aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/CpuGemmLowpQuantizeDownInt32ScaleKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/CpuGemmLowpQuantizeDownInt32ScaleKernel.cpp')
-rw-r--r--src/cpu/kernels/CpuGemmLowpQuantizeDownInt32ScaleKernel.cpp337
1 files changed, 337 insertions, 0 deletions
diff --git a/src/cpu/kernels/CpuGemmLowpQuantizeDownInt32ScaleKernel.cpp b/src/cpu/kernels/CpuGemmLowpQuantizeDownInt32ScaleKernel.cpp
new file mode 100644
index 0000000000..eefc294700
--- /dev/null
+++ b/src/cpu/kernels/CpuGemmLowpQuantizeDownInt32ScaleKernel.cpp
@@ -0,0 +1,337 @@
+/*
+ * Copyright (c) 2020-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/cpu/kernels/CpuGemmLowpQuantizeDownInt32ScaleKernel.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+
+#include "src/core/AccessWindowStatic.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+Status validate_arguments(const ITensorInfo *src,
+ const ITensorInfo *bias,
+ const ITensorInfo *dst,
+ const GEMMLowpOutputStageInfo *output_stage)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::S32);
+
+ ARM_COMPUTE_RETURN_ERROR_ON(
+ output_stage->gemmlowp_max_bound >
+ std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)));
+ ARM_COMPUTE_RETURN_ERROR_ON(
+ output_stage->gemmlowp_min_bound <
+ std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)) ||
+ output_stage->gemmlowp_min_bound > output_stage->gemmlowp_max_bound);
+
+ // Check biases if exist
+ if (bias != nullptr)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, bias);
+ ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
+ ARM_COMPUTE_RETURN_ERROR_ON(src->dimension(0) != bias->dimension(0));
+ }
+
+ if (dst->total_size() != 0)
+ {
+ if (dst->data_type() != output_stage->output_data_type &&
+ (output_stage->output_data_type == DataType::QASYMM8 ||
+ output_stage->output_data_type == DataType::QASYMM8_SIGNED))
+ {
+ ARM_COMPUTE_RETURN_ERROR_MSG("Mismatching data types");
+ }
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(src, dst);
+ }
+
+ return Status{};
+}
+
+inline void scale_input(int32x4x4_t &in_s32, int32x4_t result_offset_s32, int32_t result_mult_int)
+{
+ // Add the offset terms to GEMM's result
+ in_s32.val[0] = vaddq_s32(in_s32.val[0], result_offset_s32);
+ in_s32.val[1] = vaddq_s32(in_s32.val[1], result_offset_s32);
+ in_s32.val[2] = vaddq_s32(in_s32.val[2], result_offset_s32);
+ in_s32.val[3] = vaddq_s32(in_s32.val[3], result_offset_s32);
+
+ // Multiply by result_mult_int
+ in_s32.val[0] = vmulq_n_s32(in_s32.val[0], result_mult_int);
+ in_s32.val[1] = vmulq_n_s32(in_s32.val[1], result_mult_int);
+ in_s32.val[2] = vmulq_n_s32(in_s32.val[2], result_mult_int);
+ in_s32.val[3] = vmulq_n_s32(in_s32.val[3], result_mult_int);
+}
+
+template <typename T>
+inline
+ typename std::enable_if<std::is_same<T, uint8_t>::value, typename wrapper::traits::neon_vector<T, 16>::type>::type
+ convert_to_8bit(const int16x8x2_t in_s16)
+{
+ return wrapper::vcombine(wrapper::vqmovun(in_s16.val[0]), wrapper::vqmovun(in_s16.val[1]));
+}
+
+template <typename T>
+inline typename std::enable_if<std::is_same<T, int8_t>::value, typename wrapper::traits::neon_vector<T, 16>::type>::type
+convert_to_8bit(const int16x8x2_t in_s16)
+{
+ return wrapper::vcombine(wrapper::vqmovn(in_s16.val[0]), wrapper::vqmovn(in_s16.val[1]));
+}
+
+template <typename T>
+inline typename wrapper::traits::neon_vector<T, 16>::type
+finalize_quantization(int32x4x4_t &in_s32,
+ int32x4_t result_shift_s32,
+ typename wrapper::traits::neon_vector<T, 16>::type min,
+ typename wrapper::traits::neon_vector<T, 16>::type max)
+{
+ // Shift final result (negative value shift right)
+ in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
+ in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
+ in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
+ in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
+
+ // Convert S32 to S16
+ const int16x8x2_t in_s16 = {{vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
+ vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))}};
+
+ // Convert S16 to S8 or U8
+ typename wrapper::traits::neon_vector<T, 16>::type out = convert_to_8bit<T>(in_s16);
+
+ out = wrapper::vmax(out, min);
+ out = wrapper::vmin(out, max);
+
+ return out;
+}
+} // namespace
+
+template <typename T>
+void CpuGemmLowpQuantizeDownInt32ScaleKernel::run_internal(const ITensor *src,
+ const ITensor *bias,
+ ITensor *dst,
+ const Window &window)
+{
+ using VectorType = typename wrapper::traits::neon_vector<T, 16>::type;
+
+ const int32x4_t result_offset_s32 = vdupq_n_s32(_output_stage->gemmlowp_offset);
+ const int32x4_t result_shift_s32 = vdupq_n_s32(-_output_stage->gemmlowp_shift);
+ const int window_step_x = 16;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+
+ const int clamp_min = (_is_bounded_relu) ? _output_stage->gemmlowp_min_bound : std::numeric_limits<T>::lowest();
+ const int clamp_max = (_is_bounded_relu) ? _output_stage->gemmlowp_max_bound : std::numeric_limits<T>::max();
+
+ VectorType min = wrapper::vdup_n(static_cast<T>(clamp_min), wrapper::traits::vector_128_tag{});
+ VectorType max = wrapper::vdup_n(static_cast<T>(clamp_max), wrapper::traits::vector_128_tag{});
+
+ Window win(window);
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator in(src, win);
+ Iterator out(dst, win);
+
+ if (bias != nullptr)
+ {
+ Window win_biases;
+ win_biases.set(Window::DimX, Window::Dimension(0, 1, 1));
+ win_biases.set(Window::DimY, Window::Dimension(0, 1, 1));
+
+ Iterator bias_i(bias, win_biases);
+ execute_window_loop(
+ win,
+ [&](const Coordinates &)
+ {
+ // Compute 16 elements per iteration
+ int x = window_start_x;
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ int32x4x4_t in_s32 = {{vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)}};
+
+ const int32x4x4_t bias_s32 = {
+ {vld1q_s32(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(bias_i.ptr()) + x + 12)}};
+
+ // Add the bias to GEMM's result
+ in_s32.val[0] = vaddq_s32(in_s32.val[0], bias_s32.val[0]);
+ in_s32.val[1] = vaddq_s32(in_s32.val[1], bias_s32.val[1]);
+ in_s32.val[2] = vaddq_s32(in_s32.val[2], bias_s32.val[2]);
+ in_s32.val[3] = vaddq_s32(in_s32.val[3], bias_s32.val[3]);
+
+ // Add the offset terms to GEMM's result and multiply by result_mult_int
+ scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
+
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x),
+ finalize_quantization<T>(in_s32, result_shift_s32, min, max));
+ }
+
+ // Compute left-over elements
+ for (; x < window_end_x; ++x)
+ {
+ const int bias_value = *(reinterpret_cast<const int *>(bias_i.ptr()) + x);
+ int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
+
+ // Quantize
+ in_value = ((in_value + bias_value + _output_stage->gemmlowp_offset) *
+ _output_stage->gemmlowp_multiplier) >>
+ _output_stage->gemmlowp_shift;
+
+ // Store the result
+ *(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
+ }
+ },
+ in, bias_i, out);
+ }
+ else
+ {
+ execute_window_loop(
+ win,
+ [&](const Coordinates &)
+ {
+ // Compute 16 elements per iteration
+ int x = window_start_x;
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ int32x4x4_t in_s32 = {{vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(in.ptr()) + x + 12)}};
+
+ // Add the offset terms to GEMM's result and multiply by result_mult_int
+ scale_input(in_s32, result_offset_s32, _output_stage->gemmlowp_multiplier);
+
+ wrapper::vstore(reinterpret_cast<T *>(out.ptr() + x),
+ finalize_quantization<T>(in_s32, result_shift_s32, min, max));
+ }
+
+ // Compute left-over elements
+ for (; x < window_end_x; ++x)
+ {
+ int in_value = *(reinterpret_cast<const int *>(in.ptr()) + x);
+
+ // Quantize
+ in_value = ((in_value + _output_stage->gemmlowp_offset) * _output_stage->gemmlowp_multiplier) >>
+ _output_stage->gemmlowp_shift;
+
+ // Store the result
+ *(out.ptr() + x) = static_cast<T>(utility::clamp<int>(in_value, clamp_min, clamp_max));
+ }
+ },
+ in, out);
+ }
+}
+
+void CpuGemmLowpQuantizeDownInt32ScaleKernel::configure(ITensorInfo *src,
+ ITensorInfo *bias,
+ ITensorInfo *dst,
+ const GEMMLowpOutputStageInfo *output_stage)
+{
+ ARM_COMPUTE_UNUSED(bias);
+ // Perform validate step
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst, output_stage);
+
+ // Output auto inizialitation if not yet initialized
+ auto_init_if_empty(*dst, src->clone()->set_data_type(output_stage->output_data_type));
+
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, bias, dst, output_stage));
+
+ _output_stage = output_stage;
+
+ // Configure kernel window
+ Window win = calculate_max_window(*src, Steps());
+
+ ICpuKernel::configure(win);
+
+ // Check if we need to clamp the result using min and max
+ _is_bounded_relu =
+ ((_output_stage->gemmlowp_min_bound != _output_stage->gemmlowp_max_bound) &&
+ !(_output_stage->gemmlowp_min_bound ==
+ std::get<0>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type)) &&
+ _output_stage->gemmlowp_max_bound ==
+ std::get<1>(quantization::get_min_max_values_from_quantized_data_type(output_stage->output_data_type))));
+ if (_output_stage->output_data_type == DataType::QASYMM8)
+ {
+ _func = &CpuGemmLowpQuantizeDownInt32ScaleKernel::run_internal<uint8_t>;
+ }
+ else if (_output_stage->output_data_type == DataType::QASYMM8_SIGNED)
+ {
+ _func = &CpuGemmLowpQuantizeDownInt32ScaleKernel::run_internal<int8_t>;
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR("Data type not supported");
+ }
+}
+
+Status CpuGemmLowpQuantizeDownInt32ScaleKernel::validate(const ITensorInfo *src,
+ const ITensorInfo *bias,
+ const ITensorInfo *dst,
+ const GEMMLowpOutputStageInfo *output_stage)
+{
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, bias, dst, output_stage));
+ return Status{};
+}
+
+void CpuGemmLowpQuantizeDownInt32ScaleKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+ ARM_COMPUTE_ERROR_ON_MSG(tensors.empty(), "No inputs provided");
+
+ auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
+ auto bias = tensors.get_const_tensor(TensorType::ACL_BIAS);
+ auto dst = tensors.get_tensor(TensorType::ACL_DST);
+ (this->*_func)(src, bias, dst, window);
+}
+
+const char *CpuGemmLowpQuantizeDownInt32ScaleKernel::name() const
+{
+ return "CpuGemmLowpQuantizeDownInt32ScaleKernel";
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute