMM8 to support 2D parallelism, scheduler here may be tweaked differently compared to FP32 case
+ scheduling_hint =
+ IScheduler::Hints(IScheduler::split_dimensions_all, IScheduler::StrategyHint::STATIC, granule_threshold);
+ }
+
+ return scheduling_hint;
+}
+
+/** Fallback in case ACL doesn't have a function */
+template <typename TypeInput, typename TypeOutput, class OutputStage = arm_gemm::Nothing>
+class Fallback : public CpuGemmAssemblyDispatch::IFallback
+{
+public:
+ /** Destructor */
+ ~Fallback() = default;
+
+ /** Initialise the functions's input and output.
+ *
+ * @param[in] a Input tensor containing the Matrix A.
+ * @param[in] b Input tensor containing the Matrix B.
+ * @param[in] c Input tensor containing the Matrix C.
+ * @param[out] d Output tensor to store the result of matrix multiplication.
+ * @param[in] args Matrix multiplication information.
+ * @param[in] gemm_info GEMM meta-data
+ * @param[in] os Output stage meta-data.
+ */
+ void configure(const ITensorInfo *a,
+ const ITensorInfo *b,
+ const ITensorInfo *c,
+ ITensorInfo *d,
+ arm_gemm::GemmArgs args,
+ const AsmGemmInfo &gemm_info,
+ const OutputStage &os = {});
+
+ /** Set requantization shifts to be used
+ *
+ * @param[in] shifts Requantization shifts
+ *
+ * @return Pointer to the shift data
+ */
+ /** Set requantization data to be used
+ *
+ *
+ * @param shifts Requantization shifts
+ * @param multipliers Requantization multipliers
+ *
+ * @return A tuple with the pointers to the shift and multiplier data respectively
+ */
+ std::tuple<bool, const int32_t *, const int32_t *, const int32_t *>
+ set_requantize_data(const std::vector<int32_t> &shifts, const std::vector<int32_t> &multipliers);
+
+ // Inherited methods overridden:
+ void run(ITensorPack &tensors) override;
+ void prepare(ITensorPack &tensors) override;
+ bool is_configured() const override;
+ experimental::MemoryRequirements workspace() const override;
+ bool isVarWeightsKernel() const override
+ {
+ if (!_gemm_kernel_asm)
+ return false;
+ const arm_compute::WeightFormat wf =
+ assembly_utils::map_to_arm_compute_weight_format(_gemm_kernel_asm->get_config().weight_format);
+ return wf != arm_compute::WeightFormat::UNSPECIFIED && wf != arm_compute::WeightFormat::ANY;
+ }
+
+private:
+ enum AuxTensorIdx
+ {
+ AsmGemmWorkspace = 0,
+ PrePretransposedB, /* Transposed B (rhs) before being passed to gemm or pretranspose_B_array */
+ Pretranspose,
+ Count
+ };
+
+ /** Configure the indirect buffer
+ *
+ * @param[in] a Input tensor containing the Matrix A.
+ * @param[in] b Input tensor containing the Matrix B.
+ * @param[out] d Output tensor to store the result of matrix multiplication.
+ * @param[in] info GEMM meta-data
+ */
+ void configure_indirect(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *d, const AsmGemmInfo &info);
+ /** Prepare the indirect buffer */
+ void prepare_indirect_buffer(ITensorPack &tensors);
+
+ /** Operator to transpose B before gemm or pretranspose_B_array*/
+ std::unique_ptr<CpuTranspose> _pre_pretranspose_b{nullptr};
+ /** Assembly Gemm kernel */
+ std::shared_ptr<arm_gemm::GemmCommon<TypeInput, TypeOutput>> _gemm_kernel_asm{nullptr};
+ /** Optimised Arm® Neon™ kernel */
+ std::unique_ptr<INEKernel> _optimised_kernel{nullptr};
+ /** Assembly GEMM workspace tensor info */
+ TensorInfo _workspace_info{};
+ /** Pre-pre-transposed B tensor info */
+ TensorInfo _pre_pretransposed_b_info{};
+ /** Pre-transpose tensor info */
+ TensorInfo _pretranspose_info{};
+ /** Prepared flag */
+ bool _is_prepared{false};
+ /** GEMM meta-data */
+ AsmGemmInfo _gemm_info{};
+ /** GEMM kernel description */
+ arm_gemm::KernelDescription _kernel_info{};
+ /** Per channel quantization shifts */
+ std::vector<int32_t> _shifts{};
+ std::vector<int32_t> right_shifts{};
+ std::vector<int32_t> left_shifts{};
+ /** Per channel quantization multipliers */
+ std::vector<int32_t> _multipliers{};
+ /** Indirect buffer */
+ std::unique_ptr<const TypeInput *const *, free_delete> _indirect_arg{};
+ std::unique_ptr<const TypeInput *, free_delete> _indirect_buf{};
+ std::vector<TypeInput> _indirect_pad{};
+ arm_gemm::ConvolutionParameters _cp{};
+ experimental::MemoryRequirements _aux_mem{Count};
+ bool _B_pretranspose_required{false};
+ bool _is_b_constant{true};
+ bool _is_c_constant{true};
+ bool _run_pre_pretranspose_b{false};
+ bool _B_pre_pretranspose_required{false};
+};
+
+template <typename TypeInput, typename TypeOutput, class OutputStage>
+std::tuple<bool, const int32_t *, const int32_t *, const int32_t *>
+Fallback<TypeInput, TypeOutput, OutputStage>::set_requantize_data(const std::vector<int32_t> &shifts,
+ const std::vector<int32_t> &multipliers)
+{
+ _multipliers = multipliers;
+ _shifts = shifts;
+ bool need_left = false;
+ for (const auto s : _shifts)
+ {
+ left_shifts.push_back(std::max(-s, int32_t(0)));
+ right_shifts.push_back(std::min(-s, int32_t(0)));
+ if (s < 0 && !need_left)
+ {
+ need_left = true;
+ }
+ }
+ return std::make_tuple(need_left, left_shifts.data(), right_shifts.data(), _multipliers.data());
+}
+
+template <typename TypeInput, typename TypeOutput, class OutputStage>
+void Fallback<TypeInput, TypeOutput, OutputStage>::prepare_indirect_buffer(ITensorPack &tensors)
+{
+ auto a = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+ const TypeInput *A_ptr = reinterpret_cast<TypeInput *>(a->buffer());
+ const int multis = 1;
+ const int batches = a->info()->tensor_shape().total_size_upper(3);
+ const size_t stride_A = a->info()->strides_in_bytes().y() / sizeof(TypeInput);
+ const size_t batch_stride_A = a->info()->strides_in_bytes()[3] / sizeof(TypeInput);
+ const size_t multi_stride_A = a->info()->strides_in_bytes()[4] / sizeof(TypeInput);
+
+ const size_t output_hw = _cp.output_height * _cp.output_width;
+ const int batch_size = _cp.kernel_height * _cp.kernel_width * output_hw * sizeof(TypeInput);
+ const size_t batch_stride = batch_size / sizeof(TypeInput);
+ const int multi_size = batch_size * batches;
+ const size_t multi_stride = multi_size / sizeof(TypeInput);
+
+ for (int64_t m = 0; m < multis; m++)
+ {
+ for (int64_t b = 0; b < batches; b++)
+ {
+ for (int64_t output_y = 0; output_y < _cp.output_height; output_y++)
+ {
+ for (int64_t output_x = 0; output_x < _cp.output_width; output_x++)
+ {
+ int64_t output_xy = (output_y * _cp.output_width) + output_x;
+
+ for (int64_t kernel_y = 0; kernel_y < _cp.kernel_height; kernel_y++)
+ {
+ for (int64_t kernel_x = 0; kernel_x < _cp.kernel_width; kernel_x++)
+ {
+ int64_t input_x = (output_x * _cp.output_stride_w) + kernel_x - _cp.padding_left;
+ int64_t input_y = (output_y * _cp.output_stride_h) + kernel_y - _cp.padding_top;
+ int64_t kernel_xy = (kernel_y * _cp.kernel_width) + kernel_x;
+ int64_t input_xy = (input_y * _cp.input_width) + input_x;
+
+ if (input_x < 0 || input_x >= _cp.input_width || input_y < 0 || input_y >= _cp.input_height)
+ {
+ _indirect_buf
+ .get()[m * multi_stride + b * batch_stride + kernel_xy * output_hw + output_xy] =
+ _indirect_pad.data();
+ }
+ else
+ {
+ _indirect_buf
+ .get()[m * multi_stride + b * batch_stride + kernel_xy * output_hw + output_xy] =
+ A_ptr + (m * multi_stride_A + b * batch_stride_A + input_xy * stride_A);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+template <typename TypeInput, typename TypeOutput, class OutputStage>
+void Fallback<TypeInput, TypeOutput, OutputStage>::configure_indirect(const ITensorInfo *a,
+ const ITensorInfo *b,
+ const ITensorInfo *d,
+ const AsmGemmInfo &info)
+{
+ ARM_COMPUTE_ERROR_ON(!(info.method == AsmConvMethod::Conv || info.method == AsmConvMethod::Indirect));
+
+ float zeropad = 0.f;
+ if (is_data_type_quantized(a->data_type()))
+ {
+ zeropad = a->quantization_info().uniform().offset;
+ }
+
+ const int64_t input_width = static_cast<int64_t>(a->tensor_shape()[1]);
+ const int64_t input_height = static_cast<int64_t>(a->tensor_shape()[2]);
+ const int64_t input_channels = static_cast<int64_t>(a->tensor_shape()[0]);
+ const int64_t kernel_width = static_cast<int64_t>(b->tensor_shape()[2]);
+ const int64_t kernel_height = static_cast<int64_t>(b->tensor_shape()[3]);
+ const int64_t output_width = static_cast<int64_t>(d->tensor_shape()[1]);
+ const int64_t output_height = static_cast<int64_t>(d->tensor_shape()[2]);
+
+ _cp = {input_width,
+ input_height,
+ input_channels,
+ kernel_width,
+ kernel_height,
+ output_width,
+ output_height,
+ info.ps_info.stride().first,
+ info.ps_info.stride().second,
+ info.padding_top,
+ info.padding_left,
+ zeropad};
+
+ if (info.method == AsmConvMethod::Conv)
+ {
+ _gemm_kernel_asm->set_convolution_parameters(_cp);
+ }
+
+ if (info.method == AsmConvMethod::Indirect)
+ {
+ const unsigned int multis = 1;
+ const unsigned int batches = a->tensor_shape().total_size_upper(3);
+ const unsigned int kernel_hw = _cp.kernel_width * _cp.kernel_height;
+ const unsigned int output_hw = _cp.output_width * _cp.output_height;
+
+ using TypeInputPtr = TypeInput *;
+ const int batch_size = kernel_hw * output_hw * sizeof(TypeInputPtr);
+ const size_t batch_stride = batch_size / sizeof(TypeInputPtr);
+ const int multi_size = batch_size * batches;
+ const size_t multi_stride = multi_size / sizeof(TypeInputPtr);
+
+ _indirect_buf = std::unique_ptr<const TypeInput *, free_delete>(
+ reinterpret_cast<const TypeInput **>(malloc(multi_size * multis)));
+ _indirect_arg = std::unique_ptr<const TypeInput *const *, free_delete>(
+ reinterpret_cast<const TypeInput *const **>(malloc(sizeof(TypeInput **) * kernel_hw * multis * batches)));
+ _indirect_pad = std::vector<TypeInput>(_cp.input_channels, TypeInput(zeropad));
+
+ // Set indirect argument
+ int64_t pos = 0;
+ for (int64_t m = 0; m < multis; m++)
+ {
+ for (int64_t b = 0; b < batches; b++)
+ {
+ for (int64_t kernel_xy = 0; kernel_xy < kernel_hw; kernel_xy++)
+ {
+ (_indirect_arg.get())[pos++] =
+ _indirect_buf.get() + m * multi_stride + b * batch_stride + kernel_xy * output_hw;
+ }
+ }
+ }
+
+ _gemm_kernel_asm->set_indirect_parameters(a->tensor_shape()[0], _indirect_arg.get());
+ }
+}
+
+template <typename TypeInput, typename TypeOutput, class OutputStage>
+void Fallback<TypeInput, TypeOutput, OutputStage>::configure(const ITensorInfo *a,
+ const ITensorInfo *b,
+ const ITensorInfo *c,
+ ITensorInfo *d,
+ arm_gemm::GemmArgs args,
+ const AsmGemmInfo &gemm_info,
+ const OutputStage &os)
+{
+ _is_b_constant = b->are_values_constant();
+ _is_c_constant = c ? c->are_values_constant() : true;
+
+ _gemm_kernel_asm = arm_gemm::gemm<TypeInput, TypeOutput, OutputStage>(args, os);
+ if (_gemm_kernel_asm == nullptr)
+ {
+ //configuration not supported: Leave function unconfigured:
+ return;
+ }
+
+ arm_gemm::GemmConfig gemm_cfg = _gemm_kernel_asm->get_config();
+
+ // arm_compute wrapper for the Gemm object (see above)
+ auto acl_gemm_wrapper = std::make_unique<kernel::CpuGemmAssemblyWrapperKernel<TypeInput, TypeOutput>>();
+ ARM_COMPUTE_ERROR_ON(acl_gemm_wrapper == nullptr);
+ acl_gemm_wrapper->configure(_gemm_kernel_asm.get(), gemm_cfg.filter);
+ const size_t workspace_size = _gemm_kernel_asm->get_working_size();
+ const unsigned int alignment = 4096;
+ _workspace_info = TensorInfo(TensorShape(workspace_size), 1, DataType::U8);
+ _aux_mem[AsmGemmWorkspace] =
+ MemoryInfo(offset_int_vec(AsmGemmWorkspace), MemoryLifetime::Temporary, workspace_size, alignment);
+
+ //if we disable this code below in brackets then ConvLayer deadlocks when threads > 1 and
+ //the shapes are In=1x1x1024 Weights=1x1x1024x1001 Biases=1001 Out=1x1x1001
+ {
+ const unsigned int window_size = _gemm_kernel_asm->get_window_size().total_size();
+ if (window_size < static_cast<unsigned int>(args._maxthreads))
+ {
+ _gemm_kernel_asm->set_nthreads(window_size);
+ }
+ }
+
+ _optimised_kernel = std::move(acl_gemm_wrapper);
+ _gemm_info = gemm_info;
+
+ // Check if we need to pre-pretranspose B. Fixed format kernels need no pre-pretranspose.
+ _B_pre_pretranspose_required = _gemm_info.transpose_b && !isVarWeightsKernel();
+ _B_pretranspose_required = _gemm_kernel_asm->B_pretranspose_required();
+
+ const bool kernel_supports_transpose = _gemm_kernel_asm->B_pretranspose_supports_transpose();
+ const bool kernel_can_fuse_transpose = _B_pretranspose_required && kernel_supports_transpose;
+ _run_pre_pretranspose_b = _B_pre_pretranspose_required && !kernel_can_fuse_transpose;
+
+ if (_run_pre_pretranspose_b)
+ {
+ _pre_pretranspose_b = std::make_unique<CpuTranspose>();
+ _pre_pretranspose_b->configure(b, &_pre_pretransposed_b_info);
+ MemoryLifetime lifetime;
+ if (_is_b_constant)
+ {
+ if (_B_pretranspose_required)
+ {
+ // PrePretransposedB tensor is only used in prepare(), but is then succeeded by Pretranspose
+ // So PrePretransposedB can be freed inside prepare()
+ lifetime = MemoryLifetime::Prepare;
+ }
+ else
+ {
+ // PrePretransposedB tensor is only used in prepare(), but is the final transformation of B
+ // So PrePretransposedB needs to persist beyond prepare()
+ lifetime = MemoryLifetime::Persistent;
+ }
+ }
+ else
+ {
+ // PrePretransposedB tensor is always used in run() and doesn't need to persist
+ lifetime = MemoryLifetime::Temporary;
+ }
+ // Forcing 128-byte alignment (required by 32-bit kernels)
+ const unsigned int alignment = 128;
+ _aux_mem[PrePretransposedB] =
+ MemoryInfo(offset_int_vec(PrePretransposedB), lifetime, _pre_pretransposed_b_info.total_size(), alignment);
+ }
+
+ // Check for pre-transposed support
+ if (_B_pretranspose_required)
+ {
+ // Fixed format kernels need no pretranspose.
+ ARM_COMPUTE_ERROR_ON(arm_compute::is_fixed_format(
+ assembly_utils::map_to_arm_compute_weight_format(_gemm_kernel_asm->get_config().weight_format)));
+ // Forcing 128-byte alignment (required by 32-bit kernels)
+ const unsigned int alignment = 128;
+ const size_t B_pretranspose_size = _gemm_kernel_asm->get_B_pretransposed_array_size();
+ _pretranspose_info = TensorInfo(TensorShape(B_pretranspose_size), 1, DataType::U8);
+ _aux_mem[Pretranspose] =
+ MemoryInfo(offset_int_vec(Pretranspose), MemoryLifetime::Persistent, B_pretranspose_size, alignment);
+ }
+
+ // Handle indirect GEMM convolution
+ if (gemm_info.method == AsmConvMethod::Conv || gemm_info.method == AsmConvMethod::Indirect)
+ {
+ configure_indirect(a, b, d, gemm_info);
+ }
+
+ if (std::is_same<OutputStage, arm_gemm::DequantizeFloat>::value)
+ {
+ // Output dequantization is just the two src scales multiplied together
+ _gemm_kernel_asm->set_dequantize_scale(a->quantization_info().uniform().scale *
+ b->quantization_info().uniform().scale);
+ }
+}
+
+template <typename TypeInput, typename TypeOutput, class OutputStage>
+void Fallback<TypeInput, TypeOutput, OutputStage>::prepare(ITensorPack &tensors)
+{
+ if (!_is_prepared)
+ {
+ auto b = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+ auto c = tensors.get_const_tensor(TensorType::ACL_SRC_2);
+ ARM_COMPUTE_ERROR_ON_NULLPTR(b);
+
+ // Setup up matrix bias in the assembly kernel, it's just a pointer to matrix C.
+ if (c && c->info()->data_type() == DataType::S32)
+ {
+ _gemm_kernel_asm->set_quantized_bias(
+ reinterpret_cast<const int32_t *>(c->buffer() + c->info()->offset_first_element_in_bytes()), 0);
+ }
+ const ITensor *b_to_use = b;
+
+ // Pre-pretranspose B if required
+ CpuAuxTensorHandler pre_pretransposed_b(
+ offset_int_vec(PrePretransposedB), _pre_pretransposed_b_info, tensors,
+ /*pack_inject: no need to inject into tensors*/
+ false,
+ /*bypass_alloc: no need to allocate if pre-pretranspose B is not required as this handle will not be used*/
+ !_run_pre_pretranspose_b);
+
+ if (_run_pre_pretranspose_b)
+ {
+ ARM_COMPUTE_ERROR_ON(_pre_pretranspose_b == nullptr);
+ ITensorPack pre_pretranspose_pack{{ACL_SRC, b_to_use}, {ACL_DST, pre_pretransposed_b.get()}};
+ _pre_pretranspose_b->run(pre_pretranspose_pack);
+ b_to_use = pre_pretransposed_b.get();
+ }
+
+ // Pretranspose B if required
+ if (_B_pretranspose_required)
+ {
+ // Fixed format kernels need no pretranspose.
+ ARM_COMPUTE_ERROR_ON(arm_compute::is_fixed_format(
+ assembly_utils::map_to_arm_compute_weight_format(_gemm_kernel_asm->get_config().weight_format)));
+ const int ldb = b_to_use->info()->strides_in_bytes().y() / b_to_use->info()->element_size();
+ const auto in1_ptr = reinterpret_cast<const TypeInput *>(b_to_use->buffer() +
+ b_to_use->info()->offset_first_element_in_bytes());
+ const int multi_stride_b = b_to_use->info()->strides_in_bytes().z() / b_to_use->info()->element_size();
+
+ CpuAuxTensorHandler pretranspose(offset_int_vec(Pretranspose), _pretranspose_info, tensors, false);
+
+ ARM_COMPUTE_ERROR_ON(pretranspose.get()->buffer() == nullptr);
+
+ const bool kernel_supports_transpose = _gemm_kernel_asm->B_pretranspose_supports_transpose();
+ run_parallel_pretranspose_B_array<TypeInput, TypeOutput>(
+ _gemm_kernel_asm.get(), pretranspose.get(), in1_ptr, ldb, multi_stride_b,
+ NEScheduler::get().num_threads(), _B_pre_pretranspose_required && kernel_supports_transpose);
+
+ b->mark_as_unused();
+ // Note that we don't need to mark b_to_use as unused, as if it's been assigned to pre_pretransposed_b,
+ // its memory will be auto-managed by the handler
+ }
+
+ if (_gemm_info.method == AsmConvMethod::Indirect)
+ {
+ prepare_indirect_buffer(tensors);
+ }
+
+ _is_prepared = true;
+ }
+}
+
+template <typename TypeInput, typename TypeOutput, class OutputStage>
+bool Fallback<TypeInput, TypeOutput, OutputStage>::is_configured() const
+{
+ return _optimised_kernel != nullptr;
+}
+
+template <typename TypeInput, typename TypeOutput, class OutputStage>
+experimental::MemoryRequirements Fallback<TypeInput, TypeOutput, OutputStage>::workspace() const
+{
+ return _aux_mem;
+}
+
+template <typename TypeInput, typename TypeOutput, class OutputStage>
+void Fallback<TypeInput, TypeOutput, OutputStage>::run(ITensorPack &tensors)
+{
+ auto a = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+ auto b = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+ auto c = tensors.get_const_tensor(TensorType::ACL_SRC_2);
+ auto d = tensors.get_tensor(TensorType::ACL_DST);
+ ARM_COMPUTE_ERROR_ON_NULLPTR(a, d);
+
+ // Only update at runtime if the src quantization is dynamic
+ if (std::is_same<OutputStage, arm_gemm::DequantizeFloat>::value &&
+ (a->info()->quantization_info().is_dynamic() || b->info()->quantization_info().is_dynamic()))
+ {
+ // Output dequantization is just the two src scales multiplied together
+ _gemm_kernel_asm->set_dequantize_scale(a->info()->quantization_info().uniform().scale *
+ b->info()->quantization_info().uniform().scale);
+ }
+
+ int lda = a->info()->strides_in_bytes().y() / a->info()->element_size();
+ int ldb = 0;
+ const int ldd = d->info()->strides_in_bytes().y() / d->info()->element_size();
+
+ const size_t a_batch_idx = _gemm_info.reinterpret_input_as_3d != 0 ? 3 : 2;
+ const size_t a_multi_idx = a_batch_idx + 1;
+ const size_t d_batch_idx = _gemm_info.depth_output_gemm3d != 0 ? 3 : 2;
+ const size_t d_multi_idx = d_batch_idx + 1;
+
+ int batch_stride_a = a->info()->strides_in_bytes()[a_batch_idx] / a->info()->element_size();
+ const int batch_stride_d = d->info()->strides_in_bytes()[d_batch_idx] / d->info()->element_size();
+
+ int multi_stride_a = a->info()->strides_in_bytes()[a_multi_idx] / a->info()->element_size();
+ int multi_stride_b = 0;
+ const int multi_stride_d = d->info()->strides_in_bytes()[d_multi_idx] / d->info()->element_size();
+
+ auto in0_ptr = reinterpret_cast<const TypeInput *>(a->buffer() + a->info()->offset_first_element_in_bytes());
+ const TypeInput *in1_ptr = nullptr;
+ auto out_ptr = reinterpret_cast<TypeOutput *>(d->buffer() + d->info()->offset_first_element_in_bytes());
+
+ const ITensor *b_to_use = b;
+
+ // Pre-pretranspose B if required
+ CpuAuxTensorHandler pre_pretransposed_b(
+ offset_int_vec(PrePretransposedB), _pre_pretransposed_b_info, tensors,
+ false /*pack_inject: no need to inject into tensors*/,
+ !_run_pre_pretranspose_b /*bypass_alloc: no need to allocate if pre-pretranspose B is not required as this handle will not be used*/);
+ if (b_to_use && !_is_b_constant && _run_pre_pretranspose_b)
+ {
+ ARM_COMPUTE_ERROR_ON(_pre_pretranspose_b == nullptr);
+ ITensorPack pre_pretranspose_pack{{ACL_SRC, b_to_use}, {ACL_DST, pre_pretransposed_b.get()}};
+ _pre_pretranspose_b->run(pre_pretranspose_pack);
+ b_to_use = pre_pretransposed_b.get();
+ }
+
+ // Check if B is pre-tranposed and de-reference if not
+ if (b_to_use && !_gemm_kernel_asm->B_is_pretransposed())
+ {
+ ldb = b_to_use->info()->strides_in_bytes().y() / b_to_use->info()->element_size();
+ multi_stride_b = b_to_use->info()->strides_in_bytes().z() / b_to_use->info()->element_size();
+ in1_ptr =
+ reinterpret_cast<const TypeInput *>(b_to_use->buffer() + b_to_use->info()->offset_first_element_in_bytes());
+ }
+
+ // If necessary, run pretranspose every time if either weights or biases are non-constant
+ if ((b_to_use && !_is_b_constant) || (c && !_is_c_constant && c->info()->data_type() == DataType::S32))
+ {
+ if (c && c->info()->data_type() == DataType::S32)
+ {
+ _gemm_kernel_asm->set_quantized_bias(
+ reinterpret_cast<const int32_t *>(c->buffer() + c->info()->offset_first_element_in_bytes()), 0);
+ }
+
+ // Pretranspose B if required
+ if (b_to_use && _B_pretranspose_required)
+ {
+ // Fixed format kernels need no pretranspose.
+ ARM_COMPUTE_ERROR_ON(arm_compute::is_fixed_format(
+ assembly_utils::map_to_arm_compute_weight_format(_gemm_kernel_asm->get_config().weight_format)));
+ const int ldb = b_to_use->info()->strides_in_bytes().y() / b_to_use->info()->element_size();
+ const auto b_ptr = reinterpret_cast<const TypeInput *>(b_to_use->buffer() +
+ b_to_use->info()->offset_first_element_in_bytes());
+ const int multi_stride_b = b_to_use->info()->strides_in_bytes().z() / b_to_use->info()->element_size();
+
+ CpuAuxTensorHandler pretranspose(offset_int_vec(Pretranspose), _pretranspose_info, tensors, true);
+ ARM_COMPUTE_ERROR_ON(pretranspose.get()->buffer() == nullptr);
+
+ if (_is_b_constant)
+ {
+ _gemm_kernel_asm->requantize_bias(pretranspose.get()->buffer(), b_ptr, ldb, multi_stride_b);
+ }
+ else
+ {
+ const bool kernel_supports_transpose = _gemm_kernel_asm->B_pretranspose_supports_transpose();
+ run_parallel_pretranspose_B_array<TypeInput, TypeOutput>(
+ _gemm_kernel_asm.get(), pretranspose.get(), b_ptr, ldb, multi_stride_b,
+ NEScheduler::get().num_threads(), _B_pre_pretranspose_required && kernel_supports_transpose);
+ }
+ }
+ }
+
+ const auto scheduling_hint = scheduling_hint_heuristic(_kernel_info.method, d->info()->data_type());
+
+ // Set workspace if needed and reset number of threads as buffer manager gets re-created with max_threads
+ CpuAuxTensorHandler workspace(offset_int_vec(AsmGemmWorkspace), _workspace_info, tensors, false);
+ if (workspace.get()->buffer() != nullptr)
+ {
+ _gemm_kernel_asm->set_working_space(reinterpret_cast<void *>(workspace.get()->buffer()));
+ const unsigned int split_dim = scheduling_hint.split_dimension();
+ const unsigned int window_size = _gemm_kernel_asm->get_window_size().total_size();
+ unsigned int num_threads = NEScheduler::get().num_threads();
+ if (window_size < num_threads)
+ {
+ num_threads = window_size;
+ }
+ if (split_dim != IScheduler::split_dimensions_all)
+ {
+ // Make sure the kernel does not expect more threads than we can actually spawn
+ const unsigned int num_iterations = _optimised_kernel.get()->window().num_iterations(split_dim);
+ num_threads = std::min(num_iterations, num_threads);
+ }
+ _gemm_kernel_asm->set_nthreads(num_threads);
+ }
+
+ // Prepare assembly kernel
+ prepare(tensors);
+
+ // Setup up matrix bias in the assembly kernel, it's just a pointer to matrix C.
+ TypeOutput *bias = nullptr;
+ if (c && c->info()->data_type() != DataType::S32)
+ {
+ bias = reinterpret_cast<TypeOutput *>(c->buffer() + c->info()->offset_first_element_in_bytes());
+ }
+
+ if (_gemm_info.method == AsmConvMethod::Indirect)
+ {
+ in0_ptr = nullptr;
+ lda = 0;
+ batch_stride_a = 0;
+ multi_stride_a = 0;
+ }
+
+ // Set gemm parameters
+ _gemm_kernel_asm->set_arrays(in0_ptr, lda, batch_stride_a, multi_stride_a, in1_ptr, ldb, multi_stride_b, out_ptr,
+ ldd, batch_stride_d, multi_stride_d, bias, 0);
+ // Schedule
+ NEScheduler::get().schedule(_optimised_kernel.get(), scheduling_hint);
+}
+
+template <typename TypeInput, typename TypeOutput>
+void create_arm_gemm(std::unique_ptr<CpuGemmAssemblyDispatch::IFallback> &arm_gemm,
+ const ITensorInfo *a,
+ const ITensorInfo *b,
+ const ITensorInfo *c,
+ ITensorInfo *d,
+ arm_gemm::Activation activation,
+ const AsmGemmInfo &info)
+{
+ Params p = extract_parameters(a, b, d, info);
+ const CPUInfo &ci = NEScheduler::get().cpu_info();
+ unsigned int num_threads = NEScheduler::get().num_threads();
+
+ arm_gemm::GemmConfig cfg;
+ cfg.weight_format = assembly_utils::map_to_arm_gemm_weight_format(info.weight_format);
+ arm_gemm::GemmArgs args(&ci, p.M, p.N, p.K, p.sections, p.batches, p.multis, p.indirect, activation, num_threads,
+ info.fixed_format, info.fast_mode, info.accumulate, &cfg);
+
+ // Create arm_gemm fallback
+ auto fallback = std::make_unique<Fallback<TypeInput, TypeOutput>>();
+ fallback->configure(a, b, c, d, args, info);
+ arm_gemm = std::move(fallback);
+}
+
+template <typename TypeInput, typename TypeOutput>
+void create_arm_gemm_dequant(std::unique_ptr<CpuGemmAssemblyDispatch::IFallback> &arm_gemm,
+ const ITensorInfo *a,
+ const ITensorInfo *b,
+ const ITensorInfo *c,
+ ITensorInfo *d,
+ arm_gemm::Activation activation,
+ const AsmGemmInfo &info)
+{
+ ARM_COMPUTE_UNUSED(activation);
+
+ Params p = extract_parameters(a, b, d, info);
+ const CPUInfo &ci = NEScheduler::get().cpu_info();
+ const unsigned int num_threads = NEScheduler::get().num_threads();
+
+ arm_gemm::GemmConfig cfg;
+ cfg.weight_format = assembly_utils::map_to_arm_gemm_weight_format(info.weight_format);
+ arm_gemm::GemmArgs args(&ci, p.M, p.N, p.K, p.sections, p.batches, p.multis, p.indirect, activation, num_threads,
+ info.fixed_format, info.fast_mode, info.accumulate, &cfg);
+
+ // Create arm_gemm fallback
+ auto fallback = std::make_unique<Fallback<TypeInput, TypeOutput, arm_gemm::DequantizeFloat>>();
+
+ // Configure requantization info
+ const GEMMLowpOutputStageInfo os_info = info.output_stage;
+
+ arm_gemm::DequantizeFloat gemm_dequant_info{};
+ gemm_dequant_info = arm_gemm::DequantizeFloat(d->quantization_info().uniform().scale);
+
+ fallback->configure(a, b, c, d, args, info, gemm_dequant_info);
+ arm_gemm = std::move(fallback);
+}
+
+template <typename TypeInput, typename TypeOutput>
+void create_arm_gemm_quant(std::unique_ptr<CpuGemmAssemblyDispatch::IFallback> &arm_gemm,
+ const ITensorInfo *a,
+ const ITensorInfo *b,
+ const ITensorInfo *c,
+ ITensorInfo *d,
+ arm_gemm::Activation activation,
+ const AsmGemmInfo &info)
+{
+ ARM_COMPUTE_UNUSED(activation);
+ Params p = extract_parameters(a, b, d, info);
+ const CPUInfo &ci = NEScheduler::get().cpu_info();
+ const unsigned int num_threads = NEScheduler::get().num_threads();
+
+ arm_gemm::GemmConfig cfg;
+ cfg.weight_format = assembly_utils::map_to_arm_gemm_weight_format(info.weight_format);
+ arm_gemm::GemmArgs args(&ci, p.M, p.N, p.K, p.sections, p.batches, p.multis, p.indirect, activation, num_threads,
+ info.fixed_format, info.fast_mode, info.accumulate, &cfg);
+
+ // Create arm_gemm fallback
+ auto fallback = std::make_unique<Fallback<TypeInput, TypeOutput, arm_gemm::Requantize32>>();
+
+ // Configure requantization info
+ const int32_t negation = info.negated_offsets ? 1 : -1;
+ const int32_t a_offset = -a->quantization_info().uniform().offset * negation;
+ const int32_t b_offset = -b->quantization_info().uniform().offset * negation;
+ const GEMMLowpOutputStageInfo os_info = info.output_stage;
+
+ arm_gemm::Requantize32 gemm_requant_info{};
+ if (os_info.gemmlowp_shifts.size() > 1)
+ {
+ const auto requantize_data =
+ fallback->set_requantize_data(os_info.gemmlowp_shifts, os_info.gemmlowp_multipliers);
+ gemm_requant_info = arm_gemm::Requantize32(
+ nullptr, 0, a_offset, b_offset, os_info.gemmlowp_offset,
+ (std::get<0>(requantize_data)) ? std::get<1>(requantize_data) : nullptr, std::get<2>(requantize_data),
+ std::get<3>(requantize_data), os_info.gemmlowp_min_bound, os_info.gemmlowp_max_bound);
+ }
+ else
+ {
+ gemm_requant_info =
+ arm_gemm::Requantize32(nullptr, 0, a_offset, b_offset, os_info.gemmlowp_offset, -os_info.gemmlowp_shift,
+ os_info.gemmlowp_multiplier, os_info.gemmlowp_min_bound, os_info.gemmlowp_max_bound);
+ }
+
+ // Configure fallback
+ fallback->configure(a, b, c, d, args, info, gemm_requant_info);
+ arm_gemm = std::move(fallback);
+}
+} //namespace
+
+CpuGemmAssemblyDispatch::CpuGemmAssemblyDispatch() : _arm_gemm(nullptr)
+{
+}
+
+Status CpuGemmAssemblyDispatch::has_opt_impl(arm_compute::WeightFormat &expected_weight_format,
+ const ITensorInfo *a,
+ const ITensorInfo *b,
+ const ITensorInfo *c,
+ const ITensorInfo *d,
+ const AsmGemmInfo &info)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, d);
+ ARM_COMPUTE_UNUSED(c);
+ arm_gemm::Activation act = assembly_utils::map_to_arm_gemm_activation(info.activation_info);
+ Params p = extract_parameters(a, b, d, info);
+ const CPUInfo &ci = NEScheduler::get().cpu_info();
+ unsigned int num_threads = NEScheduler::get().num_threads();
+ arm_gemm::GemmConfig cfg;
+ cfg.weight_format = assembly_utils::map_to_arm_gemm_weight_format(info.weight_format);
+ arm_gemm::WeightFormat arm_gemm_expected_wf = assembly_utils::map_to_arm_gemm_weight_format(expected_weight_format);
+ arm_gemm::GemmArgs args(&ci, p.M, p.N, p.K, p.sections, p.batches, p.multis, p.indirect, act, num_threads,
+ info.fixed_format, info.fast_mode, info.accumulate, &cfg);
+ // TODO: Incorporate info.transpose_b COMPMID-6595
+ switch (a->data_type())
+ {
+ case DataType::F32:
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ !(arm_gemm::has_opt_gemm<float, float, arm_gemm::Nothing>(arm_gemm_expected_wf, args, {})),
+ "We could not find an optimized kernel for F32 input");
+ break;
+#ifdef __aarch64__
+ case DataType::U8:
+ case DataType::QASYMM8:
+ if (d->data_type() == DataType::S32)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ !(arm_gemm::has_opt_gemm<uint8_t, uint32_t, arm_gemm::Nothing>(arm_gemm_expected_wf, args, {})),
+ "We could not find an optimized kernel for U8/QASYMM8 input and U32 output");
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ !(arm_gemm::has_opt_gemm<uint8_t, uint8_t, arm_gemm::Requantize32>(arm_gemm_expected_wf, args, {})),
+ "We could not find an optimized kernel for U8 input and U8 output");
+ }
+ break;
+ case DataType::S8:
+ case DataType::QASYMM8_SIGNED:
+ if (d->data_type() == DataType::S32)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ !(arm_gemm::has_opt_gemm<int8_t, int32_t, arm_gemm::Nothing>(arm_gemm_expected_wf, args, {})),
+ "We could not find an optimized kernel for S8/QASYMM8_SIGNED input and S32 output");
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ !(arm_gemm::has_opt_gemm<int8_t, int8_t, arm_gemm::Requantize32>(arm_gemm_expected_wf, args, {})),
+ "We could not find an optimized kernel for S8 input and S8 output");
+ }
+ break;
+#endif /* __aarch64__ */
+#if defined(ARM_COMPUTE_ENABLE_BF16)
+ case DataType::BFLOAT16:
+ {
+ if (d->data_type() == DataType::BFLOAT16)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ !(arm_gemm::has_opt_gemm<bfloat16, bfloat16, arm_gemm::Nothing>(arm_gemm_expected_wf, args, {})),
+ "We could not find an optimized kernel for BFLOAT16 input and BFLOAT16 output");
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ !(arm_gemm::has_opt_gemm<bfloat16, float, arm_gemm::Nothing>(arm_gemm_expected_wf, args, {})),
+ "We could not find an optimized kernel for BFLOAT16 input and F32 output");
+ }
+ break;
+ }
+#endif /* defined(ARM_COMPUTE_ENABLE_BF16) */
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ case DataType::F16:
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ !(arm_gemm::has_opt_gemm<float16_t, float16_t, arm_gemm::Nothing>(arm_gemm_expected_wf, args, {})),
+ "We could not find an optimized kernel for F16 input and F16 output");
+ break;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+ default:
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(true, "Usupported type. Could not find a kernel");
+ break;
+ }
+ expected_weight_format = assembly_utils::map_to_arm_compute_weight_format(arm_gemm_expected_wf);
+
+ return Status{};
+}
+
+Status CpuGemmAssemblyDispatch::validate(
+ const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *d, const AsmGemmInfo &info)
+{
+ ARM_COMPUTE_UNUSED(c, info);
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(a, b, d);
+ ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(a);
+ ARM_COMPUTE_RETURN_ERROR_ON_CPU_BF16_UNSUPPORTED(a);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(!(info.reshape_b_only_on_first_run),
+ "Assembly kernel will not be executed when reshape_b_only_on_first_run is false");
+
+#ifndef __aarch64__
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->element_size() == 1, "8bit integer types only supported for aarch64");
+#endif /* __aarch64__ */
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::U8, DataType::QASYMM8,
+ DataType::QASYMM8_SIGNED, DataType::S8, DataType::BFLOAT16,
+ DataType::F16, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(
+ b, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL, DataType::S8,
+ DataType::BFLOAT16, DataType::F16, DataType::F32);
+ if (is_data_type_quantized_per_channel(b->data_type()))
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8_SIGNED, DataType::S8);
+ }
+ else if (is_fixed_format_fast_math(info.weight_format))
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(a, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(b, DataType::BFLOAT16);
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b);
+ }
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::F32 && d->data_type() != DataType::F32,
+ "Only F32 output supported for F32 input");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::F16 && d->data_type() != DataType::F16,
+ "Only F16 output supported for F16 input");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::BFLOAT16 &&
+ (d->data_type() != DataType::F32 && d->data_type() != DataType::BFLOAT16),
+ "Only F32/BFLOAT16 output supported for BFLOAT16 input");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::U8 && d->data_type() != DataType::U32,
+ "Only U32 output supported for U8 input");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::S8 && d->data_type() != DataType::S32,
+ "Only S32 output supported for S8 input");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::QASYMM8 &&
+ (d->data_type() != DataType::QASYMM8 && d->data_type() != DataType::S32),
+ "Only QASYMM8/S32 output supported for QASYMM8 input");
+ arm_compute::WeightFormat expected_weight_format = arm_compute::WeightFormat::UNSPECIFIED;
+ const Status ret = CpuGemmAssemblyDispatch::has_opt_impl(expected_weight_format, a, b, c, d, info);
+ if ((bool)ret && expected_weight_format != arm_compute::WeightFormat::ANY)
+ {
+ // Correctness check: if the format expected by the kernel is
+ // not "any", make sure that the one found matches the format
+ // intended by the caller.
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ (expected_weight_format != info.weight_format),
+ "The format expected by the kernel does not correspond with the one requested by the user.");
+ }
+ return ret;
+}
+
+bool CpuGemmAssemblyDispatch::is_activation_supported(const ActivationLayerInfo &activation)
+{
+ arm_gemm::Activation act = assembly_utils::map_to_arm_gemm_activation(activation);
+ return act.type != arm_gemm::Activation::Type::None;
+}
+
+void CpuGemmAssemblyDispatch::configure(
+ const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *d, const AsmGemmInfo &info)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, d);
+ arm_gemm::Activation act = assembly_utils::map_to_arm_gemm_activation(info.activation_info);
+
+ //If we don't support a combination of data types, silently return: it is the caller's responsibility to check if configure() was successful via is_configured()
+ if (!CpuGemmAssemblyDispatch::validate(a, b, c, d, info))
+ {
+ return;
+ }
+
+ switch (a->data_type())
+ {
+ case DataType::F32:
+ create_arm_gemm<float, float>(_arm_gemm, a, b, c, d, act, info);
+ break;
+#ifdef __aarch64__
+ case DataType::U8:
+ case DataType::QASYMM8:
+ if (d->data_type() == DataType::S32)
+ {
+ create_arm_gemm<uint8_t, uint32_t>(_arm_gemm, a, b, c, d, act, info);
+ }
+ else
+ {
+ create_arm_gemm_quant<uint8_t, uint8_t>(_arm_gemm, a, b, c, d, act, info);
+ }
+ break;
+ case DataType::S8:
+ case DataType::QASYMM8_SIGNED:
+ if (d->data_type() == DataType::S32)
+ {
+ create_arm_gemm<int8_t, int32_t>(_arm_gemm, a, b, c, d, act, info);
+ }
+ else if (d->data_type() == DataType::F32)
+ {
+ create_arm_gemm_dequant<int8_t, float>(_arm_gemm, a, b, c, d, act, info);
+ }
+ else
+ {
+ create_arm_gemm_quant<int8_t, int8_t>(_arm_gemm, a, b, c, d, act, info);
+ }
+ break;
+#endif /* __aarch64__ */
+#if defined(ARM_COMPUTE_ENABLE_BF16)
+ case DataType::BFLOAT16:
+ if (d->data_type() == DataType::BFLOAT16)
+ {
+ create_arm_gemm<bfloat16, bfloat16>(_arm_gemm, a, b, c, d, act, info);
+ }
+ else
+ {
+ create_arm_gemm<bfloat16, float>(_arm_gemm, a, b, c, d, act, info);
+ }
+ break;
+#endif /* defined(ARM_COMPUTE_ENABLE_BF16) */
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ case DataType::F16:
+ create_arm_gemm<float16_t, float16_t>(_arm_gemm, a, b, c, d, act, info);
+ break;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+ default:
+ break;
+ }
+}
+
+void CpuGemmAssemblyDispatch::prepare(ITensorPack &tensors)
+{
+ ARM_COMPUTE_ERROR_ON(_arm_gemm == nullptr);
+ _arm_gemm->prepare(tensors);
+}
+
+bool CpuGemmAssemblyDispatch::is_configured() const
+{
+ return _arm_gemm && _arm_gemm->is_configured();
+}
+
+void CpuGemmAssemblyDispatch::run(ITensorPack &tensors)
+{
+ ARM_COMPUTE_ERROR_ON(_arm_gemm == nullptr);
+ _arm_gemm->run(tensors);
+}
+
+experimental::MemoryRequirements CpuGemmAssemblyDispatch::workspace() const
+{
+ ARM_COMPUTE_ERROR_ON(_arm_gemm == nullptr);
+ return _arm_gemm->workspace();
+}
+} // namespace cpu
+} // namespace arm_compute