aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.cpp')
-rw-r--r--src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.cpp779
1 files changed, 779 insertions, 0 deletions
diff --git a/src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.cpp b/src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.cpp
new file mode 100644
index 0000000000..f3396fbb5c
--- /dev/null
+++ b/src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.cpp
@@ -0,0 +1,779 @@
+/*
+ * Copyright (c) 2021-2024 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/KernelDescriptors.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+#include "arm_compute/runtime/TensorAllocator.h"
+
+#include "src/common/utils/Log.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/MemoryHelpers.h"
+#include "src/cpu/kernels/CpuConvertQuantizedSignednessKernel.h"
+#include "src/cpu/kernels/CpuGemmInterleave4x4Kernel.h"
+#include "src/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.h"
+#include "src/cpu/kernels/CpuGemmLowpMatrixReductionKernel.h"
+#include "src/cpu/kernels/CpuGemmLowpOffsetContributionKernel.h"
+#include "src/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.h"
+#include "src/cpu/kernels/CpuGemmTranspose1xWKernel.h"
+#include "src/cpu/operators/CpuActivation.h"
+#include "src/cpu/operators/internal/CpuGemmAssemblyDispatch.h"
+#include "src/cpu/utils/CpuAuxTensorHandler.h"
+
+using namespace arm_compute::misc::shape_calculator;
+using namespace arm_compute::experimental;
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace
+{
+cpu::AsmGemmInfo init_assembly_metadata(const GEMMInfo &info)
+{
+ cpu::AsmGemmInfo asm_info;
+ asm_info.method = cpu::AsmConvMethod::Im2Col;
+ asm_info.reinterpret_input_as_3d = info.reinterpret_input_as_3d();
+ asm_info.depth_output_gemm3d = info.depth_output_gemm3d();
+ asm_info.activation_info = info.activation_info();
+ asm_info.output_stage = info.gemmlowp_output_stage();
+ asm_info.fast_mode = info.fast_math();
+ asm_info.accumulate = info.accumulate();
+
+ return asm_info;
+}
+} // namespace
+
+CpuGemmLowpMatrixMultiplyCore::CpuGemmLowpMatrixMultiplyCore()
+ : _asm_glue(std::make_unique<CpuGemmAssemblyDispatch>()),
+ _mm_kernel(),
+ _mtx_a_reshape_kernel(),
+ _mtx_b_reshape_kernel(),
+ _mtx_a_reduction_kernel(),
+ _mtx_b_reduction_kernel(),
+ _offset_contribution_kernel(),
+ _offset_contribution_output_stage_kernel(),
+ _activation_func(),
+ _convert_to_signed_asymm(),
+ _convert_from_signed_asymm(),
+ _vector_sum_col(),
+ _vector_sum_row(),
+ _tmp_a(),
+ _tmp_b(),
+ _mm_result_s32(),
+ _signed_a(),
+ _signed_output(),
+ _a_offset(0),
+ _b_offset(0),
+ _run_vector_matrix_multiplication(false),
+ _assembly_path(false),
+ _fused_assembly_path(false),
+ _reshape_b_only_on_first_run(false),
+ _is_prepared(false),
+ _fuse_output_stage(false),
+ _run_activation(false),
+ _flip_signedness(false),
+ _gemm_info(),
+ _aux_mem(Count)
+{
+}
+CpuGemmLowpMatrixMultiplyCore::~CpuGemmLowpMatrixMultiplyCore() = default;
+
+void CpuGemmLowpMatrixMultiplyCore::configure(
+ const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, ITensorInfo *dst, const GEMMInfo &gemm_info)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, dst);
+ ARM_COMPUTE_ERROR_THROW_ON(CpuGemmLowpMatrixMultiplyCore::validate(a, b, c, dst, gemm_info));
+ ARM_COMPUTE_LOG_PARAMS(a, b, c, dst, gemm_info);
+
+ const ITensorInfo *matrix_a = a;
+ const ITensorInfo *matrix_b = b;
+ GEMMInfo info = gemm_info;
+
+ // Set internal variables
+ _a_offset = a->quantization_info().uniform().offset;
+ _b_offset = b->quantization_info().uniform().offset;
+ _run_vector_matrix_multiplication = a->dimension(1) < 2;
+ _reshape_b_only_on_first_run = b->are_values_constant();
+ _is_prepared = false;
+ _fused_assembly_path = false;
+ _flip_signedness = is_data_type_quantized_per_channel(b->data_type()) && (a->data_type() == DataType::QASYMM8) &&
+ _reshape_b_only_on_first_run;
+ _gemm_info = gemm_info;
+
+ // Offset kernel is need if offset is non-zero or it may change (i.e. dynamic).
+ // It is not needed if the datatype is symmetric, because there is no offset
+ bool a_offset_kernel_needed = _a_offset != 0 || a->quantization_info().is_dynamic();
+ bool b_offset_kernel_needed = _b_offset != 0 || b->quantization_info().is_dynamic();
+
+ _asm_glue = std::make_unique<cpu::CpuGemmAssemblyDispatch>();
+
+ const ITensorInfo *a_to_use = a;
+
+ // Convert to QASYMM8 -> QASYMM8_SIGNED and back
+ if (_flip_signedness)
+ {
+ const int32_t offset_correction = 128;
+ const DataType dt = DataType::QASYMM8_SIGNED;
+ const UniformQuantizationInfo iqinfo = a_to_use->quantization_info().uniform();
+
+ _signed_a = a_to_use->clone()->set_data_type(dt).set_quantization_info(
+ QuantizationInfo(iqinfo.scale, iqinfo.offset + offset_correction));
+ _convert_to_signed_asymm = std::make_unique<kernels::CpuConvertQuantizedSignednessKernel>();
+ _convert_to_signed_asymm->configure(a_to_use, &_signed_a);
+ a_to_use = &_signed_a;
+ _a_offset = _signed_a.quantization_info().uniform().offset;
+
+ const UniformQuantizationInfo oqinfo = dst->quantization_info().uniform();
+ _signed_output = dst->clone()->set_data_type(dt).set_quantization_info(
+ QuantizationInfo(oqinfo.scale, oqinfo.offset - offset_correction));
+
+ // Output stage correction
+ GEMMLowpOutputStageInfo output_stage_corr = info.gemmlowp_output_stage();
+ output_stage_corr.gemmlowp_offset = _signed_output.quantization_info().uniform().offset;
+ output_stage_corr.gemmlowp_min_bound -= offset_correction;
+ output_stage_corr.gemmlowp_max_bound -= offset_correction;
+ info.set_gemmlowp_output_stage(output_stage_corr);
+
+ // Update matrix a
+ matrix_a = &_signed_a;
+ }
+
+ // If GEMMLowpOutputStage != NONE, fuse the offset contribution with the output stage
+ if (info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
+ {
+ _fuse_output_stage = true;
+ _mm_result_s32 = TensorInfo(dst->tensor_shape(), 1, DataType::S32);
+ }
+
+ // Initialize assembly kernel meta-data
+ const cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info);
+#ifdef __aarch64__
+ if (!(!b->are_values_constant() &&
+ b->tensor_shape().z() > 1)) // Disable batch matmul as optimized GeMM handles batching differently.
+ {
+ switch (a->data_type())
+ {
+ case DataType::QASYMM8:
+ case DataType::QASYMM8_SIGNED:
+ case DataType::U8:
+ case DataType::S8:
+ {
+ if (is_data_type_quantized_asymmetric(a_to_use->data_type()) &&
+ info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
+ {
+ auto c_info_to_use = c == nullptr ? nullptr : c;
+ _asm_glue->configure(a_to_use, b, c_info_to_use, dst, asm_info);
+ _fused_assembly_path = _asm_glue->is_configured();
+ }
+ else
+ {
+ auto output_to_use = (_fuse_output_stage ? &_mm_result_s32 : dst);
+ _asm_glue->configure(a_to_use, b, nullptr, output_to_use, asm_info);
+ }
+ _assembly_path = _asm_glue->is_configured();
+ break;
+ }
+ default:
+ {
+ ARM_COMPUTE_ERROR("Datatype not supported");
+ break;
+ }
+ }
+ }
+#endif /* __aarch64__ */
+ if (!(_assembly_path || _run_vector_matrix_multiplication))
+ {
+ matrix_a = &_tmp_a;
+ matrix_b = &_tmp_b;
+
+ // The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width / 4.0f) ]
+ _tmp_a =
+ TensorInfo(compute_interleaved_shape(*a_to_use), 1, a_to_use->data_type(), a_to_use->quantization_info());
+ // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ]
+ _tmp_b = TensorInfo(compute_transpose1xW_shape(*b), 1, b->data_type(), b->quantization_info());
+
+ // Configure interleave kernel
+ _mtx_a_reshape_kernel = std::make_unique<kernels::CpuGemmInterleave4x4Kernel>();
+ _mtx_a_reshape_kernel->configure(a_to_use, &_tmp_a);
+
+ // Configure transpose kernel
+ _mtx_b_reshape_kernel = std::make_unique<kernels::CpuGemmTranspose1xWKernel>();
+ _mtx_b_reshape_kernel->configure(b, &_tmp_b);
+ }
+
+ if (!_fused_assembly_path)
+ {
+ // Build reduction info
+ const GEMMLowpReductionKernelInfo reduction_info(a_to_use->dimension(0), false, 0, false);
+
+ if (a_offset_kernel_needed)
+ {
+ _vector_sum_col = TensorInfo(compute_reductionA_shape(*b), 1, DataType::S32);
+
+ // Configure Matrix B reduction kernel
+ _mtx_b_reduction_kernel = std::make_unique<kernels::CpuGemmLowpMatrixBReductionKernel>();
+ _mtx_b_reduction_kernel->configure(b, &_vector_sum_col, reduction_info);
+ }
+
+ if (b_offset_kernel_needed)
+ {
+ _vector_sum_row = TensorInfo(compute_reductionB_shape(*a_to_use), 1, DataType::S32);
+
+ // Configure matrix A reduction kernel
+ _mtx_a_reduction_kernel = std::make_unique<kernels::CpuGemmLowpMatrixAReductionKernel>();
+ _mtx_a_reduction_kernel->configure(a_to_use, &_vector_sum_row, reduction_info);
+ }
+
+ if (_fuse_output_stage)
+ {
+ // Configure matrix multiply kernel
+ if (!_assembly_path)
+ {
+ _mm_kernel = std::make_unique<kernels::CpuGemmLowpMatrixMultiplyKernel>();
+ _mm_kernel->configure(matrix_a, matrix_b, &_mm_result_s32);
+ }
+
+ _offset_contribution_output_stage_kernel =
+ std::make_unique<kernels::CpuGemmLowpOffsetContributionOutputStageKernel>();
+ _offset_contribution_output_stage_kernel->configure(
+ &_mm_result_s32, a_offset_kernel_needed ? &_vector_sum_col : nullptr,
+ b_offset_kernel_needed ? &_vector_sum_row : nullptr, c, _flip_signedness ? &_signed_output : dst,
+ a->dimension(0), _a_offset, _b_offset, info.gemmlowp_output_stage());
+
+ if (_flip_signedness)
+ {
+ _convert_from_signed_asymm = std::make_unique<kernels::CpuConvertQuantizedSignednessKernel>();
+ _convert_from_signed_asymm->configure(&_signed_output, dst);
+ }
+ }
+ else
+ {
+ // This scale is needed for the s8_f32 kernel where the multiplication output is dequantized to F32.
+ const float dequantize_scale =
+ (dst->data_type() == DataType::F32)
+ ? a->quantization_info().uniform().scale * b->quantization_info().uniform().scale
+ : 1.0f;
+ // Configure matrix multiply kernel
+ if (!_assembly_path)
+ {
+ _mm_kernel = std::make_unique<kernels::CpuGemmLowpMatrixMultiplyKernel>();
+ _mm_kernel->configure(matrix_a, matrix_b, dst);
+ }
+ // Configure offset contribution kernel
+ _offset_contribution_kernel = std::make_unique<kernels::CpuGemmLowpOffsetContributionKernel>();
+ _offset_contribution_kernel->configure(dst, a_offset_kernel_needed ? &_vector_sum_col : nullptr,
+ b_offset_kernel_needed ? &_vector_sum_row : nullptr,
+ a_to_use->dimension(0), _a_offset, _b_offset, dequantize_scale);
+ }
+ }
+ // Configure activation
+ const ActivationLayerInfo &activation = gemm_info.activation_info();
+ _run_activation =
+ activation.enabled() && (!_assembly_path || !cpu::CpuGemmAssemblyDispatch::is_activation_supported(activation));
+ if (_run_activation)
+ {
+ _activation_func = std::make_unique<CpuActivation>();
+ _activation_func->configure(dst, nullptr, activation);
+ }
+
+ if (_assembly_path)
+ {
+ const auto asm_mem_req = _asm_glue->workspace();
+ for (unsigned int slot = 0; slot < asm_mem_req.size(); ++slot)
+ {
+ _aux_mem[slot] = asm_mem_req[slot];
+ }
+ }
+
+ // Request memory for LHS and RHS reshape matrix
+ _aux_mem[VectorSumCol] = MemoryInfo(offset_int_vec(VectorSumCol),
+ !_fused_assembly_path && a_offset_kernel_needed && _reshape_b_only_on_first_run
+ ? MemoryLifetime::Persistent
+ : MemoryLifetime::Temporary,
+ _vector_sum_col.total_size());
+ _aux_mem[VectorSumRow] =
+ MemoryInfo(offset_int_vec(VectorSumRow), MemoryLifetime::Temporary, _vector_sum_row.total_size());
+ _aux_mem[TmpA] = MemoryInfo(offset_int_vec(TmpA), MemoryLifetime::Temporary, _tmp_a.total_size());
+ _aux_mem[TmpB] = MemoryInfo(offset_int_vec(TmpB),
+ _reshape_b_only_on_first_run ? MemoryLifetime::Persistent : MemoryLifetime::Temporary,
+ _tmp_b.total_size());
+ _aux_mem[MMResultS32] =
+ MemoryInfo(offset_int_vec(MMResultS32), MemoryLifetime::Temporary, _mm_result_s32.total_size());
+ _aux_mem[SignedA] = MemoryInfo(offset_int_vec(SignedA), MemoryLifetime::Temporary, _signed_a.total_size());
+ _aux_mem[SignedOutput] =
+ MemoryInfo(offset_int_vec(SignedOutput), MemoryLifetime::Temporary, _signed_output.total_size());
+}
+
+Status CpuGemmLowpMatrixMultiplyCore::validate(const ITensorInfo *a,
+ const ITensorInfo *b,
+ const ITensorInfo *c,
+ const ITensorInfo *output,
+ const GEMMInfo &gemm_info)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(b, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
+ DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32, DataType::QASYMM8,
+ DataType::QASYMM8_SIGNED, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(c != nullptr && output->data_type() != DataType::F32 &&
+ gemm_info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::NONE,
+ "Bias addition not supported in NEGEMMLowpMatrixMultiplyCore for output S32");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ (a)->dimension(0) != (b)->dimension(1),
+ "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
+
+ // When using accumulation(in place summation), for now, the only supported DataType for output is S32.
+ if (gemm_info.accumulate())
+ {
+#ifdef __arm__
+ ARM_COMPUTE_RETURN_ERROR_MSG("Accumulation is not supported for armv7");
+#endif /* __arm__ */
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE,
+ "Accumulation is not supported for output QASYMM8/QASYMM8_SIGNED");
+ }
+
+ GEMMInfo info = gemm_info;
+ const ITensorInfo *matrix_a_info = a;
+ const ITensorInfo *matrix_b_info = b;
+
+ const ITensorInfo *a_to_use = a;
+
+ TensorInfo tmp_a_info{};
+ TensorInfo tmp_b_info{};
+ TensorInfo mm_result_s32_info{};
+
+ int32_t a_offset = a->quantization_info().uniform().offset;
+ int32_t b_offset = b->quantization_info().uniform().offset;
+
+ // Offset kernel is need if offset is non-zero or it may change (i.e. dynamic).
+ bool a_offset_kernel_needed = a_offset != 0 || a->quantization_info().is_dynamic();
+ bool b_offset_kernel_needed = b_offset != 0 || b->quantization_info().is_dynamic();
+
+ bool fuse_output_stage = info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE;
+ if (fuse_output_stage)
+ {
+ auto_init_if_empty(mm_result_s32_info,
+ a->clone()->set_tensor_shape(output->tensor_shape()).set_data_type(DataType::S32));
+ }
+
+ // Convert QASYMM8->QASYMM8_SIGNED
+ TensorInfo signed_a{};
+ TensorInfo signed_output{};
+ bool flip_signedness = is_data_type_quantized_per_channel(b->data_type()) &&
+ (a->data_type() == DataType::QASYMM8) && info.reshape_b_only_on_first_run();
+ if (flip_signedness)
+ {
+ const int32_t offset_correction = 128;
+ const DataType dt = DataType::QASYMM8_SIGNED;
+ const UniformQuantizationInfo iqinfo = a_to_use->quantization_info().uniform();
+
+ signed_a = a_to_use->clone()->set_data_type(dt).set_quantization_info(
+ QuantizationInfo(iqinfo.scale, iqinfo.offset + offset_correction));
+ ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuConvertQuantizedSignednessKernel::validate(a_to_use, &signed_a));
+ a_to_use = &signed_a;
+ a_offset = signed_a.quantization_info().uniform().offset;
+
+ const UniformQuantizationInfo oqinfo = output->quantization_info().uniform();
+ signed_output = output->clone()->set_data_type(dt).set_quantization_info(
+ QuantizationInfo(oqinfo.scale, oqinfo.offset - offset_correction));
+
+ // Output stage correction
+ GEMMLowpOutputStageInfo output_stage_corr = info.gemmlowp_output_stage();
+ output_stage_corr.gemmlowp_offset = signed_output.quantization_info().uniform().offset;
+ output_stage_corr.gemmlowp_min_bound -= offset_correction;
+ output_stage_corr.gemmlowp_max_bound -= offset_correction;
+ info.set_gemmlowp_output_stage(output_stage_corr);
+
+ // Update matrix a
+ matrix_a_info = &signed_a;
+ }
+
+ // Initialize assembly kernel meta-data
+ const AsmGemmInfo asm_info = init_assembly_metadata(info);
+
+ // Check if we need to run the optimized assembly kernel
+ bool run_optimised = false;
+ bool run_optimised_requantized = false;
+
+ if (!(!b->are_values_constant() &&
+ b->tensor_shape().z() > 1)) // Disable batch matmul as optimized GeMM handles batching differently.
+ {
+ if (is_data_type_quantized_asymmetric(a_to_use->data_type()) &&
+ info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
+ {
+ run_optimised = bool(CpuGemmAssemblyDispatch::validate(a_to_use, b, c, output, asm_info));
+ run_optimised_requantized = run_optimised;
+ }
+ else
+ {
+ run_optimised = bool(CpuGemmAssemblyDispatch::validate(
+ a_to_use, b, nullptr, fuse_output_stage ? &mm_result_s32_info : output, asm_info));
+ }
+ }
+
+ if (run_optimised)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(b->dimension(0) != output->dimension(0));
+ if (info.depth_output_gemm3d() != 0)
+ {
+ if (info.reinterpret_input_as_3d())
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1));
+ ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(2) != output->dimension(2));
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1) * output->dimension(2));
+ }
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1));
+ }
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.reinterpret_input_as_3d(),
+ "NEGEMM cannot reinterpret the input tensor as 3D");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.depth_output_gemm3d() != 0,
+ "NEGEMM cannot reinterpret the output tensor as 3D");
+
+ const bool run_vector_matrix_multiplication = a->dimension(1) < 2;
+ if (!run_vector_matrix_multiplication)
+ {
+ matrix_a_info = &tmp_a_info;
+ matrix_b_info = &tmp_b_info;
+
+ // The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width / 4.0f) ]
+ TensorShape shape_tmp_a = a->tensor_shape();
+ shape_tmp_a.set(0, a->dimension(0) * 4);
+ shape_tmp_a.set(1, std::ceil(a->dimension(1) / 4.f));
+
+ // The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ]
+ TensorShape shape_tmp_b = b->tensor_shape();
+ shape_tmp_b.set(0, b->dimension(1) * 16);
+ shape_tmp_b.set(1, std::ceil(b->dimension(0) / 16.f));
+
+ // Validate interleave kernel
+ auto_init_if_empty(tmp_a_info, a_to_use->clone()->set_tensor_shape(shape_tmp_a));
+ auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(shape_tmp_b));
+
+ ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmInterleave4x4Kernel::validate(a_to_use, &tmp_a_info));
+ ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmTranspose1xWKernel::validate(b, &tmp_b_info));
+ }
+ }
+
+ if (!run_optimised_requantized)
+ {
+ TensorInfo info_vector_sum_col{};
+ TensorInfo info_vector_sum_row{};
+
+ const GEMMLowpReductionKernelInfo reduction_info(a_to_use->dimension(0), false, 0, false);
+
+ // Validate matrix B reduction kernel only if _a_offset is not equal to 0
+ if (a_offset_kernel_needed)
+ {
+ info_vector_sum_col = TensorInfo(compute_reductionA_shape(*b), 1, DataType::S32);
+
+ // Configure Matrix B reduction kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(
+ kernels::CpuGemmLowpMatrixBReductionKernel::validate(b, &info_vector_sum_col, reduction_info));
+ }
+
+ // Validate Matrix A reduction kernel only if _b_offset is not equal to 0
+ if (b_offset_kernel_needed)
+ {
+ info_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32);
+
+ // Configure matrix A reduction kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(
+ kernels::CpuGemmLowpMatrixAReductionKernel::validate(a_to_use, &info_vector_sum_row, reduction_info));
+ }
+
+ if (fuse_output_stage)
+ {
+ if (!run_optimised)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ info.reinterpret_input_as_3d(),
+ "CpuGemmLowpMatrixMultiplyKernel cannot reinterpret the input tensor as 3D");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ info.depth_output_gemm3d() != 0,
+ "CpuGemmLowpMatrixMultiplyKernel cannot reinterpret the output tensor as 3D");
+
+ ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmLowpMatrixMultiplyKernel::validate(
+ matrix_a_info, matrix_b_info, &mm_result_s32_info));
+ }
+
+ // Validate offset contribution kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmLowpOffsetContributionOutputStageKernel::validate(
+ &mm_result_s32_info, a_offset_kernel_needed ? &info_vector_sum_col : nullptr,
+ b_offset_kernel_needed ? &info_vector_sum_row : nullptr, c, flip_signedness ? &signed_output : output,
+ a_offset, b_offset, info.gemmlowp_output_stage()));
+ }
+ else
+ {
+ if (!run_optimised)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ info.reinterpret_input_as_3d(),
+ "CpuGemmLowpMatrixMultiplyKernel cannot reinterpret the input tensor as 3D");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ info.depth_output_gemm3d() != 0,
+ "CpuGemmLowpMatrixMultiplyKernel cannot reinterpret the output tensor as 3D");
+
+ ARM_COMPUTE_RETURN_ON_ERROR(
+ kernels::CpuGemmLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, output));
+ }
+ // Validate offset contribution kernel
+ ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuGemmLowpOffsetContributionKernel::validate(
+ output, a_offset_kernel_needed ? &info_vector_sum_col : nullptr,
+ b_offset_kernel_needed ? &info_vector_sum_row : nullptr, a_offset, b_offset));
+ }
+ }
+
+ // Validate activation
+ const ActivationLayerInfo &activation = gemm_info.activation_info();
+ if (activation.enabled())
+ {
+ ARM_COMPUTE_RETURN_ON_ERROR(CpuActivation::validate(output, nullptr, activation));
+ }
+
+ return Status{};
+}
+
+void CpuGemmLowpMatrixMultiplyCore::run(ITensorPack &tensors)
+{
+ prepare(tensors);
+
+ auto a = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+ auto b = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+ auto c = tensors.get_const_tensor(TensorType::ACL_SRC_2);
+ auto dst = tensors.get_tensor(TensorType::ACL_DST);
+ auto a_to_use = a;
+ auto matrix_a = a;
+ auto matrix_b = b;
+
+ CpuAuxTensorHandler vector_sum_col(offset_int_vec(VectorSumCol), _vector_sum_col, tensors, false);
+ CpuAuxTensorHandler vector_sum_row(offset_int_vec(VectorSumRow), _vector_sum_row, tensors, false);
+ CpuAuxTensorHandler tmp_a(offset_int_vec(TmpA), _tmp_a, tensors, false);
+ CpuAuxTensorHandler tmp_b(offset_int_vec(TmpB), _tmp_b, tensors, true);
+ CpuAuxTensorHandler mm_result_s32(offset_int_vec(MMResultS32), _mm_result_s32, tensors, false);
+ CpuAuxTensorHandler signed_a(offset_int_vec(SignedA), _signed_a, tensors, false);
+ CpuAuxTensorHandler signed_output(offset_int_vec(SignedOutput), _signed_output, tensors, false);
+
+ const QuantizationInfo a_qinfo = a->info()->quantization_info();
+ const QuantizationInfo b_qinfo = b->info()->quantization_info();
+
+ if (a_qinfo.is_dynamic())
+ _a_offset = a_qinfo.uniform().offset;
+ if (b_qinfo.is_dynamic())
+ _b_offset = b_qinfo.uniform().offset;
+
+ // Convert QASYMM8->QASYMM8_SIGNED
+ if (_flip_signedness)
+ {
+ ITensorPack pack = {{TensorType::ACL_SRC, a}, {TensorType::ACL_DST, signed_a.get()}};
+ NEScheduler::get().schedule_op(_convert_to_signed_asymm.get(), Window::DimY, _convert_to_signed_asymm->window(),
+ pack);
+ a_to_use = signed_a.get();
+ matrix_a = signed_a.get();
+ }
+
+ // Run GEMM
+ if (_asm_glue->is_configured())
+ {
+ ITensorPack asm_glue_tensors = tensors;
+ auto output_to_use = (_fuse_output_stage ? mm_result_s32.get() : dst);
+ if (is_data_type_quantized_asymmetric(a_to_use->info()->data_type()) &&
+ _gemm_info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
+ {
+ asm_glue_tensors.add_const_tensor(TensorType::ACL_SRC_0, a_to_use);
+ asm_glue_tensors.add_const_tensor(TensorType::ACL_SRC_1, b);
+ asm_glue_tensors.add_const_tensor(TensorType::ACL_SRC_2, c);
+ asm_glue_tensors.add_tensor(TensorType::ACL_DST, dst);
+ }
+ else
+ {
+ asm_glue_tensors.add_const_tensor(TensorType::ACL_SRC_0, a_to_use);
+ asm_glue_tensors.add_const_tensor(TensorType::ACL_SRC_1, b);
+ asm_glue_tensors.add_tensor(TensorType::ACL_DST, output_to_use);
+ }
+ _asm_glue->run(asm_glue_tensors);
+ }
+ else
+ {
+ if (!_run_vector_matrix_multiplication)
+ {
+ matrix_a = tmp_a.get();
+ matrix_b = tmp_b.get();
+ // Run interleave kernel
+ ITensorPack pack_a = {{TensorType::ACL_SRC, a_to_use}, {TensorType::ACL_DST, tmp_a.get()}};
+ NEScheduler::get().schedule_op(_mtx_a_reshape_kernel.get(), Window::DimY, _mtx_a_reshape_kernel->window(),
+ pack_a);
+
+ if (!_reshape_b_only_on_first_run)
+ {
+ ITensorPack pack_b = {{TensorType::ACL_SRC, b}, {TensorType::ACL_DST, tmp_b.get()}};
+ // Run transpose kernel
+ NEScheduler::get().schedule_op(_mtx_b_reshape_kernel.get(), Window::DimY,
+ _mtx_b_reshape_kernel->window(), pack_b);
+ }
+ }
+ ITensorPack pack_mm = {{TensorType::ACL_SRC_0, matrix_a}, {TensorType::ACL_SRC_1, matrix_b}};
+ if (_fuse_output_stage)
+ {
+ pack_mm.add_tensor(TensorType::ACL_DST, mm_result_s32.get());
+ }
+ else
+ {
+ pack_mm.add_tensor(TensorType::ACL_DST, dst);
+ }
+ NEScheduler::get().schedule_op(_mm_kernel.get(), Window::DimY, _mm_kernel->window(), pack_mm);
+ }
+
+ if (!_fused_assembly_path)
+ {
+ // Run matrix A reduction kernel only if _b_offset is not equal to 0
+ if (_b_offset != 0)
+ {
+ ITensorPack pack = {{TensorType::ACL_SRC, a_to_use}, {TensorType::ACL_DST, vector_sum_row.get()}};
+ NEScheduler::get().schedule_op(_mtx_a_reduction_kernel.get(), Window::DimX,
+ _mtx_a_reduction_kernel->window(), pack);
+ }
+
+ // Run matrix B reduction kernel only if _a_offset is not equal to 0
+ if (_a_offset != 0 && !_reshape_b_only_on_first_run)
+ {
+ ITensorPack pack = {{TensorType::ACL_SRC, b}, {TensorType::ACL_DST, vector_sum_col.get()}};
+ NEScheduler::get().schedule_op(_mtx_b_reduction_kernel.get(), Window::DimX,
+ _mtx_b_reduction_kernel->window(), pack);
+ }
+
+ if (_fuse_output_stage)
+ {
+ if (a_qinfo.is_dynamic())
+ _offset_contribution_output_stage_kernel->set_a_offset(_a_offset);
+ if (b_qinfo.is_dynamic())
+ _offset_contribution_output_stage_kernel->set_b_offset(_b_offset);
+
+ ITensorPack pack;
+ pack.add_tensor(TensorType::ACL_SRC_0, mm_result_s32.get());
+ pack.add_tensor(TensorType::ACL_SRC_1, _a_offset == 0 ? nullptr : vector_sum_col.get());
+ pack.add_tensor(TensorType::ACL_SRC_2, _b_offset == 0 ? nullptr : vector_sum_row.get());
+ pack.add_tensor(TensorType::ACL_SRC_3, c);
+ pack.add_tensor(TensorType::ACL_DST, _flip_signedness ? signed_output.get() : dst);
+
+ // Run offset contribution kernel
+ NEScheduler::get().schedule_op(_offset_contribution_output_stage_kernel.get(), Window::DimY,
+ _offset_contribution_output_stage_kernel->window(), pack);
+ }
+ else
+ {
+ if (a_qinfo.is_dynamic())
+ _offset_contribution_kernel->set_a_offset(_a_offset);
+ if (b_qinfo.is_dynamic())
+ _offset_contribution_kernel->set_b_offset(_b_offset);
+ if (a_qinfo.is_dynamic() || b_qinfo.is_dynamic())
+ {
+ const float dequantize_scale = a_qinfo.uniform().scale * b_qinfo.uniform().scale;
+ _offset_contribution_kernel->set_scale(dequantize_scale);
+ }
+
+ ITensorPack pack;
+ pack.add_tensor(TensorType::ACL_SRC_0, _a_offset == 0 ? nullptr : vector_sum_col.get());
+ pack.add_tensor(TensorType::ACL_SRC_1, _b_offset == 0 ? nullptr : vector_sum_row.get());
+ pack.add_tensor(TensorType::ACL_DST, dst);
+
+ // Run offset contribution kernel
+ NEScheduler::get().schedule_op(_offset_contribution_kernel.get(), Window::DimY,
+ _offset_contribution_kernel->window(), pack);
+ }
+ }
+
+ // Convert QASYMM8_SIGNED->QASYMM8
+ if (!_fused_assembly_path && _fuse_output_stage && _flip_signedness)
+ {
+ ITensorPack pack = {{TensorType::ACL_SRC, signed_output.get()}, {TensorType::ACL_DST, dst}};
+ NEScheduler::get().schedule_op(_convert_from_signed_asymm.get(), Window::DimY,
+ _convert_from_signed_asymm->window(), pack);
+ }
+
+ // Run fused activation unless already run in the fused assembly
+ if (_run_activation)
+ {
+ ITensorPack pack = {{TensorType::ACL_SRC, dst}, {TensorType::ACL_DST, dst}};
+ _activation_func->run(pack);
+ }
+}
+
+void CpuGemmLowpMatrixMultiplyCore::prepare(ITensorPack &tensors)
+{
+ if (!_is_prepared)
+ {
+ auto original_b = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+ // Run assembly reshape
+ if (_asm_glue->is_configured())
+ {
+ _asm_glue->prepare(tensors);
+ }
+ // Run non-assembly reshape
+ else if (_reshape_b_only_on_first_run && !_run_vector_matrix_multiplication && !_asm_glue->is_configured())
+ {
+ // Run reshape kernel and mark original weights tensor as unused
+ ITensor *tmp_b_p = utils::cast::polymorphic_downcast<ITensor *>(tensors.get_tensor(offset_int_vec(TmpB)));
+ CpuAuxTensorHandler tmp_b(_tmp_b, *tmp_b_p);
+ ITensorPack pack = {{TensorType::ACL_SRC, original_b}, {TensorType::ACL_DST, tmp_b.get()}};
+ NEScheduler::get().schedule_op(_mtx_b_reshape_kernel.get(), Window::DimY, _mtx_b_reshape_kernel->window(),
+ pack);
+ }
+
+ // Run matrix B reduction kernel only if _a_offset is not equal to 0
+ if (!_fused_assembly_path && _a_offset != 0 && _reshape_b_only_on_first_run)
+ {
+ ITensor *vector_sum_col_p =
+ utils::cast::polymorphic_downcast<ITensor *>(tensors.get_tensor(offset_int_vec(VectorSumCol)));
+ CpuAuxTensorHandler vector_sum_col(_vector_sum_col, *vector_sum_col_p);
+ ITensorPack pack = {{TensorType::ACL_SRC, original_b}, {TensorType::ACL_DST, vector_sum_col.get()}};
+ NEScheduler::get().schedule_op(_mtx_b_reduction_kernel.get(), Window::DimX,
+ _mtx_b_reduction_kernel->window(), pack);
+ }
+ _is_prepared = true;
+ }
+}
+experimental::MemoryRequirements CpuGemmLowpMatrixMultiplyCore::workspace() const
+{
+ return _aux_mem;
+}
+} // namespace cpu
+} // namespace arm_compute