aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/scale/neon/list.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/scale/neon/list.h')
-rw-r--r--src/cpu/kernels/scale/neon/list.h617
1 files changed, 617 insertions, 0 deletions
diff --git a/src/cpu/kernels/scale/neon/list.h b/src/cpu/kernels/scale/neon/list.h
new file mode 100644
index 0000000000..153dc67c3d
--- /dev/null
+++ b/src/cpu/kernels/scale/neon/list.h
@@ -0,0 +1,617 @@
+/*
+ * Copyright (c) 2021-2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ACL_SRC_CPU_KERNELS_SCALE_NEON_LIST_H
+#define ACL_SRC_CPU_KERNELS_SCALE_NEON_LIST_H
+
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/Window.h"
+
+#include "src/core/NEON/wrapper/wrapper.h"
+#include "src/core/utils/ScaleUtils.h"
+#include "support/Rounding.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+#define DECLARE_SCALE_KERNEL(func_name) \
+ void func_name(const ITensor *src, ITensor *dst, const ITensor *offsets, const ITensor *dx, const ITensor *dy, \
+ InterpolationPolicy policy, BorderMode border_mode, PixelValue constant_border_value, \
+ float sampling_offset, bool align_corners, const Window &window)
+
+DECLARE_SCALE_KERNEL(s16_neon_scale);
+DECLARE_SCALE_KERNEL(u8_neon_scale);
+DECLARE_SCALE_KERNEL(s8_neon_scale);
+DECLARE_SCALE_KERNEL(qasymm8_neon_scale);
+DECLARE_SCALE_KERNEL(qasymm8_signed_neon_scale);
+DECLARE_SCALE_KERNEL(fp16_common_neon_scale);
+DECLARE_SCALE_KERNEL(fp16_bilinear_neon_scale_nchw);
+DECLARE_SCALE_KERNEL(fp16_nearest_neon_scale_nchw);
+
+#undef DECLARE_SCALE_KERNEL
+
+#ifdef ENABLE_NCHW_KERNELS
+template <typename T>
+void scale_nearest_nchw(const ITensor *src,
+ ITensor *dst,
+ const ITensor *dx,
+ const ITensor *dy,
+ const ITensor *offsets,
+ PixelValue constant_border_value,
+ float sampling_offset,
+ bool align_corners,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dx, dy);
+ ARM_COMPUTE_UNUSED(constant_border_value);
+ const size_t in_stride_x = src->info()->dimension(0) + src->info()->padding().left + src->info()->padding().right;
+
+ // Compute the ratio between source height and destination height
+ const auto hr =
+ scale_utils::calculate_resize_ratio(src->info()->dimension(1), dst->info()->dimension(1), align_corners);
+
+ // Don't increment in X and Y direction for the input tensor
+ // A pointer to the start of this plane is needed as base for the precomputed offsets
+ Window win_in(window);
+ win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
+ win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
+
+ // Set offsets window
+ Window win_off;
+ win_off.set(Window::DimX, window[Window::DimX]);
+ win_off.set(Window::DimY, window[Window::DimY]);
+ for (size_t d = Window::DimZ; d < offsets->info()->num_dimensions(); ++d)
+ {
+ win_off.set(d, Window::Dimension(0, 0, 0));
+ }
+
+ // Create iterators
+ Iterator src_i(src, win_in);
+ Iterator dst_i(dst, window);
+ Iterator offsets_i(offsets, win_off);
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto offsets_ptr = reinterpret_cast<const int32_t *>(offsets_i.ptr());
+ const auto in_yi = static_cast<int32_t>(
+ align_corners ? utils::rounding::round_half_away_from_zero((id.y() + sampling_offset) * hr)
+ : std::floor((id.y() + sampling_offset) * hr));
+ const int32_t offset_row = in_yi * in_stride_x;
+ *reinterpret_cast<T *>(dst_i.ptr()) =
+ *(reinterpret_cast<const T *>(src_i.ptr()) + offsets_ptr[0] + offset_row);
+ },
+ src_i, offsets_i, dst_i);
+}
+
+template <typename T>
+void scale_bilinear_nchw(const ITensor *src,
+ ITensor *dst,
+ const ITensor *dx,
+ const ITensor *dy,
+ const ITensor *offsets,
+ BorderMode border_mode,
+ PixelValue constant_border_value,
+ float sampling_offset,
+ bool align_corners,
+ const Window &window)
+{
+ // Compute the ratio between source height and destination height
+ const auto hr =
+ scale_utils::calculate_resize_ratio(src->info()->dimension(1), dst->info()->dimension(1), align_corners);
+ Window win_off;
+ win_off.set(Window::DimX, window.x());
+ win_off.set(Window::DimY, window.y());
+
+ // Don't increment in X and Y direction for the input tensor
+ // A pointer to the start of this plane is needed as base for the precomputed offsets
+ Window win_in(window);
+ win_in.set(Window::DimX, Window::Dimension(0, 0, 0));
+ win_in.set(Window::DimY, Window::Dimension(0, 0, 0));
+
+ for (size_t d = Window::DimZ; d < offsets->info()->num_dimensions(); ++d)
+ {
+ win_off.set(d, Window::Dimension(0, 0, 0));
+ }
+
+ Iterator src_i(src, win_in);
+ Iterator dst_i(dst, window);
+ Iterator offsets_i(offsets, win_off);
+ Iterator dx_i(dx, win_off);
+ Iterator dy_i(dy, win_off);
+
+ const int32_t in_dim_w = src->info()->dimension(0);
+ const int32_t in_dim_h = src->info()->dimension(1);
+ const int32_t in_stride_w = in_dim_w + src->info()->padding().left + src->info()->padding().right;
+
+ if (border_mode == BorderMode::CONSTANT)
+ {
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ using ConstType = typename std::conditional<std::is_same<T, float16_t>::value, half, T>::type;
+#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+ using ConstType = T;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+ const T const_border_value = static_cast<T>(constant_border_value.get<ConstType>());
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const int32_t index_h = std::floor((id.y() + sampling_offset) * hr - sampling_offset);
+ const auto index_w = *(reinterpret_cast<const int32_t *>(offsets_i.ptr()));
+ const auto dx_val = *(reinterpret_cast<const float *>(dx_i.ptr()));
+ const auto dy_val = *(reinterpret_cast<const float *>(dy_i.ptr()));
+ const auto pixel_row_ptr = reinterpret_cast<const T *>(src_i.ptr());
+
+ const auto a00 = (0 <= index_w && index_w < in_dim_w && 0 <= index_h && index_h < in_dim_h)
+ ? (*(pixel_row_ptr + index_w + index_h * in_stride_w))
+ : const_border_value;
+ const auto a01 = (-1 <= index_w && index_w < in_dim_w - 1 && 0 <= index_h && index_h < in_dim_h)
+ ? (*(pixel_row_ptr + index_w + 1 + index_h * in_stride_w))
+ : const_border_value;
+ const auto a10 = (0 <= index_w && index_w < in_dim_w && -1 <= index_h && index_h < in_dim_h - 1)
+ ? (*(pixel_row_ptr + index_w + index_h * in_stride_w + in_stride_w))
+ : const_border_value;
+ const auto a11 = (-1 <= index_w && index_w < in_dim_w - 1 && -1 <= index_h && index_h < in_dim_h - 1)
+ ? (*(pixel_row_ptr + index_w + 1 + index_h * in_stride_w + in_stride_w))
+ : const_border_value;
+
+ *reinterpret_cast<T *>(dst_i.ptr()) =
+ static_cast<T>(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val));
+ },
+ src_i, offsets_i, dx_i, dy_i, dst_i);
+ }
+ else if (border_mode == BorderMode::REPLICATE)
+ {
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const int index_h = std::floor((id.y() + sampling_offset) * hr - sampling_offset);
+ const auto index_w = *(reinterpret_cast<const int32_t *>(offsets_i.ptr()));
+ const auto dx_val = *(reinterpret_cast<const float *>(dx_i.ptr()));
+ const auto dy_val = *(reinterpret_cast<const float *>(dy_i.ptr()));
+ const auto pixel_row_ptr = reinterpret_cast<const T *>(src_i.ptr());
+
+ auto clamped_x = utility::clamp<int>(index_w, 0, in_dim_w - 1);
+ auto clamped_x1 = utility::clamp<int>(index_w + 1, 0, in_dim_w - 1);
+ auto clamped_y = utility::clamp<int>(index_h, 0, in_dim_h - 1);
+ auto clamped_y1 = utility::clamp<int>(index_h + 1, 0, in_dim_h - 1);
+
+ const auto a00 = *(pixel_row_ptr + clamped_x + clamped_y * in_stride_w);
+ const auto a01 = *(pixel_row_ptr + clamped_x1 + clamped_y * in_stride_w);
+ const auto a10 = *(pixel_row_ptr + clamped_x + clamped_y1 * in_stride_w);
+ const auto a11 = *(pixel_row_ptr + clamped_x1 + clamped_y1 * in_stride_w);
+
+ *reinterpret_cast<T *>(dst_i.ptr()) =
+ static_cast<T>(scale_helpers::delta_bilinear(a00, a01, a10, a11, dx_val, dy_val));
+ },
+ src_i, offsets_i, dx_i, dy_i, dst_i);
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR("Not implemented");
+ }
+}
+#endif // ENABLE_NCHW_KERNELS
+
+template <typename T>
+void nearest_neon_scale(const ITensor *src,
+ ITensor *dst,
+ const ITensor *offsets,
+ float sampling_offset,
+ bool align_corners,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(offsets);
+
+ // Compute the ratio between source and destination dimensions
+ const float scale_x =
+ scale_utils::calculate_resize_ratio(src->info()->dimension(1), dst->info()->dimension(1), align_corners);
+ const float scale_y =
+ scale_utils::calculate_resize_ratio(src->info()->dimension(2), dst->info()->dimension(2), align_corners);
+
+ const int in_stride_y = src->info()->strides_in_bytes()[1];
+ const int in_stride_z = src->info()->strides_in_bytes()[2];
+ const int in_stride_w = src->info()->strides_in_bytes()[3];
+ const int out_stride_y = dst->info()->strides_in_bytes()[1];
+ const int out_stride_z = dst->info()->strides_in_bytes()[2];
+ const int out_stride_w = dst->info()->strides_in_bytes()[3];
+ const int out_dim_ch = dst->info()->dimension(0);
+ const int step_cout = 16 / sizeof(T);
+
+ Window window_execution = window;
+ window_execution.set(Window::DimX, Window::Dimension(0, 1, 1));
+ Window win_in_out(window);
+ win_in_out.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0));
+ Iterator in(src, win_in_out);
+ Iterator out(dst, win_in_out);
+
+ const int xo_start = window_execution.y().start();
+ const int xo_end = window_execution.y().end();
+ const int xo_step = window_execution.y().step();
+ const int yo_start = window_execution.z().start();
+ const int yo_end = window_execution.z().end();
+ const int yo_step = window_execution.z().step();
+ const int bo_start = window_execution[3].start();
+ const int bo_end = window_execution[3].end();
+ const int bo_step = window_execution[3].step();
+
+ for (int bo = bo_start; bo < bo_end; bo += bo_step)
+ {
+ const uint8_t *in_ptr_base = in.ptr() + bo * in_stride_w;
+ uint8_t *out_ptr_base = out.ptr() + bo * out_stride_w;
+
+ for (int yo = yo_start; yo < yo_end; yo += yo_step)
+ {
+ // Floating-point coordinate
+ float yi_f = ((yo + sampling_offset) * scale_y);
+ int yi = 0;
+ if (align_corners)
+ {
+ yi = utils::rounding::round_half_away_from_zero(yi_f);
+ }
+ else
+ {
+ yi = static_cast<int>(std::floor(yi_f));
+ }
+
+ for (int xo = xo_start; xo < xo_end; xo += xo_step)
+ {
+ // Floating-point coordinate
+ float xi_f = ((xo + sampling_offset) * scale_x);
+ int xi = 0;
+ if (align_corners)
+ {
+ xi = utils::rounding::round_half_away_from_zero(xi_f);
+ }
+ else
+ {
+ xi = static_cast<int>(std::floor(xi_f));
+ }
+
+ const uint8_t *in_ptr = in_ptr_base + xi * in_stride_y + yi * in_stride_z;
+ uint8_t *out_ptr = out_ptr_base + xo * out_stride_y + yo * out_stride_z;
+
+ int cout = 0;
+ for (; cout <= (out_dim_ch - step_cout); cout += step_cout)
+ {
+ auto out0 = wrapper::vloadq(reinterpret_cast<const T *>(in_ptr + cout * sizeof(T)));
+ wrapper::vstore(reinterpret_cast<T *>(out_ptr + cout * sizeof(T)), out0);
+ }
+
+ for (; cout < out_dim_ch; ++cout)
+ {
+ auto out0 = *(reinterpret_cast<const T *>(in_ptr + cout * sizeof(T)));
+ *(reinterpret_cast<T *>(out_ptr + cout * sizeof(T))) = out0;
+ }
+ }
+ }
+ }
+}
+
+template <typename T>
+void bilinear_neon_scale(const ITensor *src,
+ ITensor *dst,
+ const ITensor *offsets,
+ const ITensor *dx,
+ const ITensor *dy,
+ BorderMode border_mode,
+ PixelValue constant_border_value,
+ float sampling_offset,
+ bool align_corners,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(offsets);
+ ARM_COMPUTE_UNUSED(dx);
+ ARM_COMPUTE_UNUSED(dy);
+ using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
+
+ // Compute the ratio between source and destination dimensions
+ const float scale_x =
+ scale_utils::calculate_resize_ratio(src->info()->dimension(1), dst->info()->dimension(1), align_corners);
+ const float scale_y =
+ scale_utils::calculate_resize_ratio(src->info()->dimension(2), dst->info()->dimension(2), align_corners);
+
+ const int in_stride_y = src->info()->strides_in_bytes()[1];
+ const int in_stride_z = src->info()->strides_in_bytes()[2];
+ const int in_stride_w = src->info()->strides_in_bytes()[3];
+ const int out_stride_y = dst->info()->strides_in_bytes()[1];
+ const int out_stride_z = dst->info()->strides_in_bytes()[2];
+ const int out_stride_w = dst->info()->strides_in_bytes()[3];
+ const int in_dim_w = src->info()->dimension(1);
+ const int in_dim_h = src->info()->dimension(2);
+ const int out_dim_ch = dst->info()->dimension(0);
+ const int step_cout = 16 / sizeof(T);
+
+ Window window_execution = window;
+ window_execution.set(Window::DimX, Window::Dimension(0, 1, 1));
+ Window win_in_out(window);
+ win_in_out.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_in_out.set(Window::DimZ, Window::Dimension(0, 0, 0));
+ Iterator in(src, win_in_out);
+ Iterator out(dst, win_in_out);
+
+ const int xo_start = window_execution.y().start();
+ const int xo_end = window_execution.y().end();
+ const int xo_step = window_execution.y().step();
+ const int yo_start = window_execution.z().start();
+ const int yo_end = window_execution.z().end();
+ const int yo_step = window_execution.z().step();
+ const int bo_start = window_execution[3].start();
+ const int bo_end = window_execution[3].end();
+ const int bo_step = window_execution[3].step();
+
+ if (border_mode == BorderMode::CONSTANT)
+ {
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ using ConstType = typename std::conditional<std::is_same<T, float16_t>::value, half, T>::type;
+#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+ using ConstType = T;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+ const T const_border_value = static_cast<T>(constant_border_value.get<ConstType>());
+
+ for (int bo = bo_start; bo < bo_end; bo += bo_step)
+ {
+ const uint8_t *in_ptr_base = in.ptr() + bo * in_stride_w;
+ uint8_t *out_ptr_base = out.ptr() + bo * out_stride_w;
+
+ for (int yo = yo_start; yo < yo_end; yo += yo_step)
+ {
+ // Floating-point coordinate
+ const float yi_f = ((yo + sampling_offset) * scale_y - sampling_offset);
+ // Integer coordinate
+ const auto yi = static_cast<int>(std::floor(yi_f));
+ // Weight for the y coordinate
+ const auto a1 = (yi_f - static_cast<float>(yi));
+ const auto b1 = (1.f - a1);
+
+ for (int xo = xo_start; xo < xo_end; xo += xo_step)
+ {
+ // Floating-point coordinate
+ const float xi_f = ((xo + sampling_offset) * scale_x - sampling_offset);
+ // Integer coordinate
+ const auto xi = static_cast<int>(std::floor(xi_f));
+ // Weight for the x coordinate
+ const auto a = (xi_f - static_cast<float>(xi));
+ const auto b = (1.f - a);
+
+ const auto s00_s = static_cast<T>(b * b1);
+ const auto s01_s = static_cast<T>(a * b1);
+ const auto s10_s = static_cast<T>(b * a1);
+ const auto s11_s = static_cast<T>(a * a1);
+
+ const uint8_t *in_ptr = in_ptr_base + xi * in_stride_y + yi * in_stride_z;
+ uint8_t *out_ptr = out_ptr_base + xo * out_stride_y + yo * out_stride_z;
+
+ int cout = 0;
+ for (; cout <= (out_dim_ch - step_cout); cout += step_cout)
+ {
+ auto in00 = wrapper::vdup_n(static_cast<T>(const_border_value), ExactTagType{});
+ auto in01 = wrapper::vdup_n(static_cast<T>(const_border_value), ExactTagType{});
+ auto in10 = wrapper::vdup_n(static_cast<T>(const_border_value), ExactTagType{});
+ auto in11 = wrapper::vdup_n(static_cast<T>(const_border_value), ExactTagType{});
+ if ((yi >= 0) && (yi < in_dim_h))
+ {
+ if ((xi >= 0) && (xi < in_dim_w))
+ {
+ in00 = wrapper::vloadq(reinterpret_cast<const T *>(in_ptr + cout * sizeof(T)));
+ }
+ if (((xi + 1) >= 0) && ((xi + 1) < in_dim_w))
+ {
+ in01 = wrapper::vloadq(
+ reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + in_stride_y));
+ }
+ }
+ if (((yi + 1) >= 0) && ((yi + 1) < in_dim_h))
+ {
+ if ((xi >= 0) && (xi < in_dim_w))
+ {
+ in10 = wrapper::vloadq(
+ reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + in_stride_z));
+ }
+ if (((xi + 1) >= 0) && ((xi + 1) < in_dim_w))
+ {
+ in11 = wrapper::vloadq(
+ reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + in_stride_y + in_stride_z));
+ }
+ }
+
+ const auto s00 = wrapper::vdup_n(s00_s, ExactTagType{});
+ const auto s01 = wrapper::vdup_n(s01_s, ExactTagType{});
+ const auto s10 = wrapper::vdup_n(s10_s, ExactTagType{});
+ const auto s11 = wrapper::vdup_n(s11_s, ExactTagType{});
+ auto out0 = wrapper::vdup_n(static_cast<T>(0), ExactTagType{});
+ out0 = wrapper::vmla(out0, in00, s00);
+ out0 = wrapper::vmla(out0, in01, s01);
+ out0 = wrapper::vmla(out0, in10, s10);
+ out0 = wrapper::vmla(out0, in11, s11);
+ wrapper::vstore(reinterpret_cast<T *>(out_ptr + cout * sizeof(T)), out0);
+ }
+
+ for (; cout < out_dim_ch; ++cout)
+ {
+ auto in00 = static_cast<T>(const_border_value);
+ auto in01 = static_cast<T>(const_border_value);
+ auto in10 = static_cast<T>(const_border_value);
+ auto in11 = static_cast<T>(const_border_value);
+ if ((yi >= 0) && (yi < in_dim_h))
+ {
+ if ((xi >= 0) && (xi < in_dim_w))
+ {
+ in00 = *(reinterpret_cast<const T *>(in_ptr + cout * sizeof(T)));
+ }
+ if (((xi + 1) >= 0) && ((xi + 1) < in_dim_w))
+ {
+ in01 = *(reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + in_stride_y));
+ }
+ }
+ if (((yi + 1) >= 0) && ((yi + 1) < in_dim_h))
+ {
+ if ((xi >= 0) && (xi < in_dim_w))
+ {
+ in10 = *(reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + in_stride_z));
+ }
+ if (((xi + 1) >= 0) && ((xi + 1) < in_dim_w))
+ {
+ in11 = *(
+ reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + in_stride_y + in_stride_z));
+ }
+ }
+ auto out0 = static_cast<T>(0);
+ out0 += in00 * s00_s;
+ out0 += in01 * s01_s;
+ out0 += in10 * s10_s;
+ out0 += in11 * s11_s;
+ *(reinterpret_cast<T *>(out_ptr + cout * sizeof(T))) = out0;
+ }
+ }
+ }
+ }
+ }
+ else if (border_mode == BorderMode::REPLICATE)
+ {
+ for (int bo = bo_start; bo < bo_end; bo += bo_step)
+ {
+ const uint8_t *in_ptr = in.ptr() + bo * in_stride_w;
+ uint8_t *out_ptr = out.ptr() + bo * out_stride_w;
+
+ for (int yo = yo_start; yo < yo_end; yo += yo_step)
+ {
+ // Floating-point coordinate
+ const float yi_f = ((yo + sampling_offset) * scale_y - sampling_offset);
+ // Integer coordinate
+ const auto yi = static_cast<int>(std::floor(yi_f));
+ // Weight for the y coordinate
+ const auto a1 = (yi_f - static_cast<float>(yi));
+ const auto b1 = (1.f - a1);
+
+ const int yi0 = utility::clamp<int>(yi, 0, in_dim_h - 1);
+ const int yi1 = utility::clamp<int>(yi + 1, 0, in_dim_h - 1);
+
+ const int yi0_offset = yi0 * in_stride_z;
+ const int yi1_offset = yi1 * in_stride_z;
+
+ const int y_offset = yo * out_stride_z;
+ for (int xo = xo_start; xo < xo_end; xo += xo_step)
+ {
+ // Floating-point coordinate
+ const float xi_f = ((xo + sampling_offset) * scale_x - sampling_offset);
+ // Integer coordinate
+ const auto xi = static_cast<int>(std::floor(xi_f));
+ // Weight for the x coordinate
+ const auto a = (xi_f - static_cast<float>(xi));
+ const auto b = (1.f - a);
+
+ const auto s00_s = static_cast<T>(b * b1);
+ const auto s01_s = static_cast<T>(a * b1);
+ const auto s10_s = static_cast<T>(b * a1);
+ const auto s11_s = static_cast<T>(a * a1);
+
+ const auto s00 = wrapper::vdup_n(s00_s, ExactTagType{});
+ const auto s01 = wrapper::vdup_n(s01_s, ExactTagType{});
+ const auto s10 = wrapper::vdup_n(s10_s, ExactTagType{});
+ const auto s11 = wrapper::vdup_n(s11_s, ExactTagType{});
+
+ const int xi0 = utility::clamp<int>(xi, 0, in_dim_w - 1);
+ const int xi1 = utility::clamp<int>(xi + 1, 0, in_dim_w - 1);
+
+ const int xi0_offset = xi0 * in_stride_y;
+ const int xi1_offset = xi1 * in_stride_y;
+
+ const int offset = xo * out_stride_y + y_offset;
+
+ int cout = 0;
+ for (; cout <= (out_dim_ch - step_cout); cout += step_cout)
+ {
+ const auto in00 = wrapper::vloadq(
+ reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + xi0_offset + yi0_offset));
+ const auto in01 = wrapper::vloadq(
+ reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + xi1_offset + yi0_offset));
+ const auto in10 = wrapper::vloadq(
+ reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + xi0_offset + yi1_offset));
+ const auto in11 = wrapper::vloadq(
+ reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + xi1_offset + yi1_offset));
+
+ auto out0 = wrapper::vmul(in00, s00);
+ out0 = wrapper::vmla(out0, in01, s01);
+ out0 = wrapper::vmla(out0, in10, s10);
+ out0 = wrapper::vmla(out0, in11, s11);
+ wrapper::vstore(reinterpret_cast<T *>(out_ptr + offset + cout * sizeof(T)), out0);
+ }
+
+ for (; cout < out_dim_ch; ++cout)
+ {
+ const T in00 =
+ *(reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + xi0_offset + yi0_offset));
+ const T in01 =
+ *(reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + xi1_offset + yi0_offset));
+ const T in10 =
+ *(reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + xi0_offset + yi1_offset));
+ const T in11 =
+ *(reinterpret_cast<const T *>(in_ptr + cout * sizeof(T) + xi1_offset + yi1_offset));
+
+ T out0 = in00 * s00_s;
+ out0 += in01 * s01_s;
+ out0 += in10 * s10_s;
+ out0 += in11 * s11_s;
+ *(reinterpret_cast<T *>(out_ptr + offset + cout * sizeof(T))) = out0;
+ }
+ }
+ }
+ }
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR("Not implemented");
+ }
+}
+
+template <typename T>
+void common_neon_scale(const ITensor *src,
+ ITensor *dst,
+ const ITensor *offsets,
+ const ITensor *dx,
+ const ITensor *dy,
+ InterpolationPolicy policy,
+ BorderMode border_mode,
+ PixelValue constant_border_value,
+ float sampling_offset,
+ bool align_corners,
+ const Window &window)
+{
+ if (policy == InterpolationPolicy::BILINEAR)
+ {
+ bilinear_neon_scale<T>(src, dst, offsets, dx, dy, border_mode, constant_border_value, sampling_offset,
+ align_corners, window);
+ }
+ else if (policy == InterpolationPolicy::NEAREST_NEIGHBOR)
+ {
+ nearest_neon_scale<T>(src, dst, offsets, sampling_offset, align_corners, window);
+ }
+}
+} // namespace cpu
+} // namespace arm_compute
+
+#endif // ACL_SRC_CPU_KERNELS_SCALE_NEON_LIST_H