aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/elementwise_binary/generic/sve/impl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/elementwise_binary/generic/sve/impl.cpp')
-rw-r--r--src/cpu/kernels/elementwise_binary/generic/sve/impl.cpp297
1 files changed, 297 insertions, 0 deletions
diff --git a/src/cpu/kernels/elementwise_binary/generic/sve/impl.cpp b/src/cpu/kernels/elementwise_binary/generic/sve/impl.cpp
new file mode 100644
index 0000000000..fa48407e9b
--- /dev/null
+++ b/src/cpu/kernels/elementwise_binary/generic/sve/impl.cpp
@@ -0,0 +1,297 @@
+/*
+ * Copyright (c) 2021-2022 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "src/cpu/kernels/elementwise_binary/generic/sve/impl.h"
+
+#include "src/core/NEON/SVEMath.h"
+
+#include <arm_sve.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+using namespace arm_compute::wrapper;
+
+template <typename ScalarType>
+void elementwise_arithmetic_op(
+ const ITensor *in1, const ITensor *in2, ITensor *out, ArithmeticOperation op, const Window &window)
+{
+ using VectorType = typename sve_vector<ScalarType>::type;
+
+ const auto all_true_pg = svptrue<ScalarType>();
+
+ // Create input windows
+ Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ Window win = window;
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
+
+ if (is_broadcast_across_x)
+ {
+ const bool is_broadcast_input_2 = input2_win.x().step() == 0;
+ Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
+ Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
+ const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
+ const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
+
+ // Clear X Dimension on execution window as we handle manually
+ non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator broadcast_input(broadcast_tensor, broadcast_win);
+ Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
+ Iterator output(out, win);
+
+ execute_window_loop(
+ win,
+ [&](const Coordinates &)
+ {
+ auto output_ptr = reinterpret_cast<ScalarType *>(output.ptr());
+ const auto non_broadcast_input_ptr = reinterpret_cast<const ScalarType *>(non_broadcast_input.ptr());
+ const ScalarType broadcast_value = *reinterpret_cast<const ScalarType *>(broadcast_input.ptr());
+ const auto broadcast_vector = svdup_n(broadcast_value);
+
+ int x = window_start_x;
+
+ svbool_t pg = svwhilelt<ScalarType>(x, window_end_x);
+ do
+ {
+ const auto non_broadcast_vector = svld1(pg, non_broadcast_input_ptr + x);
+ VectorType res{};
+
+ if (is_broadcast_input_2)
+ {
+ res = elementwise_arithmetic_op<typename sve_vector<ScalarType>::type>(pg, non_broadcast_vector,
+ broadcast_vector, op);
+ }
+ else
+ {
+ res = elementwise_arithmetic_op<typename sve_vector<ScalarType>::type>(
+ pg, broadcast_vector, non_broadcast_vector, op);
+ }
+ svst1(pg, output_ptr + x, res);
+
+ x += svcnt<ScalarType>();
+ pg = svwhilelt<ScalarType>(x, window_end_x);
+ } while (svptest_any(all_true_pg, pg));
+ },
+ broadcast_input, non_broadcast_input, output);
+ }
+ else
+ {
+ // Clear X Dimension on execution window as we handle manually
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(in1, input1_win);
+ Iterator input2(in2, input2_win);
+ Iterator output(out, win);
+
+ execute_window_loop(
+ win,
+ [&](const Coordinates &)
+ {
+ auto output_ptr = reinterpret_cast<ScalarType *>(output.ptr());
+ const auto input1_ptr = reinterpret_cast<const ScalarType *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const ScalarType *>(input2.ptr());
+
+ int x = window_start_x;
+
+ svbool_t pg = svwhilelt<ScalarType>(x, window_end_x);
+ do
+ {
+ const auto in1 = svld1(pg, input1_ptr + x);
+ const auto in2 = svld1(pg, input2_ptr + x);
+ const auto res = elementwise_arithmetic_op<typename sve_vector<ScalarType>::type>(pg, in1, in2, op);
+ svst1(pg, output_ptr + x, res);
+
+ x += svcnt<ScalarType>();
+ pg = svwhilelt<ScalarType>(x, window_end_x);
+ } while (svptest_any(all_true_pg, pg));
+ },
+ input1, input2, output);
+ }
+}
+template void elementwise_arithmetic_op<float32_t>(
+ const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window);
+template void elementwise_arithmetic_op<float16_t>(
+ const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window);
+template void elementwise_arithmetic_op<int16_t>(
+ const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window);
+template void elementwise_arithmetic_op<int32_t>(
+ const ITensor *in1, const ITensor *in2, ITensor *out, const ArithmeticOperation op, const Window &window);
+
+template <typename InputScalarType, typename OutputScalarType>
+void elementwise_comparison_op(
+ const ITensor *in1, const ITensor *in2, ITensor *out, ComparisonOperation op, const Window &window)
+{
+ static_assert(sizeof(InputScalarType) >= sizeof(OutputScalarType),
+ "input data type's width should be equal to or greater than output data type's width");
+
+ using OutputVectorType = typename sve_vector<OutputScalarType>::type;
+ const auto all_true_pg = svptrue<InputScalarType>();
+
+ // Create input windows
+ Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ Window win = window;
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const bool is_broadcast_across_x = in1->info()->tensor_shape().x() != in2->info()->tensor_shape().x();
+
+ if (is_broadcast_across_x)
+ {
+ const bool is_broadcast_input_2 = input2_win.x().step() == 0;
+ Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
+ Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
+ const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
+ const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
+
+ // Clear X Dimension on execution window as we handle manually
+ non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator broadcast_input(broadcast_tensor, broadcast_win);
+ Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
+ Iterator output(out, win);
+
+ execute_window_loop(
+ win,
+ [&](const Coordinates &)
+ {
+ auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
+ const auto non_broadcast_input_ptr =
+ reinterpret_cast<const InputScalarType *>(non_broadcast_input.ptr());
+ const InputScalarType broadcast_value =
+ *reinterpret_cast<const InputScalarType *>(broadcast_input.ptr());
+ const auto broadcast_vector = svdup_n(broadcast_value);
+
+ int x = window_start_x;
+
+ svbool_t pg = svwhilelt<InputScalarType>(x, window_end_x);
+ do
+ {
+ const auto non_broadcast_vector = svld1(pg, non_broadcast_input_ptr + x);
+ const svbool_t output_pg = narrow_to_byte_predicate<sizeof(InputScalarType)>(pg);
+ OutputVectorType res{};
+ if (is_broadcast_input_2)
+ {
+ res = elementwise_comparison_op<typename sve_vector<InputScalarType>::type,
+ typename sve_vector<OutputScalarType>::type>(
+ pg, non_broadcast_vector, broadcast_vector, op);
+ }
+ else
+ {
+ res = elementwise_comparison_op<typename sve_vector<InputScalarType>::type,
+ typename sve_vector<OutputScalarType>::type>(
+ pg, broadcast_vector, non_broadcast_vector, op);
+ }
+ svst1(output_pg, output_ptr + x, res);
+
+ x += svcnt<InputScalarType>();
+ pg = svwhilelt<InputScalarType>(x, window_end_x);
+ } while (svptest_any(all_true_pg, pg));
+ },
+ broadcast_input, non_broadcast_input, output);
+ }
+ else
+ {
+ // Clear X Dimension on execution window as we handle manually
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(in1, input1_win);
+ Iterator input2(in2, input2_win);
+ Iterator output(out, win);
+
+ execute_window_loop(
+ win,
+ [&](const Coordinates &)
+ {
+ auto output_ptr = reinterpret_cast<OutputScalarType *>(output.ptr());
+ const auto input1_ptr = reinterpret_cast<const InputScalarType *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const InputScalarType *>(input2.ptr());
+
+ int x = window_start_x;
+
+ svbool_t pg = svwhilelt<InputScalarType>(x, window_end_x);
+ do
+ {
+ const auto in1 = svld1(pg, input1_ptr + x);
+ const auto in2 = svld1(pg, input2_ptr + x);
+ const auto res =
+ elementwise_comparison_op<typename sve_vector<InputScalarType>::type,
+ typename sve_vector<OutputScalarType>::type>(pg, in1, in2, op);
+ const svbool_t output_pg = narrow_to_byte_predicate<sizeof(InputScalarType)>(pg);
+ svst1(output_pg, output_ptr + x, res);
+
+ x += svcnt<InputScalarType>();
+ pg = svwhilelt<InputScalarType>(x, window_end_x);
+ } while (svptest_any(all_true_pg, pg));
+ },
+ input1, input2, output);
+ }
+}
+
+template void elementwise_comparison_op<float32_t>(
+ const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
+template void elementwise_comparison_op<float16_t>(
+ const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
+template void elementwise_comparison_op<uint8_t>(
+ const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
+template void elementwise_comparison_op<int16_t>(
+ const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
+template void elementwise_comparison_op<int32_t>(
+ const ITensor *in1, const ITensor *in2, ITensor *out, const ComparisonOperation op, const Window &window);
+
+template <>
+svint32_t elementwise_pow<svint32_t>(svbool_t &pg, const svint32_t &a, const svint32_t &b)
+{
+ return svcvt_s32_z(pg, svpow_z(pg, svcvt_f32_z(pg, a), svcvt_f32_z(pg, b)));
+}
+
+template <>
+svint32_t elementwise_div<svint32_t>(svbool_t &pg, const svint32_t &a, const svint32_t &b)
+{
+ return svcvt_s32_z(pg, svdiv_z(pg, svcvt_f32_z(pg, a), svcvt_f32_z(pg, b)));
+}
+
+template <>
+svint16_t elementwise_div<svint16_t>(svbool_t &pg, const svint16_t &a, const svint16_t &b)
+{
+ ARM_COMPUTE_UNUSED(pg, a, b);
+ ARM_COMPUTE_ERROR("Not supported");
+}
+
+} // namespace cpu
+} // namespace arm_compute