aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/operators/CpuGemmConv2d.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/operators/CpuGemmConv2d.cpp')
-rw-r--r--src/cpu/operators/CpuGemmConv2d.cpp612
1 files changed, 612 insertions, 0 deletions
diff --git a/src/cpu/operators/CpuGemmConv2d.cpp b/src/cpu/operators/CpuGemmConv2d.cpp
new file mode 100644
index 0000000000..5010792a28
--- /dev/null
+++ b/src/cpu/operators/CpuGemmConv2d.cpp
@@ -0,0 +1,612 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/cpu/operators/CpuGemmConv2d.h"
+
+#include "arm_compute/core/Size2D.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+
+#include "src/core/helpers/MemoryHelpers.h"
+#include "src/cpu/kernels/CpuCol2ImKernel.h"
+#include "src/cpu/kernels/CpuIm2ColKernel.h"
+#include "src/cpu/kernels/CpuReshapeKernel.h"
+#include "src/cpu/kernels/CpuWeightsReshapeKernel.h"
+#include "src/cpu/operators/CpuGemm.h"
+#include "src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.h"
+#include "src/cpu/operators/CpuGemmLowpOutputStage.h"
+#include "src/cpu/utils/CpuAuxTensorHandler.h"
+
+#include <set>
+#include <tuple>
+
+using namespace arm_compute::misc::shape_calculator;
+using namespace arm_compute::experimental;
+
+namespace arm_compute
+{
+namespace cpu
+{
+CpuGemmConv2d::CpuGemmConv2d()
+ : _weights_reshape_kernel(nullptr), _im2col_kernel(), _mm_gemm(), _mm_gemmlowp(), _col2im_kernel(), _reshape_kernel(), _im2col_output(), _weights_reshaped(), _gemm_output(), _gemm_output_3d(),
+ _data_layout(DataLayout::NCHW), _skip_im2col(false), _skip_col2im(false), _is_quantized(false), _is_prepared(false), _aux_mem(AuxTensorIdx::Count)
+{
+}
+CpuGemmConv2d::~CpuGemmConv2d() = default;
+
+void CpuGemmConv2d::configure_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act_info,
+ bool enable_fast_math, int gemm_3d_depth)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights);
+ ARM_COMPUTE_ERROR_THROW_ON(validate_mm(src, weights, biases, dst, act_info, enable_fast_math, gemm_3d_depth, _skip_im2col));
+
+ // Create GEMMInfo structure
+ const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
+ gemm_3d_depth, _skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
+ false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info);
+
+ // Supported activations in GEMM
+ const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
+ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
+ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
+ };
+
+ if(_is_quantized)
+ {
+ TensorInfo tmp_src{ *src };
+ TensorInfo tmp_weights{ *weights };
+ // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
+ // Extract and negate input and weights offset
+ const QuantizationInfo iqinfo = src->quantization_info();
+ const QuantizationInfo wqinfo = weights->quantization_info();
+ const QuantizationInfo oqinfo = (dst->total_size() == 0) ? iqinfo : dst->quantization_info();
+ const UniformQuantizationInfo uiqinfo = iqinfo.uniform();
+ const UniformQuantizationInfo uoqinfo = oqinfo.uniform();
+ const DataType data_type = src->data_type();
+
+ tmp_src.set_quantization_info(QuantizationInfo(uiqinfo.scale, -uiqinfo.offset));
+ if(!is_data_type_quantized_per_channel(tmp_weights.data_type()))
+ {
+ const UniformQuantizationInfo uwqinfo = wqinfo.uniform();
+ tmp_weights.set_quantization_info(QuantizationInfo(uwqinfo.scale, -uwqinfo.offset));
+ }
+
+ // Merge activation with output stage
+ PixelValue type_min{};
+ PixelValue type_max{};
+ std::tie(type_min, type_max) = get_min_max(data_type);
+ int32_t min_activation = type_min.get<int32_t>();
+ int32_t max_activation = type_max.get<int32_t>();
+
+ if(supported_acts.count(act_info.activation()) != 0)
+ {
+ std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, uoqinfo);
+ }
+
+ GEMMLowpOutputStageInfo output_info;
+ output_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
+ output_info.gemmlowp_offset = uoqinfo.offset;
+ output_info.gemmlowp_min_bound = min_activation;
+ output_info.gemmlowp_max_bound = max_activation;
+ output_info.is_quantized_per_channel = (tmp_weights.data_type() == DataType::QSYMM8_PER_CHANNEL);
+ quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, output_info);
+
+ _mm_gemmlowp = std::make_unique<CpuGemmLowpMatrixMultiplyCore>();
+ _mm_gemmlowp->configure(&tmp_src, &tmp_weights, biases, dst, GEMMInfo(false, false, true, gemm_3d_depth, _skip_im2col, false, output_info, false, enable_fast_math, false, act_info));
+
+ auto mm_mem_req = _mm_gemmlowp->workspace();
+ for(unsigned int cont = 0; cont < mm_mem_req.size(); ++cont)
+ {
+ _aux_mem[cont] = mm_mem_req[cont];
+ }
+ }
+ else
+ {
+ // Configure matrix multiply function
+ _mm_gemm = std::make_unique<CpuGemm>();
+ _mm_gemm->configure(src, weights, biases, dst, 1.0f, 0.0f, gemm_info);
+ auto mm_mem_req = _mm_gemm->workspace();
+ for(unsigned int cont = 0; cont < mm_mem_req.size(); ++cont)
+ {
+ _aux_mem[cont] = mm_mem_req[cont];
+ }
+ }
+}
+
+Status CpuGemmConv2d::validate_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
+ const ActivationLayerInfo &act_info, bool enable_fast_math, int gemm_3d_depth, bool skip_im2col)
+{
+ const DataType data_type = src->data_type();
+ const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
+ const bool is_activation_enabled = act_info.enabled();
+
+ // Create GEMMInfo structure
+ const GEMMInfo gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
+ gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
+ false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info);
+
+ if(is_quantized)
+ {
+ // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
+ // Extract and negate input and weights offset
+ const QuantizationInfo &iqinfo = src->quantization_info();
+ const QuantizationInfo &wqinfo = weights->quantization_info();
+ const QuantizationInfo &oqinfo = (dst->total_size() == 0) ? iqinfo : dst->quantization_info();
+ const UniformQuantizationInfo uoqinfo = oqinfo.uniform();
+
+ // Merge activation with output stage
+ PixelValue type_min{};
+ PixelValue type_max{};
+ std::tie(type_min, type_max) = get_min_max(data_type);
+ int32_t min_activation = type_min.get<int32_t>();
+ int32_t max_activation = type_max.get<int32_t>();
+
+ const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
+ ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
+ ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
+ };
+ if(is_activation_enabled && supported_acts.count(act_info.activation()) != 0)
+ {
+ std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, uoqinfo);
+ }
+
+ GEMMLowpOutputStageInfo output_info;
+ output_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
+ output_info.gemmlowp_offset = uoqinfo.offset;
+ output_info.gemmlowp_min_bound = min_activation;
+ output_info.gemmlowp_max_bound = max_activation;
+ output_info.is_quantized_per_channel = (weights->data_type() == DataType::QSYMM8_PER_CHANNEL);
+ ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, output_info));
+
+ // Perform validation step on GEMMLowp
+ std::unique_ptr<ITensorInfo> input_qa = src->clone();
+ std::unique_ptr<ITensorInfo> weights_qa = weights->clone();
+ input_qa->set_quantization_info(QuantizationInfo(iqinfo.uniform().scale, -iqinfo.uniform().offset));
+ weights_qa->set_quantization_info(QuantizationInfo(wqinfo.uniform().scale, -wqinfo.uniform().offset));
+ return CpuGemmLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), biases, dst, GEMMInfo(false, false, true, gemm_3d_depth, skip_im2col, false, output_info,
+ false, enable_fast_math, false, act_info));
+ }
+ else
+ {
+ // Perform validation step on Matrix multiply function
+ return CpuGemm::validate(src, weights, nullptr, dst, 1.0f, 0.0f, gemm_info);
+ }
+}
+
+Status CpuGemmConv2d::validate_gemm3d(const ITensorInfo *input_info, const ITensorInfo *weights_info, const ActivationLayerInfo &act_info, int gemm_3d_depth, bool skip_im2col)
+{
+ const DataType data_type = input_info->data_type();
+ const unsigned int mult_y = skip_im2col ? 1U : gemm_3d_depth;
+ const unsigned int mult_z = skip_im2col ? gemm_3d_depth : 1U;
+
+ // Set dummy tensor shapes for the validation
+ const TensorInfo dummy_input_info(TensorShape(4U, 4U * mult_y, 1U * mult_z), 1, data_type, input_info->quantization_info());
+ const TensorInfo dummy_weights_info(TensorShape(4U, 4U), 1, data_type, weights_info->quantization_info());
+ const TensorInfo dummy_output_info(TensorShape(4U, 4U, gemm_3d_depth), 1, data_type, input_info->quantization_info());
+
+ return validate_mm(&dummy_input_info, &dummy_weights_info, nullptr, &dummy_output_info, act_info, false, gemm_3d_depth, skip_im2col);
+}
+
+void CpuGemmConv2d::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const PadStrideInfo &conv_info, const WeightsInfo &weights_info,
+ const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
+ ARM_COMPUTE_UNUSED(num_groups, weights_info);
+ ARM_COMPUTE_ERROR_THROW_ON(CpuGemmConv2d::validate(src,
+ weights,
+ biases,
+ dst,
+ conv_info,
+ weights_info,
+ dilation,
+ act_info,
+ enable_fast_math,
+ num_groups));
+
+ const DataType data_type = src->data_type();
+ const DataLayout data_layout = src->data_layout();
+ const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+ const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
+ const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
+
+ const unsigned int kernel_width = weights->dimension(idx_width);
+ const unsigned int kernel_height = weights->dimension(idx_height);
+
+ _is_prepared = weights_info.retain_internal_weights();
+ _is_quantized = is_data_type_quantized_asymmetric(src->data_type());
+ _data_layout = data_layout;
+ _skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
+
+ const ITensorInfo *gemm_input_to_use = src;
+ ITensorInfo *gemm_output_to_use = dst;
+
+ // Get convolved dimensions
+ unsigned int conv_w = 0;
+ unsigned int conv_h = 0;
+ std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width),
+ src->dimension(idx_height),
+ kernel_width,
+ kernel_height,
+ conv_info,
+ dilation);
+ ARM_COMPUTE_ERROR_ON_MSG((dst->dimension(idx_width) != conv_w) || (dst->dimension(idx_height) != conv_h),
+ "Output shape does not match the expected one");
+
+ // Check if GEMM3D is supported
+ if(data_layout == DataLayout::NHWC)
+ {
+ _skip_col2im = bool(validate_gemm3d(src, weights, act_info, conv_h, true));
+ // If not supported, we need to perform im2col and col2im (or reshape layer)
+ if(!_skip_col2im)
+ {
+ _skip_im2col = false;
+ }
+ }
+ else
+ {
+ _skip_col2im = false;
+ }
+
+ // Get parameters from conv_info
+ unsigned int stride_x = 0;
+ unsigned int stride_y = 0;
+ std::tie(stride_x, stride_y) = conv_info.stride();
+
+ unsigned int mat_weights_cols = weights->dimension(idx_kernels);
+
+ // _weights_reshaped will be auto configured in the kernel.
+ // Just append biases and do not transpose 1xW as it will be reshaped in CpuGemm
+ _weights_reshape_kernel = std::make_unique<kernels::CpuWeightsReshapeKernel>();
+ _weights_reshape_kernel->configure(weights, nullptr, &_weights_reshaped);
+ _weights_reshaped.set_quantization_info(weights->quantization_info());
+
+ // Create tensor to store im2col reshaped inputs
+ if(!_skip_im2col)
+ {
+ // Configure
+ _im2col_kernel = std::make_unique<kernels::CpuIm2ColKernel>();
+ _im2col_kernel->configure(src, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, false, dilation);
+
+ // Update GEMM input
+ gemm_input_to_use = &_im2col_output;
+ }
+
+ // Create temporary GEMM output tensor in case we cannot skip col2im
+ const DataType output_data_type = data_type == DataType::BFLOAT16 ? DataType::F32 : data_type;
+ if(!_skip_col2im)
+ {
+ TensorShape shape_gemm;
+
+ // Calculate GEMM output shape
+ shape_gemm = _im2col_output.tensor_shape();
+ shape_gemm.set(0, mat_weights_cols);
+ shape_gemm.set(1, conv_w * conv_h);
+
+ _gemm_output = TensorInfo(shape_gemm, 1, output_data_type);
+ _gemm_output.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout());
+ _gemm_output_3d = TensorInfo(_gemm_output);
+
+ // Update GEMM output
+ gemm_output_to_use = &_gemm_output;
+ }
+ else
+ {
+ _gemm_output_3d = TensorInfo(*dst);
+ _gemm_output_3d.set_data_type(output_data_type).set_data_layout(src->data_layout()).set_is_resizable(true);
+ _gemm_output = TensorInfo(_gemm_output_3d);
+
+ // Update GEMM output
+ gemm_output_to_use = &_gemm_output_3d;
+ }
+
+ // Configure GEMM
+ // In case we need to skip col2im, GEMM3D (gemm_3d_depth != 0) must be called in order to avoid reshaping the output matrix
+ const unsigned int gemm_3d_depth = _skip_col2im ? conv_h : 0;
+ configure_mm(gemm_input_to_use, &_weights_reshaped, biases, gemm_output_to_use, act_info, enable_fast_math, gemm_3d_depth);
+
+ if(!_skip_col2im && _data_layout == DataLayout::NCHW)
+ {
+ // Configure col2im
+ _col2im_kernel = std::make_unique<kernels::CpuCol2ImKernel>();
+ _col2im_kernel->configure(gemm_output_to_use, dst, Size2D(conv_w, conv_h));
+ }
+ else
+ {
+ // Configure reshape layer
+ _reshape_kernel = std::make_unique<kernels::CpuReshapeKernel>();
+ _reshape_kernel->configure(gemm_output_to_use, dst);
+ }
+
+ // Check if GEMM transforms weights
+ // Modernise through COMPMID-4535
+ bool gemm_trans_wei = _aux_mem[1].size > 0; // Asm Pretranspose
+ gemm_trans_wei = _mm_gemm != nullptr ? _aux_mem[3].size > 0 : gemm_trans_wei; // Tranpose RHS
+ gemm_trans_wei = _mm_gemmlowp != nullptr ? _aux_mem[5].size > 0 : gemm_trans_wei; // Transpose RHS
+
+ // Check lifetime
+ _aux_mem[Im2ColOutput] = MemoryInfo(offset_int_vec(Im2ColOutput), MemoryLifetime::Temporary, _im2col_output.total_size());
+ _aux_mem[WeightsReshaped] = MemoryInfo(offset_int_vec(WeightsReshaped), gemm_trans_wei ? MemoryLifetime::Prepare : MemoryLifetime::Persistent, _weights_reshaped.total_size());
+ _aux_mem[GemmOutput] = MemoryInfo(offset_int_vec(GemmOutput), MemoryLifetime::Temporary, _gemm_output.total_size());
+}
+
+Status CpuGemmConv2d::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info,
+ const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!");
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::BFLOAT16, DataType::F16, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL, DataType::BFLOAT16, DataType::F16, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, weights);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups > 1, "Grouping (num_groups != 1) is not supported");
+
+ const DataLayout data_layout = src->data_layout();
+ const DataType data_type = src->data_type();
+ const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+ const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
+ const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
+ const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
+
+ const unsigned int kernel_width = weights->dimension(idx_width);
+ const unsigned int kernel_height = weights->dimension(idx_height);
+
+ TensorInfo im2col_reshaped_info{};
+ TensorInfo info_gemm{};
+ TensorInfo tmp_info{};
+ TensorInfo weights_reshaped_info{};
+ const ITensorInfo *gemm_input_to_use = src;
+ const ITensorInfo *gemm_output_to_use = dst;
+ const ITensorInfo *weights_to_use = weights;
+
+ const bool append_bias = false;
+ const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
+ const bool is_bf16 = data_type == DataType::BFLOAT16;
+ bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
+
+ // Get convolved dimensions
+ unsigned int conv_w = 0;
+ unsigned int conv_h = 0;
+
+ std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width),
+ src->dimension(idx_height),
+ kernel_width,
+ kernel_height,
+ conv_info,
+ dilation);
+
+ // Check if GEMM3D is supported
+ bool skip_col2im = false;
+ if(data_layout == DataLayout::NHWC)
+ {
+ skip_col2im = bool(validate_gemm3d(src, weights, act_info, conv_h, true));
+ // If not supported, we need to perform im2col and col2im (or reshape layer)
+ if(!skip_col2im)
+ {
+ skip_im2col = false;
+ }
+ }
+
+ if(skip_col2im)
+ {
+ // If not supported, we need to perform im2col and col2im (or reshape layer)
+ if(!bool(validate_gemm3d(src, weights, act_info, conv_h, skip_im2col)))
+ {
+ skip_im2col = false;
+ skip_col2im = false;
+ }
+ }
+
+ ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_channel) != src->dimension(idx_channel));
+ ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
+
+ // Validate biases
+ if(biases != nullptr)
+ {
+ if(is_quantized)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
+ }
+ else if(is_bf16)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F32);
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
+ }
+ ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels));
+ ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
+ }
+
+ unsigned int mat_weights_cols = weights->dimension(idx_kernels);
+ unsigned int mat_weights_rows = weights->dimension(idx_width) * weights->dimension(idx_height) * weights->dimension(idx_channel);
+
+ weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, append_bias), 1, data_type);
+ weights_reshaped_info.set_quantization_info(weights->quantization_info());
+ weights_to_use = &weights_reshaped_info;
+
+ if(!skip_im2col)
+ {
+ // Create tensor info for im2col reshaped inputs
+ // For CPU, the batch size is on the fourth dimension
+ TensorShape shape_im2col = src->tensor_shape();
+ shape_im2col.set(0, mat_weights_rows);
+ shape_im2col.set(1, conv_w * conv_h);
+ shape_im2col.set(2, 1);
+
+ im2col_reshaped_info = TensorInfo(shape_im2col, 1, data_type);
+ im2col_reshaped_info.set_quantization_info(src->quantization_info());
+ ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuIm2ColKernel::validate(src, &im2col_reshaped_info, Size2D(kernel_width, kernel_height), conv_info, append_bias, dilation));
+ gemm_input_to_use = &im2col_reshaped_info;
+ }
+
+ // Create temporary GEMM output tensor in case we cannot skip col2im
+ const DataType output_data_type = data_type == DataType::BFLOAT16 ? DataType::F32 : data_type;
+ if(!skip_col2im)
+ {
+ TensorShape shape_gemm = gemm_input_to_use->tensor_shape();
+ shape_gemm.set(0, mat_weights_cols);
+ shape_gemm.set(1, conv_w * conv_h);
+ info_gemm = TensorInfo(shape_gemm, 1, output_data_type);
+ }
+ else
+ {
+ info_gemm = TensorInfo(dst->tensor_shape(), 1, output_data_type);
+ }
+ info_gemm.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout());
+ gemm_output_to_use = &info_gemm;
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases, gemm_output_to_use, act_info, enable_fast_math, skip_col2im ? conv_h : 0, skip_im2col));
+
+ // Validate Col2Im/ReshapeLayer
+ if(!skip_col2im && (data_layout == DataLayout::NCHW))
+ {
+ ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuCol2ImKernel::validate(gemm_output_to_use, dst, Size2D(conv_w, conv_h)));
+ }
+
+ return Status{};
+}
+
+void CpuGemmConv2d::run(ITensorPack &tensors)
+{
+ prepare(tensors);
+
+ auto src = tensors.get_const_tensor(ACL_SRC_0);
+ auto dst = tensors.get_tensor(ACL_DST);
+ auto gemm_input_to_use = src;
+
+ CpuAuxTensorHandler im2col_output(offset_int_vec(Im2ColOutput), _im2col_output, tensors, false);
+ CpuAuxTensorHandler gemm_output(offset_int_vec(GemmOutput), _gemm_output, tensors, false);
+ CpuAuxTensorHandler reshaped_wei(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors, false);
+
+ bool out_has_padding = _skip_col2im && (dst->info()->padding().bottom != 0 || dst->info()->padding().top != 0);
+ if(!_skip_im2col)
+ {
+ // Run input reshaping
+ unsigned int y_dim = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
+ ITensorPack pack =
+ {
+ { TensorType::ACL_SRC, src },
+ { TensorType::ACL_DST, im2col_output.get() }
+ };
+ NEScheduler::get().schedule_op(_im2col_kernel.get(), y_dim, _im2col_kernel->window(), pack);
+ gemm_input_to_use = im2col_output.get();
+ }
+
+ // Handle the case where output has top/bottom padding
+ const ITensor *out_to_use = out_has_padding ? gemm_output.get() : dst;
+ Tensor gemm3d;
+ _gemm_output_3d.extend_padding(out_to_use->info()->padding());
+ gemm3d.allocator()->soft_init(_gemm_output_3d);
+ gemm3d.allocator()->import_memory(out_to_use->buffer());
+ auto gemm_output_to_use = gemm_output.get();
+
+ if(_skip_im2col)
+ {
+ gemm_output_to_use = &gemm3d;
+ }
+ if(_skip_col2im && !out_has_padding)
+ {
+ gemm_output_to_use = dst;
+ }
+
+ // Runs CpuGemm or CpuGemmLowpMatrixMultiplyCore functions
+ ITensorPack pack_mm = tensors;
+ pack_mm.add_const_tensor(TensorType::ACL_SRC_0, gemm_input_to_use);
+ pack_mm.add_const_tensor(TensorType::ACL_SRC_1, reshaped_wei.get());
+ pack_mm.add_tensor(TensorType::ACL_DST, gemm_output_to_use);
+ if(_is_quantized)
+ {
+ // Run gemmlowp
+ _mm_gemmlowp->run(pack_mm);
+ }
+ else
+ {
+ // Run gemm
+ _mm_gemm->run(pack_mm);
+ }
+
+ // Reshape output matrix
+ if(!_skip_col2im)
+ {
+ if(_data_layout == DataLayout::NCHW)
+ {
+ ITensorPack pack =
+ {
+ { TensorType::ACL_SRC, gemm_output.get() },
+ { TensorType::ACL_DST, dst }
+ };
+ NEScheduler::get().schedule_op(_col2im_kernel.get(), Window::DimY, _col2im_kernel->window(), pack);
+ }
+ else
+ {
+ ITensorPack pack =
+ {
+ { TensorType::ACL_SRC, gemm_output_to_use },
+ { TensorType::ACL_DST, dst }
+ };
+ NEScheduler::get().schedule_op(_reshape_kernel.get(), Window::DimY, _reshape_kernel->window(), pack);
+ }
+ }
+ else if(out_has_padding)
+ {
+ ITensorPack pack =
+ {
+ { TensorType::ACL_SRC, gemm_output_to_use },
+ { TensorType::ACL_DST, dst }
+ };
+ NEScheduler::get().schedule_op(_reshape_kernel.get(), Window::DimY, _reshape_kernel->window(), pack);
+ }
+}
+
+void CpuGemmConv2d::prepare(ITensorPack &tensors)
+{
+ if(!_is_prepared)
+ {
+ // Run weights reshaping and mark original weights tensor as unused
+ CpuAuxTensorHandler weights_reshaped(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors);
+ auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+ ITensorPack pack =
+ {
+ { TensorType::ACL_SRC, weights },
+ { TensorType::ACL_DST, weights_reshaped.get() }
+ };
+ NEScheduler::get().schedule_op(_weights_reshape_kernel.get(), 3, _weights_reshape_kernel->window(), pack);
+ weights->mark_as_unused();
+
+ // Prepare GEMM
+ ITensorPack gemm_pack = tensors;
+ gemm_pack.add_const_tensor(TensorType::ACL_SRC_1, weights_reshaped.get());
+ _is_quantized ? _mm_gemmlowp->prepare(gemm_pack) : _mm_gemm->prepare(gemm_pack);
+
+ _is_prepared = true;
+ }
+}
+experimental::MemoryRequirements CpuGemmConv2d::workspace() const
+{
+ return _aux_mem;
+}
+} // namespace cpu
+} // namespace arm_compute \ No newline at end of file