aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/pool2d/neon/nchw/all.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/pool2d/neon/nchw/all.cpp')
-rw-r--r--src/cpu/kernels/pool2d/neon/nchw/all.cpp1097
1 files changed, 599 insertions, 498 deletions
diff --git a/src/cpu/kernels/pool2d/neon/nchw/all.cpp b/src/cpu/kernels/pool2d/neon/nchw/all.cpp
index c342b96426..ee4a67b0fb 100644
--- a/src/cpu/kernels/pool2d/neon/nchw/all.cpp
+++ b/src/cpu/kernels/pool2d/neon/nchw/all.cpp
@@ -25,9 +25,11 @@
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/Traits.h"
-#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
+
#include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/intrinsics/intrinsics.h"
#include "src/cpu/kernels/pool2d/neon/list.h"
+
#include <limits>
#ifdef ENABLE_NCHW_KERNELS
@@ -38,15 +40,19 @@ namespace cpu
#define READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
(x == width + pad_left - 1) ? vset_lane_f32(*(ptr), vdup_n_f32(fval), 0) : vld1_f32(ptr)
#define READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
- (x == pad_left - 1) ? vset_lane_f32(*(1 + ptr), vdup_n_f32(fval), 1) : READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
-#define READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
- ((y < pad_top) || (x < pad_left - 1) || (y >= height + pad_top) || (x > width + pad_left - 1)) ? vdup_n_f32(fval) : READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
+ (x == pad_left - 1) ? vset_lane_f32(*(1 + ptr), vdup_n_f32(fval), 1) \
+ : READ_2_RIGHT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
+#define READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
+ ((y < pad_top) || (x < pad_left - 1) || (y >= height + pad_top) || (x > width + pad_left - 1)) \
+ ? vdup_n_f32(fval) \
+ : READ_2_LEFT_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval)
#define READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval) \
vcombine_f32(READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval), \
READ_2_BOUNDARY_AWARE(height, width, pad_left, pad_top, (x + 2), y, (ptr + 2), fval))
-float32x4x2_t read_8_boundary_aware(int height, int width, int pad_left, int pad_top, int x, int y, const float *ptr, float fval)
+float32x4x2_t
+read_8_boundary_aware(int height, int width, int pad_left, int pad_top, int x, int y, const float *ptr, float fval)
{
float32x4x2_t vec;
vec.val[0] = READ_4_BOUNDARY_AWARE(height, width, pad_left, pad_top, x, y, ptr, fval);
@@ -56,13 +62,14 @@ float32x4x2_t read_8_boundary_aware(int height, int width, int pad_left, int pad
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-float16x4_t read_4_boundary_aware_fp16(int srcw, int srch, int pad_l, int pad_t, int x, int y, const float16_t *ptr, float16_t fval)
+float16x4_t
+read_4_boundary_aware_fp16(int srcw, int srch, int pad_l, int pad_t, int x, int y, const float16_t *ptr, float16_t fval)
{
float16_t vec[4];
const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
- for(int i = 0; i < 4; i++)
+ for (int i = 0; i < 4; i++)
{
- if(row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
+ if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
{
vec[i] = *(ptr + i);
}
@@ -74,94 +81,106 @@ float16x4_t read_4_boundary_aware_fp16(int srcw, int srch, int pad_l, int pad_t,
return wrapper::vload(vec);
}
-void pooling3_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling3_fp16_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
- constexpr const int pool_size = 3;
- const int pool_pad_right = pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
- const int src_w = src->info()->dimension(0);
- const int src_h = src->info()->dimension(1);
- const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
- const float16_t fp16_min = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
- const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.f;
- const unsigned char *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
- const unsigned char *const src_middle_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
- const unsigned char *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- const auto x_val = id.x() * pool_stride_x;
- const auto y_val_0 = id.y() * pool_stride_y;
- const auto y_val_1 = (id.y() * pool_stride_y) + 1;
- const auto y_val_2 = (id.y() * pool_stride_y) + 2;
- float16x4_t top_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
- x_val, y_val_0, reinterpret_cast<const float16_t *>(src_top_ptr + in.offset()), fill_value);
- float16x4_t middle_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
- x_val, y_val_1, reinterpret_cast<const float16_t *>(src_middle_ptr + in.offset()), fill_value);
- float16x4_t bottom_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
- x_val, y_val_2, reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset()), fill_value);
- float16x4_t res = {};
-
- // Get power of 2 in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
+ constexpr const int pool_size = 3;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float16_t fp16_min = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
+ const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.f;
+ const unsigned char *const src_top_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+ const unsigned char *const src_middle_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+ const unsigned char *const src_bottom_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
{
- top_data = vmul_f16(top_data, top_data);
- middle_data = vmul_f16(middle_data, middle_data);
- bottom_data = vmul_f16(bottom_data, bottom_data);
- }
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ const auto y_val_2 = (id.y() * pool_stride_y) + 2;
+ float16x4_t top_data =
+ read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_0,
+ reinterpret_cast<const float16_t *>(src_top_ptr + in.offset()), fill_value);
+ float16x4_t middle_data = read_4_boundary_aware_fp16(
+ src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_1,
+ reinterpret_cast<const float16_t *>(src_middle_ptr + in.offset()), fill_value);
+ float16x4_t bottom_data = read_4_boundary_aware_fp16(
+ src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_2,
+ reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset()), fill_value);
+ float16x4_t res = {};
- if(pool_info.pool_type != PoolingType::MAX)
- {
- // Calculate scale
- const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
- pool_stride_y);
- const float16x4_t scale_v = vdup_n_f16(scale);
- // Perform pooling
- const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
- res = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
- res = vmul_f16(vpadd_f16(res, res), scale_v);
- }
- else
- {
- const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
- res = vpmax_f16(vset_lane_f16(fp16_min, max_data, 3), max_data);
- res = vpmax_f16(res, res);
- }
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ top_data = vmul_f16(top_data, top_data);
+ middle_data = vmul_f16(middle_data, middle_data);
+ bottom_data = vmul_f16(bottom_data, bottom_data);
+ }
- // Calculate square-root in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
- {
- res = vsqrt_f16(res);
- }
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h,
+ pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+ const float16x4_t scale_v = vdup_n_f16(scale);
+ // Perform pooling
+ const float16x4_t sum_data = vadd_f16(vadd_f16(top_data, bottom_data), middle_data);
+ res = vpadd_f16(vset_lane_f16(0.f, sum_data, 3), sum_data);
+ res = vmul_f16(vpadd_f16(res, res), scale_v);
+ }
+ else
+ {
+ const float16x4_t max_data = vmax_f16(vmax_f16(top_data, bottom_data), middle_data);
+ res = vpmax_f16(vset_lane_f16(fp16_min, max_data, 3), max_data);
+ res = vpmax_f16(res, res);
+ }
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res = vsqrt_f16(res);
+ }
- *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
- },
- in, out);
+ *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
+ },
+ in, out);
}
template <typename T>
-inline typename std::enable_if<std::is_same<T, float16_t>::value, float32x2_t>::type
-f16_to_f32(float16x4_t in)
+inline typename std::enable_if<std::is_same<T, float16_t>::value, float32x2_t>::type f16_to_f32(float16x4_t in)
{
- float32x2_t out = { static_cast<float>(vget_lane_f16(in, 0)), static_cast<float>(vget_lane_f16(in, 1)) };
+ float32x2_t out = {static_cast<float>(vget_lane_f16(in, 0)), static_cast<float>(vget_lane_f16(in, 1))};
return out;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
template <typename T>
-inline typename std::enable_if<std::is_same<T, float>::value, float32x2_t>::type
-f16_to_f32(float32x2_t in)
+inline typename std::enable_if<std::is_same<T, float>::value, float32x2_t>::type f16_to_f32(float32x2_t in)
{
return in;
}
@@ -171,9 +190,9 @@ auto read_2_boundary_aware(int srcw, int srch, int pad_l, int pad_t, int x, int
{
T vec[2];
const bool row_in_bounds((y >= pad_t) && (y < (srch + pad_t)));
- for(int i = 0; i < 2; i++)
+ for (int i = 0; i < 2; i++)
{
- if(row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
+ if (row_in_bounds && (x + i >= pad_l) && (x + i < (srcw + pad_l)))
{
vec[i] = *(ptr + i);
}
@@ -186,61 +205,80 @@ auto read_2_boundary_aware(int srcw, int srch, int pad_l, int pad_t, int x, int
}
template <typename T>
-void pooling2_nchw_maxpool_indices(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling2_nchw_maxpool_indices(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
{
Iterator in(src, window_src);
Iterator out(dst0, window);
Iterator indices(dst1, window);
- const int pool_pad_top = pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = pool_info.pad_stride_info.pad_left();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
- const int src_w = src->info()->dimension(0);
- const int src_h = src->info()->dimension(1);
- const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
- const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
- const int pad_left = src->info()->padding().left;
- const int pad_right = src->info()->padding().right;
- const int in_stride_y = static_cast<int>(src->info()->strides_in_bytes().y());
- const T float_min = get_initial_min<T>(pool_info.use_inf_as_limit);
- const T fill_value = (pool_info.pool_type == PoolingType::MAX) ? float_min : 0.f;
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- const auto x_val = id.x() * pool_stride_x;
- const auto y_val_0 = id.y() * pool_stride_y;
- const auto y_val_1 = (id.y() * pool_stride_y) + 1;
- auto top_data = read_2_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_top,
- x_val, y_val_0, reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
- auto bottom_data = read_2_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_top,
- x_val, y_val_1, reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
- float32x2_t top_data_f32 = f16_to_f32<T>(top_data);
- float32x2_t bottom_data_f32 = f16_to_f32<T>(bottom_data);
-
- // Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
- const float32x2_t max_data_top = vpmax_f32(top_data_f32, top_data_f32);
- const float32x2_t max_data_bottom = vpmax_f32(bottom_data_f32, bottom_data_f32);
- const float32x2_t max_data = vmax_f32(max_data_top, max_data_bottom);
- *(reinterpret_cast<T *>(out.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));
-
- // Calculate max data indice, which will be used in max unpool.
- const uint32_t offset_base = offset_no_padding<T>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NCHW);
- const uint32_t offset_top = (uint32_t)(offset_base / sizeof(T));
- const uint32_t offset_bottom = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
- const uint32x2_t voffset_top = { offset_top, offset_top + 1u };
- const uint32x2_t voffset_bottom = { offset_bottom, offset_bottom + 1u };
- const uint32x2_t tmp_indices_top = vbsl_u32(vcge_f32(top_data_f32, vrev64_f32(top_data_f32)), voffset_top, vrev64_u32(voffset_top));
- const uint32x2_t tmp_indices_bottom = vbsl_u32(vcge_f32(bottom_data_f32, vrev64_f32(bottom_data_f32)), voffset_bottom, vrev64_u32(voffset_bottom));
- *(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
- },
- in, out, indices);
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const uint8_t *const src_top_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+ const uint8_t *const src_bottom_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+ const int pad_left = src->info()->padding().left;
+ const int pad_right = src->info()->padding().right;
+ const int in_stride_y = static_cast<int>(src->info()->strides_in_bytes().y());
+ const T float_min = get_initial_min<T>(pool_info.use_inf_as_limit);
+ const T fill_value = (pool_info.pool_type == PoolingType::MAX) ? float_min : 0.f;
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ auto top_data = read_2_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_0,
+ reinterpret_cast<const T *>(src_top_ptr + in.offset()), fill_value);
+ auto bottom_data =
+ read_2_boundary_aware(src_w, src_h, pool_pad_left, pool_pad_top, x_val, y_val_1,
+ reinterpret_cast<const T *>(src_bottom_ptr + in.offset()), fill_value);
+ float32x2_t top_data_f32 = f16_to_f32<T>(top_data);
+ float32x2_t bottom_data_f32 = f16_to_f32<T>(bottom_data);
+
+ // Calculate max data, compare top first, then bottom, to make sue the first max is recorded.
+ const float32x2_t max_data_top = vpmax_f32(top_data_f32, top_data_f32);
+ const float32x2_t max_data_bottom = vpmax_f32(bottom_data_f32, bottom_data_f32);
+ const float32x2_t max_data = vmax_f32(max_data_top, max_data_bottom);
+ *(reinterpret_cast<T *>(out.ptr())) = static_cast<T>(vget_lane_f32(max_data, 0));
+
+ // Calculate max data indice, which will be used in max unpool.
+ const uint32_t offset_base =
+ offset_no_padding<T>(in.offset(), id, *src->info(), pool_stride_x, pool_stride_y, DataLayout::NCHW);
+ const uint32_t offset_top = (uint32_t)(offset_base / sizeof(T));
+ const uint32_t offset_bottom = offset_top + in_stride_y / sizeof(T) - pad_right - pad_left;
+ const uint32x2_t voffset_top = {offset_top, offset_top + 1u};
+ const uint32x2_t voffset_bottom = {offset_bottom, offset_bottom + 1u};
+ const uint32x2_t tmp_indices_top =
+ vbsl_u32(vcge_f32(top_data_f32, vrev64_f32(top_data_f32)), voffset_top, vrev64_u32(voffset_top));
+ const uint32x2_t tmp_indices_bottom = vbsl_u32(vcge_f32(bottom_data_f32, vrev64_f32(bottom_data_f32)),
+ voffset_bottom, vrev64_u32(voffset_bottom));
+ *(reinterpret_cast<int *>(indices.ptr())) = vget_lane_u32(
+ vbsl_u32(vcge_f32(max_data_top, max_data_bottom), tmp_indices_top, tmp_indices_bottom), 0);
+ },
+ in, out, indices);
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-void pooling2_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling2_fp16_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
{
- if(pool_info.pool_type == PoolingType::MAX && dst1)
+ if (pool_info.pool_type == PoolingType::MAX && dst1)
{
pooling2_nchw_maxpool_indices<float16_t>(src, dst0, dst1, pool_info, window_src, window);
}
@@ -254,244 +292,274 @@ void pooling2_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, P
const int pool_pad_left = pool_info.pad_stride_info.pad_left();
const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
int pool_stride_x, pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
- const int src_w = src->info()->dimension(0);
- const int src_h = src->info()->dimension(1);
- const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
- const float16_t fp16_min = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
- const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;
-
- const unsigned char *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
- const unsigned char *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- const auto in_top_ptr = reinterpret_cast<const float16_t *>(src_top_ptr + in.offset());
- const auto in_bottom_ptr = reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset());
-
- const auto x_val = id.x() * pool_stride_x;
- const auto y_val_0 = id.y() * pool_stride_y;
- const auto y_val_1 = (id.y() * pool_stride_y) + 1;
- float16x4_t top_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
- x_val, y_val_0, in_top_ptr, fill_value);
- float16x4_t bottom_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top,
- x_val, y_val_1, in_bottom_ptr, fill_value);
- float16x4_t res = {};
-
- // Get power of 2 in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float16_t fp16_min = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
+ const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;
+
+ const unsigned char *const src_top_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+ const unsigned char *const src_bottom_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
{
- top_data = vmul_f16(top_data, top_data);
- bottom_data = vmul_f16(bottom_data, bottom_data);
- }
+ const auto in_top_ptr = reinterpret_cast<const float16_t *>(src_top_ptr + in.offset());
+ const auto in_bottom_ptr = reinterpret_cast<const float16_t *>(src_bottom_ptr + in.offset());
+
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ float16x4_t top_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top, x_val,
+ y_val_0, in_top_ptr, fill_value);
+ float16x4_t bottom_data = read_4_boundary_aware_fp16(src_w, src_h, pool_pad_left, pool_pad_top, x_val,
+ y_val_1, in_bottom_ptr, fill_value);
+ float16x4_t res = {};
- if(pool_info.pool_type != PoolingType::MAX)
- {
- const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
- pool_stride_y);
- const float16x4_t scale_v = vdup_n_f16(scale);
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ top_data = vmul_f16(top_data, top_data);
+ bottom_data = vmul_f16(bottom_data, bottom_data);
+ }
- const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
- res = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
- }
- else
- {
- const float16x4_t max_data = vmax_f16(top_data, bottom_data);
- res = vpmax_f16(max_data, max_data);
- }
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+ const float16x4_t scale_v = vdup_n_f16(scale);
- // Calculate square-root in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
- {
- res = vsqrt_f16(res);
- }
+ const float16x4_t sum_data = vadd_f16(top_data, bottom_data);
+ res = vmul_f16(vpadd_f16(sum_data, sum_data), scale_v);
+ }
+ else
+ {
+ const float16x4_t max_data = vmax_f16(top_data, bottom_data);
+ res = vpmax_f16(max_data, max_data);
+ }
- // Store result
- *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
- },
- in, out);
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res = vsqrt_f16(res);
+ }
+
+ // Store result
+ *(reinterpret_cast<float16_t *>(out.ptr())) = vget_lane_f16(res, 0);
+ },
+ in, out);
}
}
-void poolingMxN_fp16_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void poolingMxN_fp16_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
- const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
- const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
- const int pool_pad_right = pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
- const int src_w = src->info()->dimension(0);
- const int src_h = src->info()->dimension(1);
- const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
- const float16_t fp16_min = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
- const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- float16_t res = 0.0f;
-
- if(pool_info.pool_type != PoolingType::MAX)
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float16_t fp16_min = get_initial_min<half_float::half>(pool_info.use_inf_as_limit);
+ const float16_t fill_value = (pool_info.pool_type == PoolingType::MAX) ? fp16_min : 0.0f;
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
{
- // Calculate scale
- const float16_t scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
- pool_stride_y);
+ float16_t res = 0.0f;
- // Perform pooling
- for(int y = 0; y < pool_size_y; ++y)
+ if (pool_info.pool_type != PoolingType::MAX)
{
- for(int x = 0; x < pool_size_x; ++x)
+ // Calculate scale
+ const float16_t scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ // Perform pooling
+ for (int y = 0; y < pool_size_y; ++y)
{
- const auto ptr = reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
- + (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto ptr = reinterpret_cast<const float16_t *>(
+ in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
- const int idx = x + id.x() * pool_stride_x - pool_pad_left;
- const int idy = y + id.y() * pool_stride_y - pool_pad_top;
- float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
- if(pool_info.pool_type == PoolingType::L2)
- {
- data *= data;
- }
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ data *= data;
+ }
- res += data;
+ res += data;
+ }
}
- }
- // Divide by scale
- res *= scale;
- }
- else // if max pooling
- {
- res = fp16_min;
-
- for(int y = 0; y < pool_size_y; ++y)
+ // Divide by scale
+ res *= scale;
+ }
+ else // if max pooling
{
- for(int x = 0; x < pool_size_x; ++x)
- {
- const auto ptr = reinterpret_cast<const float16_t *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
- + (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+ res = fp16_min;
- const int idx = x + id.x() * pool_stride_x - pool_pad_left;
- const int idy = y + id.y() * pool_stride_y - pool_pad_top;
- float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
- res = std::max(res, data);
+ for (int y = 0; y < pool_size_y; ++y)
+ {
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto ptr = reinterpret_cast<const float16_t *>(
+ in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ float16_t data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+ res = std::max(res, data);
+ }
}
}
- }
- // Calculate square-root in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
- {
- res = std::sqrt(res);
- }
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res = std::sqrt(res);
+ }
- // Store result
- *(reinterpret_cast<float16_t *>(out.ptr())) = res;
- },
- in, out);
+ // Store result
+ *(reinterpret_cast<float16_t *>(out.ptr())) = res;
+ },
+ in, out);
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-void poolingMxN_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void poolingMxN_fp32_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
- const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
- const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
- const int pool_pad_right = pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
+ const int pool_size_x = pool_info.is_global_pooling ? src->info()->tensor_shape().x() : pool_info.pool_size.width;
+ const int pool_size_y = pool_info.is_global_pooling ? src->info()->tensor_shape().y() : pool_info.pool_size.height;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
- const int src_w = src->info()->dimension(0);
- const int src_h = src->info()->dimension(1);
- const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
- const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
- const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- float res = 0.0f;
-
- if(pool_info.pool_type != PoolingType::MAX)
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
{
- // Calculate scale
- const float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w, upper_bound_h,
- pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+ float res = 0.0f;
- // Perform pooling
- for(int y = 0; y < pool_size_y; ++y)
+ if (pool_info.pool_type != PoolingType::MAX)
{
- for(int x = 0; x < pool_size_x; ++x)
+ // Calculate scale
+ const float scale = calculate_avg_scale_pool2d(
+ pool_info.exclude_padding, DataLayout::NCHW, id, pool_size_x, pool_size_y, upper_bound_w,
+ upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x, pool_stride_y);
+
+ // Perform pooling
+ for (int y = 0; y < pool_size_y; ++y)
{
- const auto ptr = reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
- + (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto ptr = reinterpret_cast<const float *>(
+ in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
- const int idx = x + id.x() * pool_stride_x - pool_pad_left;
- const int idy = y + id.y() * pool_stride_y - pool_pad_top;
- float data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ float data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
- if(pool_info.pool_type == PoolingType::L2)
- {
- data *= data;
- }
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ data *= data;
+ }
- res += data;
+ res += data;
+ }
}
- }
- // Divide by scale
- res *= scale;
- }
- else // if max pooling
- {
- res = min_value;
-
- for(int y = 0; y < pool_size_y; ++y)
+ // Divide by scale
+ res *= scale;
+ }
+ else // if max pooling
{
- for(int x = 0; x < pool_size_x; ++x)
- {
- const auto ptr = reinterpret_cast<const float *>(in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x())
- + (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+ res = min_value;
- const int idx = x + id.x() * pool_stride_x - pool_pad_left;
- const int idy = y + id.y() * pool_stride_y - pool_pad_top;
- float data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
- res = std::max(res, data);
+ for (int y = 0; y < pool_size_y; ++y)
+ {
+ for (int x = 0; x < pool_size_x; ++x)
+ {
+ const auto ptr = reinterpret_cast<const float *>(
+ in.ptr() + (x - pool_pad_left) * static_cast<int>(src->info()->strides_in_bytes().x()) +
+ (y - pool_pad_top) * static_cast<int>(src->info()->strides_in_bytes().y()));
+
+ const int idx = x + id.x() * pool_stride_x - pool_pad_left;
+ const int idy = y + id.y() * pool_stride_y - pool_pad_top;
+ float data = (idx < 0 || idy < 0 || idx >= src_w || idy >= src_h) ? fill_value : *ptr;
+ res = std::max(res, data);
+ }
}
}
- }
- // Calculate square-root in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
- {
- res = std::sqrt(res);
- }
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ res = std::sqrt(res);
+ }
- // Store result
- *(reinterpret_cast<float *>(out.ptr())) = res;
- },
- in, out);
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr())) = res;
+ },
+ in, out);
}
-void pooling2_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling2_fp32_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
{
- if(pool_info.pool_type == PoolingType::MAX && dst1)
+ if (pool_info.pool_type == PoolingType::MAX && dst1)
{
pooling2_nchw_maxpool_indices<float>(src, dst0, dst1, pool_info, window_src, window);
}
@@ -499,64 +567,168 @@ void pooling2_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, P
{
Iterator in(src, window_src);
Iterator out(dst0, window);
- constexpr int pool_size = 2;
- const int pool_pad_right = pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
+ constexpr int pool_size = 2;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
- const int src_w = src->info()->dimension(0);
- const int src_h = src->info()->dimension(1);
- const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
- const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
- const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+ const uint8_t *const src_top_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+ const uint8_t *const src_bottom_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const auto in_top_ptr = reinterpret_cast<const float *>(src_top_ptr + in.offset());
+ const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
+
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ auto top_data = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0,
+ in_top_ptr, fill_value);
+ auto bottom_data = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1,
+ in_bottom_ptr, fill_value);
+ float32x2_t res = {};
+ float final_res = 0;
- const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
- const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ top_data = vmul_f32(top_data, top_data);
+ bottom_data = vmul_f32(bottom_data, bottom_data);
+ }
+
+ if (pool_info.pool_type != PoolingType::MAX)
+ {
+ // Calculate scale
+ float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
+ pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
+ pool_pad_top, pool_stride_x, pool_stride_y);
+ const float32x2_t scale_v = vdup_n_f32(scale);
+
+ // Perform pooling
+ const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
+ res = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
+ }
+ else
+ {
+ const float32x2_t max_data = vmax_f32(top_data, bottom_data);
+ res = vpmax_f32(max_data, max_data);
+ }
+ final_res = vget_lane_f32(res, 0);
+
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ final_res = sqrt(final_res);
+ }
- execute_window_loop(window, [&](const Coordinates & id)
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr())) = final_res;
+ },
+ in, out);
+ }
+}
+
+void pooling3_fp32_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
+{
+ ARM_COMPUTE_UNUSED(dst1);
+ Iterator in(src, window_src);
+ Iterator out(dst0, window);
+
+ constexpr const int pool_size = 3;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
+ std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+ const uint8_t *const src_top_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
+ const uint8_t *const src_middle_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
+ const uint8_t *const src_bottom_ptr =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
+
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
{
const auto in_top_ptr = reinterpret_cast<const float *>(src_top_ptr + in.offset());
+ const auto in_middle_ptr = reinterpret_cast<const float *>(src_middle_ptr + in.offset());
const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
- const auto x_val = id.x() * pool_stride_x;
- const auto y_val_0 = id.y() * pool_stride_y;
- const auto y_val_1 = (id.y() * pool_stride_y) + 1;
- auto top_data = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0, in_top_ptr, fill_value);
- auto bottom_data = READ_2_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1, in_bottom_ptr, fill_value);
- float32x2_t res = {};
- float final_res = 0;
+ const auto x_val = id.x() * pool_stride_x;
+ const auto y_val_0 = id.y() * pool_stride_y;
+ const auto y_val_1 = (id.y() * pool_stride_y) + 1;
+ const auto y_val_2 = (id.y() * pool_stride_y) + 2;
+ auto top_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0, in_top_ptr,
+ fill_value);
+ auto middle_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1,
+ in_middle_ptr, fill_value);
+ auto bottom_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_2,
+ in_bottom_ptr, fill_value);
+
+ float32x2_t res = {};
+ float final_res = 0;
// Get power of 2 in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
+ if (pool_info.pool_type == PoolingType::L2)
{
- top_data = vmul_f32(top_data, top_data);
- bottom_data = vmul_f32(bottom_data, bottom_data);
+ top_data = vmulq_f32(top_data, top_data);
+ middle_data = vmulq_f32(middle_data, middle_data);
+ bottom_data = vmulq_f32(bottom_data, bottom_data);
}
- if(pool_info.pool_type != PoolingType::MAX)
+ if (pool_info.pool_type != PoolingType::MAX)
{
// Calculate scale
- float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
- pool_stride_y);
+ float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
+ pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
+ pool_pad_top, pool_stride_x, pool_stride_y);
const float32x2_t scale_v = vdup_n_f32(scale);
// Perform pooling
- const float32x2_t sum_data = vadd_f32(top_data, bottom_data);
- res = vmul_f32(vpadd_f32(sum_data, sum_data), scale_v);
+ const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
+ res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
+ res = vmul_f32(vpadd_f32(res, res), scale_v);
}
else
{
- const float32x2_t max_data = vmax_f32(top_data, bottom_data);
- res = vpmax_f32(max_data, max_data);
+ const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
+ res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, max_data, 3)), vget_low_f32(max_data));
+ res = vpmax_f32(res, res);
}
final_res = vget_lane_f32(res, 0);
// Calculate square-root in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
+ if (pool_info.pool_type == PoolingType::L2)
{
final_res = sqrt(final_res);
}
@@ -565,191 +737,120 @@ void pooling2_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, P
*(reinterpret_cast<float *>(out.ptr())) = final_res;
},
in, out);
- }
-}
-
-void pooling3_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
-{
- ARM_COMPUTE_UNUSED(dst1);
- Iterator in(src, window_src);
- Iterator out(dst0, window);
-
- constexpr const int pool_size = 3;
- const int pool_pad_right = pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
- std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
- const int src_w = src->info()->dimension(0);
- const int src_h = src->info()->dimension(1);
- const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
- const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
- const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
-
- const uint8_t *const src_top_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top)));
- const uint8_t *const src_middle_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 1));
- const uint8_t *const src_bottom_ptr = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + 2));
-
- execute_window_loop(window, [&](const Coordinates & id)
- {
- const auto in_top_ptr = reinterpret_cast<const float *>(src_top_ptr + in.offset());
- const auto in_middle_ptr = reinterpret_cast<const float *>(src_middle_ptr + in.offset());
- const auto in_bottom_ptr = reinterpret_cast<const float *>(src_bottom_ptr + in.offset());
-
- const auto x_val = id.x() * pool_stride_x;
- const auto y_val_0 = id.y() * pool_stride_y;
- const auto y_val_1 = (id.y() * pool_stride_y) + 1;
- const auto y_val_2 = (id.y() * pool_stride_y) + 2;
- auto top_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_0, in_top_ptr, fill_value);
- auto middle_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_1, in_middle_ptr, fill_value);
- auto bottom_data = READ_4_BOUNDARY_AWARE(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val_2, in_bottom_ptr, fill_value);
-
- float32x2_t res = {};
- float final_res = 0;
-
- // Get power of 2 in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
- {
- top_data = vmulq_f32(top_data, top_data);
- middle_data = vmulq_f32(middle_data, middle_data);
- bottom_data = vmulq_f32(bottom_data, bottom_data);
- }
-
- if(pool_info.pool_type != PoolingType::MAX)
- {
- // Calculate scale
- float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
- pool_stride_y);
- const float32x2_t scale_v = vdup_n_f32(scale);
-
- // Perform pooling
- const float32x4_t sum_data = vaddq_f32(vaddq_f32(top_data, bottom_data), middle_data);
- res = vpadd_f32(vget_high_f32(vsetq_lane_f32(0.f, sum_data, 3)), vget_low_f32(sum_data));
- res = vmul_f32(vpadd_f32(res, res), scale_v);
- }
- else
- {
- const float32x4_t max_data = vmaxq_f32(vmaxq_f32(top_data, bottom_data), middle_data);
- res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, max_data, 3)), vget_low_f32(max_data));
- res = vpmax_f32(res, res);
- }
- final_res = vget_lane_f32(res, 0);
-
- // Calculate square-root in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
- {
- final_res = sqrt(final_res);
- }
-
- // Store result
- *(reinterpret_cast<float *>(out.ptr())) = final_res;
- },
- in, out);
}
-void pooling7_fp32_neon_nchw(const ITensor *src, ITensor *dst0, ITensor *dst1, PoolingLayerInfo &pool_info, const Window &window_src, const Window &window)
+void pooling7_fp32_neon_nchw(const ITensor *src,
+ ITensor *dst0,
+ ITensor *dst1,
+ PoolingLayerInfo &pool_info,
+ const Window &window_src,
+ const Window &window)
{
ARM_COMPUTE_UNUSED(dst1);
Iterator in(src, window_src);
Iterator out(dst0, window);
- constexpr const int pool_size = 7;
- const int pool_pad_right = pool_info.pad_stride_info.pad_right();
- const int pool_pad_top = pool_info.pad_stride_info.pad_top();
- const int pool_pad_left = pool_info.pad_stride_info.pad_left();
- const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
- int pool_stride_x = 0;
- int pool_stride_y = 0;
+ constexpr const int pool_size = 7;
+ const int pool_pad_right = pool_info.pad_stride_info.pad_right();
+ const int pool_pad_top = pool_info.pad_stride_info.pad_top();
+ const int pool_pad_left = pool_info.pad_stride_info.pad_left();
+ const int pool_pad_bottom = pool_info.pad_stride_info.pad_bottom();
+ int pool_stride_x = 0;
+ int pool_stride_y = 0;
std::tie(pool_stride_x, pool_stride_y) = pool_info.pad_stride_info.stride();
- const int src_w = src->info()->dimension(0);
- const int src_h = src->info()->dimension(1);
- const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
- const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
- const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
- const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
-
- std::array<const uint8_t *, pool_size> src_ptrs{ {} };
- for(int i = 0; i < pool_size; ++i)
+ const int src_w = src->info()->dimension(0);
+ const int src_h = src->info()->dimension(1);
+ const int upper_bound_w = src_w + (pool_info.exclude_padding ? 0 : pool_pad_right);
+ const int upper_bound_h = src_h + (pool_info.exclude_padding ? 0 : pool_pad_bottom);
+ const float min_value = get_initial_min<float>(pool_info.use_inf_as_limit);
+ const float fill_value = (pool_info.pool_type == PoolingType::MAX) ? min_value : 0.0f;
+
+ std::array<const uint8_t *, pool_size> src_ptrs{{}};
+ for (int i = 0; i < pool_size; ++i)
{
- src_ptrs[i] = src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
+ src_ptrs[i] =
+ src->ptr_to_element(Coordinates(-static_cast<int>(pool_pad_left), -static_cast<int>(pool_pad_top) + i));
}
- execute_window_loop(window, [&](const Coordinates & id)
- {
- auto in_ptr = reinterpret_cast<const float *>(src_ptrs[0] + in.offset());
-
- auto x_val = id.x() * pool_stride_x;
- auto y_val = id.y() * pool_stride_y;
- float32x4x2_t data = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ auto in_ptr = reinterpret_cast<const float *>(src_ptrs[0] + in.offset());
- float32x2_t res = {};
- float final_res = 0.f;
+ auto x_val = id.x() * pool_stride_x;
+ auto y_val = id.y() * pool_stride_y;
+ float32x4x2_t data =
+ read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
- if(pool_info.pool_type != PoolingType::MAX)
- {
- // Calculate scale
- float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size, pool_size, upper_bound_w, upper_bound_h, pool_pad_left, pool_pad_top, pool_stride_x,
- pool_stride_y);
- const float32x2_t scale_v = vdup_n_f32(scale);
+ float32x2_t res = {};
+ float final_res = 0.f;
- // Get power of 2 in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
+ if (pool_info.pool_type != PoolingType::MAX)
{
- data.val[0] = vmulq_f32(data.val[0], data.val[0]);
- data.val[1] = vmulq_f32(data.val[1], data.val[1]);
- }
- float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
- for(int i = 1; i < pool_size; ++i)
- {
- in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
+ // Calculate scale
+ float scale = calculate_avg_scale_pool2d(pool_info.exclude_padding, DataLayout::NCHW, id, pool_size,
+ pool_size, upper_bound_w, upper_bound_h, pool_pad_left,
+ pool_pad_top, pool_stride_x, pool_stride_y);
+ const float32x2_t scale_v = vdup_n_f32(scale);
- x_val = id.x() * pool_stride_x;
- y_val = (id.y() * pool_stride_y) + i;
- data = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
// Get power of 2 in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
+ if (pool_info.pool_type == PoolingType::L2)
{
data.val[0] = vmulq_f32(data.val[0], data.val[0]);
data.val[1] = vmulq_f32(data.val[1], data.val[1]);
}
- sum_data = vaddq_f32(sum_data, data.val[0]);
- sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
+ float32x4_t sum_data = vaddq_f32(data.val[0], vsetq_lane_f32(0.f, data.val[1], 3));
+ for (int i = 1; i < pool_size; ++i)
+ {
+ in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
+
+ x_val = id.x() * pool_stride_x;
+ y_val = (id.y() * pool_stride_y) + i;
+ data = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr,
+ fill_value);
+ // Get power of 2 in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ data.val[0] = vmulq_f32(data.val[0], data.val[0]);
+ data.val[1] = vmulq_f32(data.val[1], data.val[1]);
+ }
+ sum_data = vaddq_f32(sum_data, data.val[0]);
+ sum_data = vaddq_f32(sum_data, vsetq_lane_f32(0.f, data.val[1], 3));
+ }
+ res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
+ res = vmul_f32(vpadd_f32(res, res), scale_v);
}
- res = vpadd_f32(vget_high_f32(sum_data), vget_low_f32(sum_data));
- res = vmul_f32(vpadd_f32(res, res), scale_v);
- }
- else
- {
- for(int i = 1; i < pool_size; ++i)
+ else
{
- in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
+ for (int i = 1; i < pool_size; ++i)
+ {
+ in_ptr = reinterpret_cast<const float *>(src_ptrs[i] + in.offset());
- x_val = id.x() * pool_stride_x;
- y_val = (id.y() * pool_stride_y) + i;
- float32x4x2_t temp = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val, in_ptr, fill_value);
- data = vmax2q_f32(data, temp);
+ x_val = id.x() * pool_stride_x;
+ y_val = (id.y() * pool_stride_y) + i;
+ float32x4x2_t temp = read_8_boundary_aware(src_h, src_w, pool_pad_left, pool_pad_top, x_val, y_val,
+ in_ptr, fill_value);
+ data = vmax2q_f32(data, temp);
+ }
+ res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, data.val[1], 3)), vget_low_f32(data.val[1]));
+ res = vpmax_f32(res, vpmax_f32(vget_high_f32(data.val[0]), vget_low_f32(data.val[0])));
+ res = vpmax_f32(res, res);
}
- res = vpmax_f32(vget_high_f32(vsetq_lane_f32(min_value, data.val[1], 3)), vget_low_f32(data.val[1]));
- res = vpmax_f32(res, vpmax_f32(vget_high_f32(data.val[0]), vget_low_f32(data.val[0])));
- res = vpmax_f32(res, res);
- }
- final_res = vget_lane_f32(res, 0);
+ final_res = vget_lane_f32(res, 0);
- // Calculate square-root in case of l2 pooling
- if(pool_info.pool_type == PoolingType::L2)
- {
- final_res = sqrt(final_res);
- }
+ // Calculate square-root in case of l2 pooling
+ if (pool_info.pool_type == PoolingType::L2)
+ {
+ final_res = sqrt(final_res);
+ }
- // Store result
- *(reinterpret_cast<float *>(out.ptr())) = final_res;
- },
- in, out);
+ // Store result
+ *(reinterpret_cast<float *>(out.ptr())) = final_res;
+ },
+ in, out);
}
} // namespace cpu
} // namespace arm_compute
-#endif // ENABLE_NCHW_KERNELS \ No newline at end of file
+#endif // ENABLE_NCHW_KERNELS