aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/operators/CpuGemm.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/operators/CpuGemm.cpp')
-rw-r--r--src/cpu/operators/CpuGemm.cpp567
1 files changed, 567 insertions, 0 deletions
diff --git a/src/cpu/operators/CpuGemm.cpp b/src/cpu/operators/CpuGemm.cpp
new file mode 100644
index 0000000000..905e86c185
--- /dev/null
+++ b/src/cpu/operators/CpuGemm.cpp
@@ -0,0 +1,567 @@
+/*
+ * Copyright (c) 2021-2024 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/cpu/operators/CpuGemm.h"
+
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+
+#include "src/common/utils/Log.h"
+#include "src/core/CPP/Validate.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/MemoryHelpers.h"
+#include "src/cpu/utils/CpuAuxTensorHandler.h"
+
+using namespace arm_compute::experimental;
+using namespace arm_compute::misc::shape_calculator;
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace
+{
+cpu::AsmGemmInfo init_assembly_metadata(const GEMMInfo &info)
+{
+ cpu::AsmGemmInfo asm_info;
+ asm_info.method = cpu::AsmConvMethod::Im2Col;
+ asm_info.reinterpret_input_as_3d = info.reinterpret_input_as_3d();
+ asm_info.depth_output_gemm3d = info.depth_output_gemm3d();
+ asm_info.activation_info = info.activation_info();
+ asm_info.fast_mode = info.fast_math();
+ asm_info.fixed_format = info.fixed_format();
+ asm_info.weight_format = info.weight_format();
+ asm_info.accumulate = info.accumulate();
+ asm_info.transpose_b =
+ info.pretranspose_B(); // The "pretranspose_B" flag here is not the same as the pretranspose_B_array method. The flag here signals to pretranspose_B_array method if we want to perform additional transpose on B before the pretranspose_B_array method
+
+ return asm_info;
+}
+} // namespace
+
+void CpuGemm::configure(const ITensorInfo *a,
+ const ITensorInfo *b,
+ const ITensorInfo *c,
+ ITensorInfo *d,
+ float alpha,
+ float beta,
+ const GEMMInfo &gemm_info)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, d);
+ ARM_COMPUTE_ERROR_THROW_ON(CpuGemm::validate(a, b, c, d, alpha, beta, gemm_info));
+ ARM_COMPUTE_LOG_PARAMS(a, b, c, d, alpha, beta, gemm_info);
+
+ const cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info);
+ const bool is_c_bias = beta == 1 && c != nullptr;
+ const bool run_optimised =
+ bool(cpu::CpuGemmAssemblyDispatch::validate(a, b, (is_c_bias) ? c : nullptr, d, asm_info)) &&
+ (c == nullptr || beta == 0.f || beta == 1.f) && // Optimized GeMM doesn't support beta coefficient.
+ !(!b->are_values_constant() &&
+ b->tensor_shape().z() > 1); // Disable batch matmul as optimized GeMM handles batching differently.
+
+ // Check if we need to reshape the matrix B only on the first run
+ _is_prepared = false;
+ _reshape_b_only_on_first_run = b->are_values_constant();
+ _run_vector_matrix_multiplication = a->dimension(1) < 2;
+ _run_alpha_scale = alpha != 1.f;
+ _run_bias_addition = is_c_bias;
+ _run_addition = beta != 0 && beta != 1 && c != nullptr;
+ _run_activation =
+ gemm_info.activation_info().enabled() &&
+ (!run_optimised ||
+ (run_optimised && !cpu::CpuGemmAssemblyDispatch::is_activation_supported(gemm_info.activation_info())));
+
+ if (run_optimised)
+ {
+ _run_interleave_transpose = false;
+ const ITensorInfo *c_to_use = is_c_bias ? c : nullptr;
+ _asm_glue = std::make_unique<cpu::CpuGemmAssemblyDispatch>();
+ _asm_glue->configure(a, b, c_to_use, d, asm_info);
+ ARM_COMPUTE_ERROR_ON(!_asm_glue->is_configured());
+
+ const auto asm_mem_req = _asm_glue->workspace();
+ for (unsigned int slot = 0; slot < asm_mem_req.size(); ++slot)
+ {
+ _aux_mem[slot] = asm_mem_req[slot];
+ }
+
+ // Scale product by alpha
+ if (_run_alpha_scale)
+ {
+ _alpha_scale_func = std::make_unique<cpu::CpuActivation>();
+ _alpha_scale_func->configure(
+ d, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, alpha, 0.f));
+ }
+ }
+ else
+ {
+ _run_interleave_transpose = !_run_vector_matrix_multiplication;
+ // Pick output tensor in case bias addition should be performed
+ ITensorInfo *gemm_output_to_use = (_run_bias_addition) ? &_tmp_d : d;
+ // Pick b tensor in case pretranspose should be performed
+ const ITensorInfo *b_to_use = b;
+
+ _mm_kernel = std::make_unique<cpu::kernels::CpuGemmMatrixMultiplyKernel>();
+
+ // Configure rhs pretranspose
+ if (gemm_info.pretranspose_B())
+ {
+ _pretranspose_b_func = std::make_unique<CpuTranspose>();
+ _pretranspose_b_func->configure(b_to_use, &_pretransposed_b);
+ MemoryLifetime lifetime;
+ if (_reshape_b_only_on_first_run)
+ {
+ if (_run_interleave_transpose)
+ {
+ // PreTransposedRHS tensor is only used in prepare(), but is then succeeded by Transposed1xWRHS
+ // So PreTransposedRHS can be freed inside prepare()
+ lifetime = MemoryLifetime::Prepare;
+ }
+ else
+ {
+ // PreTransposedRHS tensor is only used in prepare(), but is the final transformation of rhs
+ // So PreTransposedRHS needs to persist beyond prepare()
+ lifetime = MemoryLifetime::Persistent;
+ }
+ }
+ else
+ {
+ // PreTransposedRHS tensor is always used in run() and doesn't need to persist
+ lifetime = MemoryLifetime::Temporary;
+ }
+ _aux_mem[PreTransposedRHS] =
+ MemoryInfo(offset_int_vec(PreTransposedRHS), lifetime, _pretransposed_b.total_size());
+ b_to_use = &_pretransposed_b;
+ }
+
+ // Select between GEMV and GEMM
+ if (_run_vector_matrix_multiplication)
+ {
+ // Configure the matrix multiply kernel
+ _mm_kernel->configure(a, b_to_use, gemm_output_to_use, alpha, false);
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR_ON(!_run_interleave_transpose);
+ // Configure interleave kernel
+ _interleave_kernel = std::make_unique<cpu::kernels::CpuGemmInterleave4x4Kernel>();
+ _interleave_kernel->configure(a, &_tmp_a);
+ _aux_mem[InterleavedLHS] =
+ MemoryInfo(offset_int_vec(InterleavedLHS), MemoryLifetime::Temporary, _tmp_a.total_size());
+
+ // Configure rhs transpose1xw kernel
+ _transpose1xW_b_kernel = std::make_unique<cpu::kernels::CpuGemmTranspose1xWKernel>();
+ _transpose1xW_b_kernel->configure(b_to_use, &_tmp_b);
+ _aux_mem[Transposed1xWRHS] =
+ MemoryInfo(offset_int_vec(Transposed1xWRHS), MemoryLifetime::Persistent, _tmp_b.total_size());
+
+ // Use a and b here instead of _tmp_a and _tmp_b because CpuGemmMatrixMultiplyKernel requires the original m,n,k in case of interleaved a and transposed1xw b
+ const int m = a->dimension(1);
+ const int n = b_to_use->dimension(0);
+ const int k = a->dimension(0);
+
+ // Configure matrix multiplication kernel
+ _mm_kernel->configure(&_tmp_a, &_tmp_b, gemm_output_to_use, alpha, _run_interleave_transpose,
+ GEMMReshapeInfo(m, n, k));
+ }
+
+ if (_run_bias_addition)
+ {
+ _add_bias = std::make_unique<cpu::CpuAdd>();
+ _add_bias->configure(gemm_output_to_use, c, d, ConvertPolicy::SATURATE);
+ _aux_mem[TempResult] =
+ MemoryInfo(offset_int_vec(TempResult), MemoryLifetime::Temporary, _tmp_d.total_size());
+ }
+ }
+
+ // Configure matrix addition kernel
+ if (_run_addition)
+ {
+ _ma_kernel = std::make_unique<cpu::kernels::CpuGemmMatrixAdditionKernel>();
+ _ma_kernel->configure(c, d, beta);
+ }
+
+ // Configure activation
+ if (_run_activation)
+ {
+ _activation_func = std::make_unique<cpu::CpuActivation>();
+ _activation_func->configure(d, nullptr, gemm_info.activation_info());
+ }
+}
+
+Status CpuGemm::validate(const ITensorInfo *a,
+ const ITensorInfo *b,
+ const ITensorInfo *c,
+ const ITensorInfo *d,
+ float alpha,
+ float beta,
+ const GEMMInfo &gemm_info)
+{
+ ARM_COMPUTE_UNUSED(alpha);
+ // When using accumulation(in place summation), for now, the only supported values for alpha and beta are 1 respectively 0.
+ // Do the appropriate checks before proceeding.
+ if (gemm_info.accumulate())
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(alpha != 1, "Accumulation is not supported when alpha is different from 1");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ (beta != 0 && c != nullptr),
+ "Accumulation is not supported when beta is different from 0 with a non-null bias matrix c");
+ }
+
+ const bool is_c_bias = beta == 1 && c != nullptr;
+ const bool run_addition = c != nullptr && beta != 0 && beta != 1;
+ // Check if we should use the pretransposed_b or original b
+ // TODO: COMPMID-6597
+ // Note that this check should only apply to the non-optimized path. The reason we brought this at the beginning
+ // instead of only for the fallback path is because of the checks performed below, between here and the run_optimised decision
+ // We should simplify this by
+ // 1. Moving the checks between "fix-start" and "fix-end" into their corresponding ops / kernels (e.g. the weights format checks can and should be moved into CpuGemmAssemblyDispatch)
+ // 2. Moving this b_to_use check back into the non-optimized path
+ TensorInfo pretransposed_b = b->clone()->set_tensor_shape(misc::shape_calculator::compute_transposed_shape(*b));
+ const ITensorInfo *b_to_use = gemm_info.pretranspose_B() ? &pretransposed_b : b;
+ // TODO: COMPMID-6597 fix-start
+
+ ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(a);
+ ARM_COMPUTE_RETURN_ERROR_ON_CPU_BF16_UNSUPPORTED(a);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::BFLOAT16, DataType::F16, DataType::F32);
+
+ if (is_fixed_format_fast_math(gemm_info.weight_format()))
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(a, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_NOT_IN(b_to_use, DataType::BFLOAT16);
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b_to_use);
+ }
+
+ const int block_by = arm_compute::block_by(gemm_info.weight_format());
+ // test if im2col has changed the dimensions that are needed for padding
+ if (a->dimension(0) != b_to_use->dimension(1) && block_by > 1)
+ {
+ // have to verify bias
+ const size_t dim0_sz = a->dimension(0);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ (dim0_sz % block_by) != 0,
+ ("The matrix A number of columns must be a multiple of block_by=" + std::to_string(block_by)).c_str());
+ // a->dimension(0) = kernel_area * input_channel + kernel_area * input_pad_right
+ // b_to_use->dimension(1) = kernel_area * input_channel
+ // a->dimension(0) = b_to_use->dimension(1) + kernel_area * input_pad_right
+ const size_t input_pad_right = (dim0_sz - b_to_use->dimension(1)) % block_by;
+ const size_t kernel_area = (dim0_sz - b_to_use->dimension(1)) / input_pad_right;
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ (dim0_sz - kernel_area * input_pad_right) != b_to_use->dimension(1),
+ "The product AB is defined only if A number of columns and B number of rows are related");
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ a->dimension(0) != b_to_use->dimension(1),
+ "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
+ }
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
+ if (a->data_type() != DataType::BFLOAT16)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, d);
+ }
+
+ if (run_addition)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.depth_output_gemm3d() != 0);
+ ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.reinterpret_input_as_3d());
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(c, d);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(1) != c->dimension(1),
+ "The C matrix must have the same number of rows as the matrix A");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(b_to_use->dimension(0) != c->dimension(0),
+ "The C matrix must have the same number of columns as the matrix B");
+ }
+
+ if (d->total_size() != 0)
+ {
+ // For fixed format we are expecting some kind of blocked format for B/RHS so the dimension won't necessarily match the result matrix any more.
+ ARM_COMPUTE_RETURN_ERROR_ON(!gemm_info.fixed_format() && b_to_use->dimension(0) != d->dimension(0));
+ if (gemm_info.depth_output_gemm3d() != 0)
+ {
+ if (gemm_info.reinterpret_input_as_3d())
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1));
+ ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(2) != d->dimension(2));
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1) * d->dimension(2));
+ }
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != d->dimension(1));
+ }
+ }
+ // TODO: COMPMID-6597 fix-end
+
+ // Check if we need to run the optimized assembly kernel
+ cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info);
+
+ // Note we use b instead of b_to_use here because asm_info also captures the pretranspose_b() flag
+ // so we pass the original b to CpuGemmAssemblyDispatch
+ const bool run_optimised =
+ bool(cpu::CpuGemmAssemblyDispatch::validate(a, b, is_c_bias ? c : nullptr, d, asm_info)) &&
+ (c == nullptr || beta == 0.f || beta == 1.f) && // Optimized GeMM doesn't support beta coefficient.
+ !(!b->are_values_constant() &&
+ b->tensor_shape().z() > 1); // Disable batch matmul as optimized GeMM handles batching differently.
+
+ if (!run_optimised)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.reinterpret_input_as_3d(),
+ "CpuGemm cannot reinterpret the input tensor as 3D");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.depth_output_gemm3d() != 0,
+ "CpuGemm cannot reinterpret the output tensor as 3D");
+
+ // Check if the first input tensor is a vector.
+ const bool run_vector_matrix_multiplication = a->dimension(1) < 2;
+ // Check if we need to reshape the matrix A and matrix B
+ const bool run_interleave_transpose = !run_vector_matrix_multiplication;
+
+ // Arguments used by GEMMReshapeInfo
+ // If we pass the matrix A and matrix B reshaped to CpuGemmMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to GEMMReshapeInfo
+ // in order to know how the matrices have been reshaped
+ const int m = a->dimension(1);
+ const int n = b_to_use->dimension(0);
+ const int k = a->dimension(0);
+ int mult_transpose1xW_width = 1;
+ int mult_interleave4x4_height = 1;
+
+ const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(
+ m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, gemm_info.depth_output_gemm3d());
+
+ const ITensorInfo *matrix_a_info = a;
+ const ITensorInfo *matrix_b_info = b_to_use;
+
+ TensorInfo tmp_a_info{};
+ TensorInfo tmp_b_info{};
+ TensorInfo tmp_output_info = *d->clone();
+
+ if (run_interleave_transpose)
+ {
+ matrix_a_info = &tmp_a_info;
+ matrix_b_info = &tmp_b_info;
+
+ // Validate interleave kernel
+ auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_interleaved_shape(
+ *a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d())));
+ ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmInterleave4x4Kernel::validate(a, &tmp_a_info));
+
+ // Validate transpose kernel
+ auto_init_if_empty(tmp_b_info,
+ b_to_use->clone()->set_tensor_shape(
+ compute_transpose1xW_with_element_size_shape(*b_to_use, mult_transpose1xW_width)));
+ ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmTranspose1xWKernel::validate(b_to_use, &tmp_b_info));
+ }
+
+ // Validate matrix multiply
+ auto_init_if_empty(tmp_output_info,
+ matrix_a_info->clone()->set_tensor_shape(compute_mm_shape(
+ *matrix_a_info, *matrix_b_info, run_interleave_transpose, reshape_info)));
+ ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmMatrixMultiplyKernel::validate(
+ matrix_a_info, matrix_b_info, &tmp_output_info, alpha, run_interleave_transpose, reshape_info));
+
+ if (is_c_bias)
+ {
+ ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuAdd::validate(&tmp_output_info, c, d, ConvertPolicy::SATURATE));
+ }
+ }
+
+ // Validate matrix addition kernel
+ if (run_addition)
+ {
+ ARM_COMPUTE_RETURN_ON_ERROR(cpu::kernels::CpuGemmMatrixAdditionKernel::validate(c, d, beta));
+ }
+
+ // Validate activation
+ const ActivationLayerInfo &activation = gemm_info.activation_info();
+ if (activation.enabled())
+ {
+ ARM_COMPUTE_RETURN_ON_ERROR(cpu::CpuActivation::validate(d, nullptr, activation));
+ }
+
+ return Status{};
+}
+
+void CpuGemm::run(ITensorPack &tensors)
+{
+ prepare(tensors);
+
+ auto a = tensors.get_const_tensor(ACL_SRC_0);
+ auto b = tensors.get_const_tensor(ACL_SRC_1);
+ auto c = tensors.get_const_tensor(ACL_SRC_2);
+ auto d = tensors.get_tensor(ACL_DST);
+
+ if (_asm_glue && _asm_glue->is_configured())
+ {
+ // Pass c to asm dispatch only if it's the bias tensor
+ ITensorPack asm_pack = tensors;
+ asm_pack.add_const_tensor(ACL_SRC_2, _run_bias_addition ? c : nullptr);
+ _asm_glue->run(asm_pack);
+ if (_run_alpha_scale)
+ {
+ ITensorPack pack{{ACL_SRC, d}, {ACL_DST, d}};
+ _alpha_scale_func->run(pack);
+ }
+ }
+ else
+ {
+ CpuAuxTensorHandler interleaved_a(offset_int_vec(InterleavedLHS), _tmp_a, tensors, true);
+ CpuAuxTensorHandler pretransposed_b(offset_int_vec(PreTransposedRHS), _pretransposed_b, tensors);
+ CpuAuxTensorHandler transposed1xw_b(offset_int_vec(Transposed1xWRHS), _tmp_b, tensors, true);
+ CpuAuxTensorHandler temp_d(offset_int_vec(TempResult), _tmp_d, tensors, true);
+
+ ITensorPack mm_pack{{ACL_SRC_0, a}, {ACL_SRC_1, b}, {ACL_DST, (_run_bias_addition) ? temp_d.get() : d}};
+
+ if (_run_interleave_transpose)
+ {
+ // Run interleave kernel
+ ITensorPack interleave_pack{{ACL_SRC, a}, {ACL_DST, interleaved_a.get()}};
+ NEScheduler::get().schedule_op(_interleave_kernel.get(), Window::DimY, _interleave_kernel->window(),
+ interleave_pack);
+ // Use reshaped matrices
+ mm_pack.add_const_tensor(ACL_SRC_0, interleaved_a.get());
+ }
+
+ const ITensor *b_to_use = b;
+ if (_pretranspose_b_func)
+ {
+ if (!_reshape_b_only_on_first_run)
+ {
+ // Run pretranspose kernel
+ ITensorPack pretranspose_pack{{ACL_SRC, b_to_use}, {ACL_DST, pretransposed_b.get()}};
+ _pretranspose_b_func->run(pretranspose_pack);
+ }
+ b_to_use = pretransposed_b.get();
+ }
+ if (_run_interleave_transpose)
+ {
+ if (!_reshape_b_only_on_first_run)
+ {
+ // Run transpose1xw kernel
+ ITensorPack transpose_pack{{ACL_SRC, b_to_use}, {ACL_DST, transposed1xw_b.get()}};
+ NEScheduler::get().schedule_op(_transpose1xW_b_kernel.get(), Window::DimY,
+ _transpose1xW_b_kernel->window(), transpose_pack);
+ }
+ b_to_use = transposed1xw_b.get();
+ }
+ // Use reshaped matrices
+ mm_pack.add_const_tensor(ACL_SRC_1, b_to_use);
+
+ NEScheduler::get().schedule_op(_mm_kernel.get(),
+ _run_vector_matrix_multiplication ? Window::DimX : Window::DimY,
+ _mm_kernel->window(), mm_pack);
+
+ // Run bias addition kernel
+ if (_run_bias_addition)
+ {
+ ITensorPack pack{{ACL_SRC_0, temp_d.get()}, {ACL_SRC_1, c}, {ACL_DST, d}};
+ _add_bias->run(pack);
+ }
+ }
+
+ // Run matrix addition kernel
+ if (_run_addition)
+ {
+ ITensorPack c_add_pack{{ACL_SRC, c}, {ACL_DST, d}};
+ NEScheduler::get().schedule_op(_ma_kernel.get(), Window::DimY, _ma_kernel->window(), c_add_pack);
+ }
+
+ // Run activation function
+ if (_run_activation)
+ {
+ ITensorPack pack{{ACL_SRC, d}, {ACL_DST, d}};
+ _activation_func->run(pack);
+ }
+}
+
+void CpuGemm::prepare(ITensorPack &tensors)
+{
+ if (!_is_prepared)
+ {
+ if (_asm_glue && _asm_glue->is_configured())
+ {
+ _asm_glue->prepare(tensors);
+ }
+ else if (_reshape_b_only_on_first_run)
+ {
+ const ITensor *b = tensors.get_const_tensor(ACL_SRC_1);
+ const ITensor *b_to_use = b;
+ CpuAuxTensorHandler pretransposed_b(
+ offset_int_vec(PreTransposedRHS), _pretransposed_b, tensors,
+ false /*pack_inject: no need to inject into tensors*/,
+ _pretranspose_b_func ==
+ nullptr /*bypass_alloc: no need to allocate if _pretranspose_b_func is not run*/);
+ CpuAuxTensorHandler transposed1xw_b(offset_int_vec(Transposed1xWRHS), _tmp_b, tensors,
+ false /*pack_inject*/, !_run_interleave_transpose /*bypass_alloc*/);
+
+ if (_pretranspose_b_func)
+ {
+ // Run pretranspose kernel
+ ITensorPack pretranspose_pack{{ACL_SRC, b_to_use}, {ACL_DST, pretransposed_b.get()}};
+ _pretranspose_b_func->run(pretranspose_pack);
+ b_to_use = pretransposed_b.get();
+ }
+ if (_run_interleave_transpose)
+ {
+ // Run transpose kernel
+ ITensorPack transpose_pack{{ACL_SRC, b_to_use}, {ACL_DST, transposed1xw_b.get()}};
+ NEScheduler::get().schedule_op(_transpose1xW_b_kernel.get(), Window::DimY,
+ _transpose1xW_b_kernel->window(), transpose_pack);
+ }
+ }
+ _is_prepared = true;
+ }
+}
+
+experimental::MemoryRequirements CpuGemm::workspace() const
+{
+ return _aux_mem;
+}
+
+Status CpuGemm::has_opt_impl(arm_compute::WeightFormat &expected_weight_format,
+ const ITensorInfo *a,
+ const ITensorInfo *b,
+ const ITensorInfo *c,
+ const ITensorInfo *d,
+ const GEMMInfo &gemm_info)
+{
+ const cpu::AsmGemmInfo asm_info = init_assembly_metadata(gemm_info);
+
+ return CpuGemmAssemblyDispatch::has_opt_impl(expected_weight_format, a, b, c, d, asm_info);
+}
+
+bool CpuGemm::isVarWeightsKernel() const
+{
+ return _asm_glue && _asm_glue->isVarWeightsKernel();
+}
+} // namespace cpu
+} // namespace arm_compute