aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.cpp')
-rw-r--r--src/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.cpp1036
1 files changed, 1036 insertions, 0 deletions
diff --git a/src/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.cpp b/src/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.cpp
new file mode 100644
index 0000000000..3c113f2828
--- /dev/null
+++ b/src/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.cpp
@@ -0,0 +1,1036 @@
+/*
+ * Copyright (c) 2019-2021, 2023-2024 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/cpu/kernels/CpuGemmLowpOffsetContributionOutputStageKernel.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+#include "src/core/NEON/NEAsymm.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+inline int32x4x4_t load_results_input(const Iterator &mm_result_it, int32_t x)
+{
+ return {{vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 0),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 4),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 8),
+ vld1q_s32(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x + 12)}};
+}
+
+inline int32x4x4_t load(const int32_t *ptr, int32_t x)
+{
+ return {{vld1q_s32(ptr + x + 0), vld1q_s32(ptr + x + 4), vld1q_s32(ptr + x + 8), vld1q_s32(ptr + x + 12)}};
+}
+
+inline int32x4x4_t add_s32(int32x4x4_t a, int32x4_t b)
+{
+ return {{vaddq_s32(a.val[0], b), vaddq_s32(a.val[1], b), vaddq_s32(a.val[2], b), vaddq_s32(a.val[3], b)}};
+}
+
+inline int32x4x4_t add_s32(int32x4x4_t a, int32x4x4_t b)
+{
+ return {{vaddq_s32(a.val[0], b.val[0]), vaddq_s32(a.val[1], b.val[1]), vaddq_s32(a.val[2], b.val[2]),
+ vaddq_s32(a.val[3], b.val[3])}};
+}
+
+inline int32x4x4_t mul_s32(int32x4x4_t &a, int32_t mul_scalar)
+{
+ return {{vmulq_n_s32(a.val[0], mul_scalar), vmulq_n_s32(a.val[1], mul_scalar), vmulq_n_s32(a.val[2], mul_scalar),
+ vmulq_n_s32(a.val[3], mul_scalar)}};
+}
+
+inline int32x4x4_t mul_s32(int32x4x4_t &a, const int32_t *multilpier)
+{
+ return {{vmulq_s32(a.val[0], vld1q_s32(multilpier)), vmulq_s32(a.val[1], vld1q_s32(multilpier + 4)),
+ vmulq_s32(a.val[2], vld1q_s32(multilpier + 8)), vmulq_s32(a.val[3], vld1q_s32(multilpier + 12))}};
+}
+
+inline int32x4x4_t get_a_offset(const int32_t *vector_sum_col_ptr, int32_t a_offset, int32_t x)
+{
+ int32x4x4_t a_offset_term_s32 = load(vector_sum_col_ptr, x);
+
+ a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
+ a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
+ a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
+ a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
+ return a_offset_term_s32;
+}
+
+inline int32x4_t get_b_offset(const int32_t *vector_sum_row_ptr, int32_t b_offset)
+{
+ int32x4_t b_offset_term_s32 = vld1q_dup_s32(vector_sum_row_ptr);
+ b_offset_term_s32 = vmulq_n_s32(b_offset_term_s32, b_offset);
+ return b_offset_term_s32;
+}
+
+inline int32x4x4_t get_k_offset(int32_t k_offset)
+{
+ return {{vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset)}};
+}
+
+inline uint8x16_t finalize_quantization_floating_point(
+ int32x4x4_t &in_s32, int32x4_t result_shift_s32, uint8x16_t min_u8, uint8x16_t max_u8, bool is_bounded_relu)
+{
+ const static int32x4_t zero_s32 = vdupq_n_s32(0);
+
+ // Shift final result (negative value shift right)
+ in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
+ in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
+ in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
+ in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
+
+ // Saturate negative values
+ in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
+ in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
+ in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
+ in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
+
+ // Convert S32 to S16
+ const int16x8x2_t in_s16 = {{vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
+ vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))}};
+
+ // Convert S16 to U8
+ uint8x16_t out_u8 = vcombine_u8(vqmovun_s16(in_s16.val[0]), vqmovun_s16(in_s16.val[1]));
+
+ if (is_bounded_relu)
+ {
+ out_u8 = vmaxq_u8(out_u8, min_u8);
+ out_u8 = vminq_u8(out_u8, max_u8);
+ }
+
+ return out_u8;
+}
+
+inline int8x16_t finalize_quantization_floating_point(
+ int32x4x4_t &in_s32, int32x4_t result_shift_s32, int8x16_t min_s8, int8x16_t max_s8, bool is_bounded_relu)
+{
+ const static int32x4_t zero_s32 = vdupq_n_s32(0);
+
+ // Shift final result (negative value shift right)
+ in_s32.val[0] = vshlq_s32(in_s32.val[0], result_shift_s32);
+ in_s32.val[1] = vshlq_s32(in_s32.val[1], result_shift_s32);
+ in_s32.val[2] = vshlq_s32(in_s32.val[2], result_shift_s32);
+ in_s32.val[3] = vshlq_s32(in_s32.val[3], result_shift_s32);
+
+ // Saturate negative values
+ in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
+ in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
+ in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
+ in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
+
+ // Convert S32 to S16
+ const int16x8x2_t in_s16 = {{vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
+ vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))}};
+
+ // Convert S16 to S8
+ int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
+
+ if (is_bounded_relu)
+ {
+ out_s8 = vmaxq_s8(out_s8, min_s8);
+ out_s8 = vminq_s8(out_s8, max_s8);
+ }
+
+ return out_s8;
+}
+
+inline int8x16_t finalize_quantization_floating_point(
+ int32x4x4_t &in_s32, int32x4x4_t result_shift_s32, int8x16_t min_s8, int8x16_t max_s8, bool is_bounded_relu)
+{
+ const static int32x4_t zero_s32 = vdupq_n_s32(0);
+
+ // Shift final result (negative value shift right)
+ in_s32.val[0] = vshlq_s32(in_s32.val[0], vnegq_s32(result_shift_s32.val[0]));
+ in_s32.val[1] = vshlq_s32(in_s32.val[1], vnegq_s32(result_shift_s32.val[1]));
+ in_s32.val[2] = vshlq_s32(in_s32.val[2], vnegq_s32(result_shift_s32.val[2]));
+ in_s32.val[3] = vshlq_s32(in_s32.val[3], vnegq_s32(result_shift_s32.val[3]));
+
+ // Saturate negative values
+ in_s32.val[0] = vmaxq_s32(in_s32.val[0], zero_s32);
+ in_s32.val[1] = vmaxq_s32(in_s32.val[1], zero_s32);
+ in_s32.val[2] = vmaxq_s32(in_s32.val[2], zero_s32);
+ in_s32.val[3] = vmaxq_s32(in_s32.val[3], zero_s32);
+
+ // Convert S32 to S16
+ const int16x8x2_t in_s16 = {{vcombine_s16(vqmovn_s32(in_s32.val[0]), vqmovn_s32(in_s32.val[1])),
+ vcombine_s16(vqmovn_s32(in_s32.val[2]), vqmovn_s32(in_s32.val[3]))}};
+
+ // Convert S16 to S8
+ int8x16_t out_s8 = vcombine_s8(vqmovn_s16(in_s16.val[0]), vqmovn_s16(in_s16.val[1]));
+
+ if (is_bounded_relu)
+ {
+ out_s8 = vmaxq_s8(out_s8, min_s8);
+ out_s8 = vminq_s8(out_s8, max_s8);
+ }
+
+ return out_s8;
+}
+
+template <typename T>
+struct VectorTyper
+{
+ using stype = T;
+ using vtype = typename wrapper::traits::neon_bitvector_t<T, wrapper::traits::BitWidth::W128>;
+};
+
+inline Window get_win_vector_sum(const Window &window)
+{
+ Window win_vector_sum(window);
+ win_vector_sum.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_vector_sum.set(Window::DimZ, Window::Dimension(0, 0, 0));
+ return win_vector_sum;
+}
+
+inline Iterator get_vector_sum_col_it(const Window &window, const ITensor *vector_sum_col)
+{
+ Iterator vector_sum_col_it(vector_sum_col, get_win_vector_sum(window));
+ return vector_sum_col_it;
+}
+
+inline Iterator get_vector_sum_row_it(const Window &window, const ITensor *vector_sum_row)
+{
+ Window win_vector_sum_row = get_win_vector_sum(window);
+ win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
+ Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
+ return vector_sum_row_it;
+}
+
+inline Iterator get_bias_it(const Window &window, const ITensor *bias)
+{
+ Window win_bias(window);
+ win_bias.set(Window::DimY, Window::Dimension(0, 1, 1));
+ win_bias.set(Window::DimZ, Window::Dimension(0, 1, 1));
+ Iterator bias_it(bias, win_bias);
+ return bias_it;
+}
+
+template <typename VT>
+inline void run_offset_contribution_output_stage_window(const int32_t *vector_sum_col_ptr,
+ const int32_t *vector_sum_row_ptr,
+ const int32_t *bias_ptr,
+ Iterator mm_result_it,
+ Iterator out_it,
+ const int32x4_t result_offset_s32,
+ const int32x4_t result_shift_s32,
+ typename VT::vtype min_vec,
+ typename VT::vtype max_vec,
+ int32_t a_offset,
+ int32_t b_offset,
+ int32_t k_offset,
+ int32_t multiplier,
+ int32_t shift,
+ int32_t offset,
+ int32_t min_bound,
+ int32_t max_bound,
+ int window_step_x,
+ int window_start_x,
+ int window_end_x,
+ bool has_a_offset,
+ bool has_b_offset,
+ bool has_bias,
+ bool is_bounded_relu,
+ bool is_fixed_point)
+{
+ int32x4x4_t offset_term_s32 = {0, 0, 0, 0};
+ if (!is_fixed_point)
+ {
+ // Combine quantization offset with other offsets.
+ offset_term_s32 = add_s32(offset_term_s32, result_offset_s32);
+ }
+ if (has_a_offset && has_b_offset)
+ {
+ offset_term_s32 = add_s32(offset_term_s32, get_k_offset(k_offset));
+ }
+ if (has_b_offset)
+ {
+ offset_term_s32 = add_s32(offset_term_s32, get_b_offset(vector_sum_row_ptr, b_offset));
+ }
+
+ int x = window_start_x;
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ int32x4x4_t in_s32 = load_results_input(mm_result_it, x);
+
+ if (has_a_offset)
+ {
+ in_s32 = add_s32(in_s32, get_a_offset(vector_sum_col_ptr, a_offset, x));
+ }
+ if (has_bias)
+ {
+ in_s32 = add_s32(in_s32, load(bias_ptr, x));
+ }
+ if (!is_fixed_point || has_b_offset)
+ {
+ in_s32 = add_s32(in_s32, offset_term_s32);
+ }
+ if (!is_fixed_point)
+ {
+ in_s32 = mul_s32(in_s32, multiplier);
+ }
+
+ if (is_fixed_point)
+ {
+ wrapper::vstore(
+ reinterpret_cast<typename VT::stype *>(out_it.ptr() + x),
+ finalize_quantization(in_s32, multiplier, shift, result_offset_s32, min_vec, max_vec, is_bounded_relu));
+ }
+ else
+ {
+ wrapper::vstore(
+ reinterpret_cast<typename VT::stype *>(out_it.ptr() + x),
+ finalize_quantization_floating_point(in_s32, result_shift_s32, min_vec, max_vec, is_bounded_relu));
+ }
+ }
+ // Compute left-over elements
+ for (; x < window_end_x; ++x)
+ {
+ int32_t in_value =
+ *(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x) + wrapper::vgetlane(offset_term_s32.val[0], 0);
+
+ if (has_a_offset)
+ {
+ in_value += (*(vector_sum_col_ptr + x) * a_offset);
+ }
+ if (has_bias)
+ {
+ in_value += *(bias_ptr + x);
+ }
+
+ if (is_fixed_point)
+ {
+ // Finalize and store the result
+ *reinterpret_cast<typename VT::stype *>(out_it.ptr() + x) =
+ finalize_quantization(in_value, multiplier, shift, offset, static_cast<typename VT::stype>(min_bound),
+ static_cast<typename VT::stype>(max_bound), is_bounded_relu);
+ }
+ else
+ {
+ // Finalize quantization
+ in_value = (in_value * multiplier) >> shift;
+
+ // Bound and store the result
+ if (is_bounded_relu)
+ {
+ in_value = static_cast<typename VT::stype>(
+ std::max<int32_t>(min_bound, std::min<int32_t>(max_bound, in_value)));
+ }
+ *reinterpret_cast<typename VT::stype *>(out_it.ptr() + x) =
+ static_cast<typename VT::stype>(std::max<int32_t>(
+ static_cast<int32_t>(std::numeric_limits<typename VT::stype>::lowest()),
+ std::min<int32_t>(static_cast<int32_t>(std::numeric_limits<typename VT::stype>::max()), in_value)));
+ }
+ }
+}
+
+inline void run_offset_contribution_output_stage_window_symm(const int32_t *vector_sum_col_ptr,
+ const int32_t *bias_ptr,
+ Iterator mm_result_it,
+ Iterator out_it,
+ const int32_t *result_multipliers,
+ const int32_t *result_shifts,
+ const int32x4_t result_offset,
+ int8x16_t min_s8,
+ int8x16_t max_s8,
+ int32_t a_offset,
+ int32_t offset,
+ int32_t min_bound,
+ int32_t max_bound,
+ int window_step_x,
+ int window_start_x,
+ int window_end_x,
+ bool has_a_offset,
+ bool has_bias,
+ bool is_bounded_relu,
+ bool is_fixed_point)
+{
+ int32x4x4_t offset_term_s32 = {0, 0, 0, 0};
+ if (!is_fixed_point)
+ {
+ // Combine quantization offset with other offsets.
+ offset_term_s32 = add_s32(offset_term_s32, result_offset);
+ }
+
+ int x = window_start_x;
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ int32x4x4_t in_s32 = load_results_input(mm_result_it, x);
+
+ if (has_a_offset)
+ {
+ in_s32 = add_s32(in_s32, get_a_offset(vector_sum_col_ptr, a_offset, x));
+ }
+ if (has_bias)
+ {
+ in_s32 = add_s32(in_s32, load(bias_ptr, x));
+ }
+ if (!is_fixed_point)
+ {
+ in_s32 = add_s32(in_s32, offset_term_s32);
+ in_s32 = mul_s32(in_s32, result_multipliers + x);
+ }
+
+ if (is_fixed_point)
+ {
+ vst1q_s8(reinterpret_cast<int8_t *>(out_it.ptr() + x),
+ finalize_quantization_symm(in_s32, load(result_multipliers, x), load(result_shifts, x),
+ result_offset, min_s8, max_s8, is_bounded_relu));
+ }
+ else
+ {
+ vst1q_s8(
+ reinterpret_cast<int8_t *>(out_it.ptr() + x),
+ finalize_quantization_floating_point(in_s32, load(result_shifts, x), min_s8, max_s8, is_bounded_relu));
+ }
+ }
+ // Compute left-over elements
+ for (; x < window_end_x; ++x)
+ {
+ int32_t in_value =
+ *(reinterpret_cast<const int32_t *>(mm_result_it.ptr()) + x) + wrapper::vgetlane(offset_term_s32.val[0], 0);
+
+ if (has_a_offset)
+ {
+ in_value += (*(vector_sum_col_ptr + x) * a_offset);
+ }
+ if (has_bias)
+ {
+ in_value += *(bias_ptr + x);
+ }
+
+ if (is_fixed_point)
+ {
+ // Finalize and store the result
+ *(out_it.ptr() + x) =
+ finalize_quantization(in_value, result_multipliers[x], result_shifts[x], offset,
+ static_cast<int8_t>(min_bound), static_cast<int8_t>(max_bound), is_bounded_relu);
+ }
+ else
+ {
+ // Finalize quantization
+ in_value = (in_value * result_multipliers[x]) >> (-result_shifts[x]);
+
+ // Bound and store the result
+ if (is_bounded_relu)
+ {
+ in_value = static_cast<int8_t>(std::max<int32_t>(min_bound, std::min<int32_t>(max_bound, in_value)));
+ }
+ *(out_it.ptr() + x) = static_cast<int8_t>(std::max<int32_t>(-128, std::min<int32_t>(127, in_value)));
+ }
+ }
+}
+
+template <typename T>
+void run_offset_contribution_output_stage(const Window &window,
+ const ITensor *mm_result,
+ const ITensor *vector_sum_col,
+ const ITensor *vector_sum_row,
+ const ITensor *bias,
+ ITensor *output,
+ int32_t a_offset,
+ int32_t b_offset,
+ int32_t k_offset,
+ bool is_vector_sum_col_batched,
+ GEMMLowpOutputStageInfo output_stage,
+ bool is_gemm3d,
+ bool is_bounded_relu,
+ bool is_fixed_point)
+{
+ // Semantics of XYZW Explained for each tensor
+ //
+ // | Tensor | XYZW when is_gemm3d == false | XYZW when is_gemm3d == true |
+ // -------------------------------------------------------------------------------------------------------------------
+ // | mm_result | x -> width, y -> height, z -> batch | x -> width, y -> height, z -> depth, w -> batch |
+ // | collapsed window | x -> width, y -> height, z -> batch | x -> width, y -> height, z -> depth * batch |
+ // | vector_sum_row | x -> height, y -> batch | x -> height * depth, y -> batch |
+ // | Vector_sum_col | x -> width, y -> batch | x -> width, y -> batch |
+
+ using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
+ using Typer = VectorTyper<T>;
+
+ const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0;
+ const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1;
+
+ const int32_t multiplier = output_stage.gemmlowp_multiplier;
+ const int32_t shift = output_stage.gemmlowp_shift;
+ const int32_t offset = output_stage.gemmlowp_offset;
+ const int32_t min_bound = output_stage.gemmlowp_min_bound;
+ const int32_t max_bound = output_stage.gemmlowp_max_bound;
+
+ const int32x4_t result_offset_s32 = vdupq_n_s32(offset);
+ const int32x4_t result_shift_s32 = vdupq_n_s32(is_fixed_point ? shift : -shift);
+ const auto min_vec = wrapper::vdup_n(static_cast<T>(min_bound), ExactTagType{});
+ const auto max_vec = wrapper::vdup_n(static_cast<T>(max_bound), ExactTagType{});
+
+ const int window_step_x = 16;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+
+ Window win(window);
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Window collapsed_window = win.collapse_if_possible(win, Window::DimZ);
+
+ Iterator mm_result_it(mm_result, win);
+ Iterator out_it(output, win);
+
+ if ((a_offset != 0) && (b_offset != 0))
+ {
+ ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
+ ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
+
+ Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
+ Iterator vector_sum_row_it = get_vector_sum_row_it(collapsed_window, vector_sum_row);
+
+ const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
+
+ // Offset in case vector_sum_col is batched in y dimension
+ const int vector_sum_col_stride_batch =
+ is_vector_sum_col_batched ? vector_sum_col->info()->strides_in_bytes().y() : 0;
+
+ if (bias != nullptr)
+ {
+ Iterator bias_it = get_bias_it(collapsed_window, bias);
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(
+ vector_sum_col_it.ptr() + batch_id * vector_sum_col_stride_batch);
+ const auto vector_sum_row_ptr =
+ reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) +
+ id.y() + (id.z() % depth_input) * height_input;
+ run_offset_contribution_output_stage_window<Typer>(
+ vector_sum_col_ptr, vector_sum_row_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()),
+ mm_result_it, out_it, result_offset_s32, result_shift_s32, min_vec, max_vec, a_offset, b_offset,
+ k_offset, multiplier, shift, offset, min_bound, max_bound, window_step_x, window_start_x,
+ window_end_x, true, true, true, is_bounded_relu, is_fixed_point);
+ },
+ vector_sum_col_it, vector_sum_row_it, bias_it, mm_result_it, out_it);
+ }
+ else
+ {
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(
+ vector_sum_col_it.ptr() + batch_id * vector_sum_col_stride_batch);
+ const auto vector_sum_row_ptr =
+ reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) +
+ id.y() + (id.z() % depth_input) * height_input;
+ run_offset_contribution_output_stage_window<Typer>(
+ vector_sum_col_ptr, vector_sum_row_ptr, nullptr, mm_result_it, out_it, result_offset_s32,
+ result_shift_s32, min_vec, max_vec, a_offset, b_offset, k_offset, multiplier, shift, offset,
+ min_bound, max_bound, window_step_x, window_start_x, window_end_x, true, true, false,
+ is_bounded_relu, is_fixed_point);
+ },
+ vector_sum_col_it, vector_sum_row_it, mm_result_it, out_it);
+ }
+ }
+ else if ((a_offset == 0) && (b_offset != 0))
+ {
+ ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
+
+ Iterator vector_sum_row_it = get_vector_sum_row_it(collapsed_window, vector_sum_row);
+
+ const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
+
+ if (bias != nullptr)
+ {
+ Iterator bias_it = get_bias_it(collapsed_window, bias);
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_row_ptr =
+ reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) +
+ id.y() + (id.z() % depth_input) * height_input;
+ run_offset_contribution_output_stage_window<Typer>(
+ nullptr, vector_sum_row_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it,
+ out_it, result_offset_s32, result_shift_s32, min_vec, max_vec, a_offset, b_offset, k_offset,
+ multiplier, shift, offset, min_bound, max_bound, window_step_x, window_start_x, window_end_x,
+ false, true, true, is_bounded_relu, is_fixed_point);
+ },
+ vector_sum_row_it, bias_it, mm_result_it, out_it);
+ }
+ else
+ {
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_row_ptr =
+ reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) +
+ id.y() + (id.z() % depth_input) * height_input;
+ run_offset_contribution_output_stage_window<Typer>(
+ nullptr, vector_sum_row_ptr, nullptr, mm_result_it, out_it, result_offset_s32, result_shift_s32,
+ min_vec, max_vec, a_offset, b_offset, k_offset, multiplier, shift, offset, min_bound, max_bound,
+ window_step_x, window_start_x, window_end_x, false, true, false, is_bounded_relu,
+ is_fixed_point);
+ },
+ vector_sum_row_it, mm_result_it, out_it);
+ }
+ }
+ else if ((a_offset != 0) && (b_offset == 0))
+ {
+ ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
+
+ Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
+
+ // Offset in case vector_sum_col is batched in y dimension
+ const int vector_sum_col_stride_batch =
+ is_vector_sum_col_batched ? vector_sum_col->info()->strides_in_bytes().y() : 0;
+
+ if (bias != nullptr)
+ {
+ Iterator bias_it = get_bias_it(collapsed_window, bias);
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(
+ vector_sum_col_it.ptr() + batch_id * vector_sum_col_stride_batch);
+ run_offset_contribution_output_stage_window<Typer>(
+ vector_sum_col_ptr, nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it,
+ out_it, result_offset_s32, result_shift_s32, min_vec, max_vec, a_offset, b_offset, k_offset,
+ multiplier, shift, offset, min_bound, max_bound, window_step_x, window_start_x, window_end_x,
+ true, false, true, is_bounded_relu, is_fixed_point);
+ },
+ vector_sum_col_it, bias_it, mm_result_it, out_it);
+ }
+ else
+ {
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(
+ vector_sum_col_it.ptr() + batch_id * vector_sum_col_stride_batch);
+ run_offset_contribution_output_stage_window<Typer>(
+ vector_sum_col_ptr, nullptr, nullptr, mm_result_it, out_it, result_offset_s32, result_shift_s32,
+ min_vec, max_vec, a_offset, b_offset, k_offset, multiplier, shift, offset, min_bound, max_bound,
+ window_step_x, window_start_x, window_end_x, true, false, false, is_bounded_relu,
+ is_fixed_point);
+ },
+ vector_sum_col_it, mm_result_it, out_it);
+ }
+ }
+ else
+ {
+ if (bias != nullptr)
+ {
+ Iterator bias_it = get_bias_it(collapsed_window, bias);
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &)
+ {
+ run_offset_contribution_output_stage_window<Typer>(
+ nullptr, nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
+ result_offset_s32, result_shift_s32, min_vec, max_vec, a_offset, b_offset, k_offset, multiplier,
+ shift, offset, min_bound, max_bound, window_step_x, window_start_x, window_end_x, false, false,
+ true, is_bounded_relu, is_fixed_point);
+ },
+ bias_it, mm_result_it, out_it);
+ }
+ else
+ {
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &)
+ {
+ run_offset_contribution_output_stage_window<Typer>(
+ nullptr, nullptr, nullptr, mm_result_it, out_it, result_offset_s32, result_shift_s32, min_vec,
+ max_vec, a_offset, b_offset, k_offset, multiplier, shift, offset, min_bound, max_bound,
+ window_step_x, window_start_x, window_end_x, false, false, false, is_bounded_relu,
+ is_fixed_point);
+ },
+ mm_result_it, out_it);
+ }
+ return;
+ }
+}
+
+void run_offset_contribution_output_stage_symm(const Window &window,
+ const ITensor *mm_result,
+ const ITensor *vector_sum_col,
+ const ITensor *vector_sum_row,
+ const ITensor *bias,
+ ITensor *output,
+ int32_t a_offset,
+ int32_t b_offset,
+ int32_t k_offset,
+ bool is_vector_sum_col_batched,
+ GEMMLowpOutputStageInfo output_stage,
+ bool is_gemm3d,
+ bool is_bounded_relu,
+ bool is_fixed_point)
+{
+ ARM_COMPUTE_UNUSED(vector_sum_row, b_offset, k_offset);
+
+ const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1;
+
+ const int32_t offset = output_stage.gemmlowp_offset;
+ const int32_t min_bound = output_stage.gemmlowp_min_bound;
+ const int32_t max_bound = output_stage.gemmlowp_max_bound;
+
+ const int32_t *result_multipliers = output_stage.gemmlowp_multipliers.data();
+ const int32_t *result_shifts = output_stage.gemmlowp_shifts.data();
+ const int32x4_t result_offset_s32 = vdupq_n_s32(offset);
+ const int8x16_t min_s8 = vdupq_n_s8(static_cast<int8_t>(min_bound));
+ const int8x16_t max_s8 = vdupq_n_s8(static_cast<int8_t>(max_bound));
+
+ const int window_step_x = 16;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+
+ Window win(window);
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Window collapsed_window = win.collapse_if_possible(win, Window::DimZ);
+
+ Iterator mm_result_it(mm_result, win);
+ Iterator out_it(output, win);
+
+ if (a_offset != 0)
+ {
+ ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_col);
+
+ Iterator vector_sum_col_it = get_vector_sum_col_it(collapsed_window, vector_sum_col);
+
+ // Offset in case vector_sum_col is batched in y dimension
+ const int vector_sum_col_stride_batch =
+ is_vector_sum_col_batched ? vector_sum_col->info()->strides_in_bytes().y() : 0;
+
+ if (bias != nullptr)
+ {
+ Iterator bias_it = get_bias_it(collapsed_window, bias);
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(
+ vector_sum_col_it.ptr() + batch_id * vector_sum_col_stride_batch);
+ run_offset_contribution_output_stage_window_symm(
+ vector_sum_col_ptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
+ result_multipliers, result_shifts, result_offset_s32, min_s8, max_s8, a_offset, offset,
+ min_bound, max_bound, window_step_x, window_start_x, window_end_x, true, true, is_bounded_relu,
+ is_fixed_point);
+ },
+ vector_sum_col_it, bias_it, mm_result_it, out_it);
+ }
+ else
+ {
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(
+ vector_sum_col_it.ptr() + batch_id * vector_sum_col_stride_batch);
+ run_offset_contribution_output_stage_window_symm(
+ vector_sum_col_ptr, nullptr, mm_result_it, out_it, result_multipliers, result_shifts,
+ result_offset_s32, min_s8, max_s8, a_offset, offset, min_bound, max_bound, window_step_x,
+ window_start_x, window_end_x, true, false, is_bounded_relu, is_fixed_point);
+ },
+ vector_sum_col_it, mm_result_it, out_it);
+ }
+ }
+ else
+ {
+ if (bias != nullptr)
+ {
+ Iterator bias_it = get_bias_it(collapsed_window, bias);
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &)
+ {
+ run_offset_contribution_output_stage_window_symm(
+ nullptr, reinterpret_cast<const int32_t *>(bias_it.ptr()), mm_result_it, out_it,
+ result_multipliers, result_shifts, result_offset_s32, min_s8, max_s8, a_offset, offset,
+ min_bound, max_bound, window_step_x, window_start_x, window_end_x, false, true, is_bounded_relu,
+ is_fixed_point);
+ },
+ bias_it, mm_result_it, out_it);
+ }
+ else
+ {
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &)
+ {
+ run_offset_contribution_output_stage_window_symm(
+ nullptr, nullptr, mm_result_it, out_it, result_multipliers, result_shifts, result_offset_s32,
+ min_s8, max_s8, a_offset, offset, min_bound, max_bound, window_step_x, window_start_x,
+ window_end_x, false, false, is_bounded_relu, is_fixed_point);
+ },
+ mm_result_it, out_it);
+ }
+ return;
+ }
+}
+
+Status validate_arguments(const ITensorInfo *mm_result,
+ const ITensorInfo *vector_sum_col,
+ const ITensorInfo *vector_sum_row,
+ const ITensorInfo *bias,
+ const ITensorInfo *output,
+ int32_t a_offset,
+ int32_t b_offset,
+ GEMMLowpOutputStageInfo output_stage)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32);
+ if (output->data_type() != DataType::QASYMM8)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) > 1 && output_stage.gemmlowp_multipliers.size() > 1 &&
+ b_offset != 0);
+ }
+ ARM_COMPUTE_RETURN_ERROR_ON(output_stage.gemmlowp_min_bound > output_stage.gemmlowp_max_bound);
+ ARM_COMPUTE_RETURN_ERROR_ON(output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN &&
+ output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT);
+
+ if (bias != nullptr)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
+ ARM_COMPUTE_RETURN_ERROR_ON(mm_result->dimension(0) != bias->dimension(0));
+ }
+
+ // If a_offset == 0, vector_sum_col can be a nullptr
+ if (a_offset != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0));
+ ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->num_dimensions() > 2);
+ }
+
+ // If b_offset == 0, vector_sum_row can be a nullptr
+ if (b_offset != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
+
+ // Check if input is a 3D reinterpretation
+ const bool reinterpret_as_3d =
+ mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
+
+ // Validate input
+ ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) !=
+ (mm_result->dimension(1) * mm_result->dimension(2)));
+ ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1));
+
+ TensorShape output_shape = output->tensor_shape();
+ if (output_shape.num_dimensions() > 1)
+ {
+ const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2;
+
+ TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
+ vector_sum_row_shape.collapse_from(1);
+ output_shape.collapse_from(output_batch_idx);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx],
+ "mm_result tensor must have the same number of batches of output tensor");
+
+ if (a_offset != 0)
+ {
+ TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
+ vector_sum_col_shape.collapse_from(1);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 &&
+ vector_sum_col_shape[1] != vector_sum_row_shape[1],
+ "vector_sum_col tensor must have the same number of batches of "
+ "vector_sum_row_shape or the number of batches must be set to 1");
+ }
+ }
+
+ // Check Tensor Rank of vector_sum_row
+ ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_row->num_dimensions() > 3);
+ }
+
+ if (output->total_size() != 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(mm_result, output);
+ }
+
+ return Status{};
+}
+} // namespace
+
+void CpuGemmLowpOffsetContributionOutputStageKernel::configure(const ITensorInfo *mm_result,
+ const ITensorInfo *vector_sum_col,
+ const ITensorInfo *vector_sum_row,
+ const ITensorInfo *bias,
+ ITensorInfo *dst,
+ int32_t k,
+ int32_t a_offset,
+ int32_t b_offset,
+ GEMMLowpOutputStageInfo output_stage)
+{
+ ARM_COMPUTE_UNUSED(vector_sum_row, bias);
+ // Perform validate step
+ ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, dst);
+ ARM_COMPUTE_ERROR_THROW_ON(
+ validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, dst, a_offset, b_offset, output_stage));
+
+ _a_offset = a_offset;
+ _b_offset = b_offset;
+ _k = k;
+ _output_stage = output_stage;
+
+ // If a_offset == 0, vector_sum_col can be a nullptr
+ if (a_offset != 0)
+ {
+ // Check if vector_sum_col_shape should be slidden or not
+ // Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1
+ // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
+ _is_vector_sum_col_batched = vector_sum_col->tensor_shape().num_dimensions() > 1;
+ }
+
+ // Output auto inizialitation if not yet initialized
+ auto_init_if_empty(*dst, mm_result->clone()->set_data_type(DataType::QASYMM8));
+
+ // Configure kernel window
+ Window win = calculate_max_window(*mm_result, Steps());
+
+ // Note: This kernel performs 16 elements per iteration.
+ // However, since we use a left-over for loop, we cannot have any read or write out of memory
+ // For this reason num_elems_processed_per_iteration is 1 and so update_window_and_padding() can be skipped
+ ICpuKernel::configure(win);
+}
+
+Status CpuGemmLowpOffsetContributionOutputStageKernel::validate(const ITensorInfo *mm_result,
+ const ITensorInfo *vector_sum_col,
+ const ITensorInfo *vector_sum_row,
+ const ITensorInfo *bias,
+ const ITensorInfo *output,
+ int32_t a_offset,
+ int32_t b_offset,
+ GEMMLowpOutputStageInfo output_stage)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result, output);
+ ARM_COMPUTE_RETURN_ON_ERROR(
+ validate_arguments(mm_result, vector_sum_col, vector_sum_row, bias, output, a_offset, b_offset, output_stage));
+ return Status{};
+}
+
+void CpuGemmLowpOffsetContributionOutputStageKernel::set_a_offset(int32_t a_offset)
+{
+ _a_offset = a_offset;
+}
+
+void CpuGemmLowpOffsetContributionOutputStageKernel::set_b_offset(int32_t b_offset)
+{
+ _b_offset = b_offset;
+}
+
+void CpuGemmLowpOffsetContributionOutputStageKernel::run_op(ITensorPack &tensors,
+ const Window &window,
+ const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+ auto mm_result = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+ auto vector_sum_col = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+ auto vector_sum_row = tensors.get_const_tensor(TensorType::ACL_SRC_2);
+ auto bias = tensors.get_const_tensor(TensorType::ACL_SRC_3);
+ auto dst = tensors.get_tensor(TensorType::ACL_DST);
+
+ PixelValue type_min{};
+ PixelValue type_max{};
+ std::tie(type_min, type_max) = get_min_max(dst->info()->data_type());
+ int32_t type_min_int = type_min.get<int32_t>();
+ int32_t type_max_int = type_max.get<int32_t>();
+
+ const bool reinterpret_as_3d = vector_sum_row != nullptr && mm_result->info()->num_dimensions() > 1 &&
+ mm_result->info()->tensor_shape().y() != vector_sum_row->info()->tensor_shape().x();
+
+ const bool is_bounded_relu =
+ !(_output_stage.gemmlowp_min_bound <= type_min_int && _output_stage.gemmlowp_max_bound >= type_max_int);
+
+ // Check if we need to perform fixed point requantization
+ const bool is_fixed_point = _output_stage.type != GEMMLowpOutputStageType::QUANTIZE_DOWN;
+
+ // Check if symmetric per-channel execution
+ const bool is_signed = dst->info()->data_type() == DataType::QASYMM8_SIGNED;
+
+ // Check if symmetric per-channel execution
+ const bool is_symm = _output_stage.is_quantized_per_channel;
+
+ auto k_offset = _a_offset * _b_offset * _k;
+ if (is_symm)
+ {
+ run_offset_contribution_output_stage_symm(window, mm_result, vector_sum_col, vector_sum_row, bias, dst,
+ _a_offset, _b_offset, k_offset, _is_vector_sum_col_batched,
+ _output_stage, reinterpret_as_3d, is_bounded_relu, is_fixed_point);
+ }
+ else
+ {
+ if (is_signed)
+ {
+ run_offset_contribution_output_stage<int8_t>(
+ window, mm_result, vector_sum_col, vector_sum_row, bias, dst, _a_offset, _b_offset, k_offset,
+ _is_vector_sum_col_batched, _output_stage, reinterpret_as_3d, is_bounded_relu, is_fixed_point);
+ }
+ else
+ {
+ run_offset_contribution_output_stage<uint8_t>(
+ window, mm_result, vector_sum_col, vector_sum_row, bias, dst, _a_offset, _b_offset, k_offset,
+ _is_vector_sum_col_batched, _output_stage, reinterpret_as_3d, is_bounded_relu, is_fixed_point);
+ }
+ }
+}
+
+const char *CpuGemmLowpOffsetContributionOutputStageKernel::name() const
+{
+ return "CpuGemmLowpOffsetContributionOutputStageKernel";
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute