aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/roialign/generic/neon/impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/roialign/generic/neon/impl.h')
-rw-r--r--src/cpu/kernels/roialign/generic/neon/impl.h380
1 files changed, 380 insertions, 0 deletions
diff --git a/src/cpu/kernels/roialign/generic/neon/impl.h b/src/cpu/kernels/roialign/generic/neon/impl.h
new file mode 100644
index 0000000000..db2f67705d
--- /dev/null
+++ b/src/cpu/kernels/roialign/generic/neon/impl.h
@@ -0,0 +1,380 @@
+/*
+ * Copyright (c) 2019-2023 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef SRC_CORE_SVE_KERNELS_BOUNDINGBOXTRANFORM_IMPL_H
+#define SRC_CORE_SVE_KERNELS_BOUNDINGBOXTRANFORM_IMPL_H
+#include "arm_compute/core/CPP/CPPTypes.h"
+#include "arm_compute/core/Helpers.h"
+
+namespace arm_compute
+{
+class ITensor;
+class Window;
+namespace cpu
+{
+/** Average pooling over an aligned window */
+template <typename input_data_type>
+inline input_data_type roi_align_1x1(const ITensor *input,
+ unsigned int roi_batch,
+ float region_start_x,
+ float bin_size_x,
+ int grid_size_x,
+ float region_end_x,
+ float region_start_y,
+ float bin_size_y,
+ int grid_size_y,
+ float region_end_y,
+ int pz)
+{
+ if ((region_end_x <= region_start_x) || (region_end_y <= region_start_y))
+ {
+ return input_data_type(0);
+ }
+ else
+ {
+ const DataLayout data_layout = input->info()->data_layout();
+ float avg = 0;
+ // Iterate through the aligned pooling region
+ for (int iy = 0; iy < grid_size_y; ++iy)
+ {
+ for (int ix = 0; ix < grid_size_x; ++ix)
+ {
+ // Align the window in the middle of every bin
+ float y = region_start_y + (iy + 0.5) * bin_size_y / float(grid_size_y);
+ float x = region_start_x + (ix + 0.5) * bin_size_x / float(grid_size_x);
+
+ // Interpolation in the [0,0] [0,1] [1,0] [1,1] square
+ const int y_low = y;
+ const int x_low = x;
+ const int y_high = y_low + 1;
+ const int x_high = x_low + 1;
+
+ const float ly = y - y_low;
+ const float lx = x - x_low;
+ const float hy = 1. - ly;
+ const float hx = 1. - lx;
+
+ const float w1 = hy * hx;
+ const float w2 = hy * lx;
+ const float w3 = ly * hx;
+ const float w4 = ly * lx;
+ if (data_layout == DataLayout::NCHW)
+ {
+ const auto data1 = *reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(x_low, y_low, pz, roi_batch)));
+ const auto data2 = *reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(x_high, y_low, pz, roi_batch)));
+ const auto data3 = *reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(x_low, y_high, pz, roi_batch)));
+ const auto data4 = *reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(x_high, y_high, pz, roi_batch)));
+ avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4;
+ }
+ else
+ {
+ const auto data1 = *reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(pz, x_low, y_low, roi_batch)));
+ const auto data2 = *reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(pz, x_high, y_low, roi_batch)));
+ const auto data3 = *reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(pz, x_low, y_high, roi_batch)));
+ const auto data4 = *reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(pz, x_high, y_high, roi_batch)));
+ avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4;
+ }
+ }
+ }
+
+ avg /= grid_size_x * grid_size_y;
+ return input_data_type(avg);
+ }
+}
+
+/** Average pooling over an aligned window */
+template <typename input_data_type>
+inline input_data_type roi_align_1x1_qasymm8(const ITensor *input,
+ unsigned int roi_batch,
+ float region_start_x,
+ float bin_size_x,
+ int grid_size_x,
+ float region_end_x,
+ float region_start_y,
+ float bin_size_y,
+ int grid_size_y,
+ float region_end_y,
+ int pz,
+ const QuantizationInfo &out_qinfo)
+{
+ if ((region_end_x <= region_start_x) || (region_end_y <= region_start_y))
+ {
+ return input_data_type(out_qinfo.uniform().offset);
+ }
+ else
+ {
+ float avg = 0;
+ const UniformQuantizationInfo input_qinfo = input->info()->quantization_info().uniform();
+ const bool is_qasymm_signed = is_data_type_quantized_asymmetric_signed(input->info()->data_type());
+ const DataLayout data_layout = input->info()->data_layout();
+
+ // Iterate through the aligned pooling region
+ for (int iy = 0; iy < grid_size_y; ++iy)
+ {
+ for (int ix = 0; ix < grid_size_x; ++ix)
+ {
+ // Align the window in the middle of every bin
+ float y = region_start_y + (iy + 0.5) * bin_size_y / float(grid_size_y);
+ float x = region_start_x + (ix + 0.5) * bin_size_x / float(grid_size_x);
+
+ // Interpolation in the [0,0] [0,1] [1,0] [1,1] square
+ const int y_low = y;
+ const int x_low = x;
+ const int y_high = y_low + 1;
+ const int x_high = x_low + 1;
+
+ const float ly = y - y_low;
+ const float lx = x - x_low;
+ const float hy = 1. - ly;
+ const float hx = 1. - lx;
+
+ const float w1 = hy * hx;
+ const float w2 = hy * lx;
+ const float w3 = ly * hx;
+ const float w4 = ly * lx;
+
+ if (data_layout == DataLayout::NCHW)
+ {
+ if (is_qasymm_signed)
+ {
+ float data1 =
+ dequantize_qasymm8_signed(*reinterpret_cast<const input_data_type *>(input->ptr_to_element(
+ Coordinates(x_low, y_low, pz, roi_batch))),
+ input_qinfo);
+ float data2 =
+ dequantize_qasymm8_signed(*reinterpret_cast<const input_data_type *>(input->ptr_to_element(
+ Coordinates(x_high, y_low, pz, roi_batch))),
+ input_qinfo);
+ float data3 =
+ dequantize_qasymm8_signed(*reinterpret_cast<const input_data_type *>(input->ptr_to_element(
+ Coordinates(x_low, y_high, pz, roi_batch))),
+ input_qinfo);
+ float data4 =
+ dequantize_qasymm8_signed(*reinterpret_cast<const input_data_type *>(input->ptr_to_element(
+ Coordinates(x_high, y_high, pz, roi_batch))),
+ input_qinfo);
+ avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4;
+ }
+ else
+ {
+ float data1 =
+ dequantize_qasymm8(*reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(x_low, y_low, pz, roi_batch))),
+ input_qinfo);
+ float data2 =
+ dequantize_qasymm8(*reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(x_high, y_low, pz, roi_batch))),
+ input_qinfo);
+ float data3 =
+ dequantize_qasymm8(*reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(x_low, y_high, pz, roi_batch))),
+ input_qinfo);
+ float data4 =
+ dequantize_qasymm8(*reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(x_high, y_high, pz, roi_batch))),
+ input_qinfo);
+ avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4;
+ }
+ }
+ else
+ {
+ if (is_qasymm_signed)
+ {
+ const auto data1 =
+ dequantize_qasymm8_signed(*reinterpret_cast<const input_data_type *>(input->ptr_to_element(
+ Coordinates(pz, x_low, y_low, roi_batch))),
+ input_qinfo);
+ const auto data2 =
+ dequantize_qasymm8_signed(*reinterpret_cast<const input_data_type *>(input->ptr_to_element(
+ Coordinates(pz, x_high, y_low, roi_batch))),
+ input_qinfo);
+ const auto data3 =
+ dequantize_qasymm8_signed(*reinterpret_cast<const input_data_type *>(input->ptr_to_element(
+ Coordinates(pz, x_low, y_high, roi_batch))),
+ input_qinfo);
+ const auto data4 =
+ dequantize_qasymm8_signed(*reinterpret_cast<const input_data_type *>(input->ptr_to_element(
+ Coordinates(pz, x_high, y_high, roi_batch))),
+ input_qinfo);
+ avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4;
+ }
+ else
+ {
+ const auto data1 =
+ dequantize_qasymm8(*reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(pz, x_low, y_low, roi_batch))),
+ input_qinfo);
+ const auto data2 =
+ dequantize_qasymm8(*reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(pz, x_high, y_low, roi_batch))),
+ input_qinfo);
+ const auto data3 =
+ dequantize_qasymm8(*reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(pz, x_low, y_high, roi_batch))),
+ input_qinfo);
+ const auto data4 =
+ dequantize_qasymm8(*reinterpret_cast<const input_data_type *>(
+ input->ptr_to_element(Coordinates(pz, x_high, y_high, roi_batch))),
+ input_qinfo);
+ avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4;
+ }
+ }
+ }
+ }
+
+ avg /= grid_size_x * grid_size_y;
+
+ input_data_type res = 0;
+ if (is_qasymm_signed)
+ {
+ res = quantize_qasymm8_signed(avg, out_qinfo);
+ }
+ else
+ {
+ res = quantize_qasymm8(avg, out_qinfo);
+ }
+ return res;
+ }
+}
+inline float compute_region_coordinate(int p, float bin_size, float roi_anchor, float max_value)
+{
+ const float region_start = p * bin_size + roi_anchor;
+ return utility::clamp(region_start, 0.0f, max_value);
+}
+
+template <typename input_data_type, typename roi_data_type>
+void roi_align(const ITensor *input,
+ ITensor *output,
+ const ITensor *rois,
+ ROIPoolingLayerInfo pool_info,
+ const Window &window,
+ const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+
+ const DataLayout data_layout = input->info()->data_layout();
+ const size_t values_per_roi = rois->info()->dimension(0);
+
+ const int roi_list_start = window.x().start();
+ const int roi_list_end = window.x().end();
+
+ const unsigned int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+ const unsigned int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
+ const unsigned int idx_depth = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
+
+ const int input_width = input->info()->dimension(idx_width);
+ const int input_height = input->info()->dimension(idx_height);
+ const int input_chanels = input->info()->dimension(idx_depth);
+ const int pooled_w = pool_info.pooled_width();
+ const int pooled_h = pool_info.pooled_height();
+
+ const DataType data_type = input->info()->data_type();
+ const bool is_qasymm = is_data_type_quantized_asymmetric(data_type);
+
+ const auto *rois_ptr = reinterpret_cast<const roi_data_type *>(rois->buffer());
+ const QuantizationInfo &rois_qinfo = rois->info()->quantization_info();
+ for (int roi_indx = roi_list_start; roi_indx < roi_list_end; ++roi_indx)
+ {
+ const unsigned int roi_batch = rois_ptr[values_per_roi * roi_indx];
+
+ roi_data_type qx1 = rois_ptr[values_per_roi * roi_indx + 1];
+ roi_data_type qy1 = rois_ptr[values_per_roi * roi_indx + 2];
+ roi_data_type qx2 = rois_ptr[values_per_roi * roi_indx + 3];
+ roi_data_type qy2 = rois_ptr[values_per_roi * roi_indx + 4];
+ float x1(qx1);
+ float x2(qx2);
+ float y1(qy1);
+ float y2(qy2);
+ if (is_qasymm)
+ {
+ x1 = dequantize_qasymm16(qx1, rois_qinfo);
+ x2 = dequantize_qasymm16(qx2, rois_qinfo);
+ y1 = dequantize_qasymm16(qy1, rois_qinfo);
+ y2 = dequantize_qasymm16(qy2, rois_qinfo);
+ }
+ const float roi_anchor_x = x1 * pool_info.spatial_scale();
+ const float roi_anchor_y = y1 * pool_info.spatial_scale();
+ const float roi_dims_x = std::max((x2 - x1) * pool_info.spatial_scale(), 1.0f);
+ const float roi_dims_y = std::max((y2 - y1) * pool_info.spatial_scale(), 1.0f);
+ float bin_size_x = roi_dims_x / pool_info.pooled_width();
+ float bin_size_y = roi_dims_y / pool_info.pooled_height();
+
+ // Iterate through all feature maps
+ for (int ch = 0; ch < input_chanels; ++ch)
+ {
+ // Iterate through all output pixels
+ for (int py = 0; py < pooled_h; ++py)
+ {
+ for (int px = 0; px < pooled_w; ++px)
+ {
+ const float region_start_x = compute_region_coordinate(px, bin_size_x, roi_anchor_x, input_width);
+ const float region_start_y = compute_region_coordinate(py, bin_size_y, roi_anchor_y, input_height);
+ const float region_end_x = compute_region_coordinate(px + 1, bin_size_x, roi_anchor_x, input_width);
+ const float region_end_y =
+ compute_region_coordinate(py + 1, bin_size_y, roi_anchor_y, input_height);
+ const int roi_bin_grid_x =
+ (pool_info.sampling_ratio() > 0) ? pool_info.sampling_ratio() : int(ceil(bin_size_x));
+ const int roi_bin_grid_y =
+ (pool_info.sampling_ratio() > 0) ? pool_info.sampling_ratio() : int(ceil(bin_size_y));
+ input_data_type out_val(0);
+ if (is_qasymm)
+ {
+ out_val = roi_align_1x1_qasymm8<input_data_type>(
+ input, roi_batch, region_start_x, bin_size_x, roi_bin_grid_x, region_end_x, region_start_y,
+ bin_size_y, roi_bin_grid_y, region_end_y, ch, output->info()->quantization_info());
+ }
+ else
+ {
+ out_val = roi_align_1x1<input_data_type>(input, roi_batch, region_start_x, bin_size_x,
+ roi_bin_grid_x, region_end_x, region_start_y,
+ bin_size_y, roi_bin_grid_y, region_end_y, ch);
+ }
+
+ if (data_layout == DataLayout::NCHW)
+ {
+ auto out_ptr = reinterpret_cast<input_data_type *>(
+ output->ptr_to_element(Coordinates(px, py, ch, roi_indx)));
+ *out_ptr = out_val;
+ }
+ else
+ {
+ auto out_ptr = reinterpret_cast<input_data_type *>(
+ output->ptr_to_element(Coordinates(ch, px, py, roi_indx)));
+ *out_ptr = out_val;
+ }
+ }
+ }
+ }
+ }
+}
+} // namespace cpu
+} // namespace arm_compute
+#endif //define SRC_CORE_SVE_KERNELS_BOUNDINGBOXTRANFORM_IMPL_H