aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/CpuGemmLowpOffsetContributionKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/CpuGemmLowpOffsetContributionKernel.cpp')
-rw-r--r--src/cpu/kernels/CpuGemmLowpOffsetContributionKernel.cpp721
1 files changed, 721 insertions, 0 deletions
diff --git a/src/cpu/kernels/CpuGemmLowpOffsetContributionKernel.cpp b/src/cpu/kernels/CpuGemmLowpOffsetContributionKernel.cpp
new file mode 100644
index 0000000000..2a76a5958d
--- /dev/null
+++ b/src/cpu/kernels/CpuGemmLowpOffsetContributionKernel.cpp
@@ -0,0 +1,721 @@
+/*
+ * Copyright (c) 2017-2022,2024 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/cpu/kernels/CpuGemmLowpOffsetContributionKernel.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+Status validate_arguments(const ITensorInfo *mm_result,
+ const ITensorInfo *vector_sum_col,
+ const ITensorInfo *vector_sum_row,
+ int32_t a_offset,
+ int32_t b_offset)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(mm_result, 1, DataType::S32, DataType::F32);
+
+ // We run if the offset is nonzero or a sum col has been provided, we need
+ // the second option in case the QuantizationInfo is dynamic
+ if (a_offset != 0 || vector_sum_col != nullptr)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_col, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON(vector_sum_col->dimension(0) != mm_result->dimension(0));
+ }
+
+ // We run if the offset is nonzero or a sum row has been provided, we need
+ // the second option in case the QuantizationInfo is dynamic
+ if (b_offset != 0 || vector_sum_row != nullptr)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(vector_sum_row, 1, DataType::S32);
+
+ // Check if input is a 3D reinterpretation
+ const bool reinterpret_as_3d =
+ mm_result->num_dimensions() > 1 && mm_result->tensor_shape().y() != vector_sum_row->tensor_shape().x();
+
+ // Validate input
+ ARM_COMPUTE_RETURN_ERROR_ON(reinterpret_as_3d && vector_sum_row->dimension(0) !=
+ (mm_result->dimension(1) * mm_result->dimension(2)));
+ ARM_COMPUTE_RETURN_ERROR_ON(!reinterpret_as_3d && vector_sum_row->dimension(0) != mm_result->dimension(1));
+
+ TensorShape output_shape = mm_result->tensor_shape();
+ if (output_shape.num_dimensions() > 1)
+ {
+ const unsigned int output_batch_idx = reinterpret_as_3d ? 3 : 2;
+
+ TensorShape vector_sum_row_shape = vector_sum_row->tensor_shape();
+ vector_sum_row_shape.collapse_from(1);
+ output_shape.collapse_from(output_batch_idx);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_row_shape[1] != output_shape[output_batch_idx],
+ "mm_result tensor must have the same number of batches of output tensor");
+
+ if (vector_sum_col != nullptr)
+ {
+ TensorShape vector_sum_col_shape = vector_sum_col->tensor_shape();
+ vector_sum_col_shape.collapse_from(1);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(vector_sum_col_shape[1] != 1 &&
+ vector_sum_col_shape[1] != vector_sum_row_shape[1],
+ "vector_sum_col tensor must have the same number of batches of "
+ "vector_sum_row_shape or the number of batches must be set to 1");
+ }
+ }
+ }
+
+ return Status{};
+}
+
+void run_offset_contribution_float(const Window &window,
+ ITensor *mm_result,
+ const ITensor *vector_sum_col,
+ const ITensor *vector_sum_row,
+ int32_t a_offset,
+ int32_t b_offset,
+ int32_t k_offset,
+ float scale,
+ bool slide_vector_sum_col,
+ bool is_gemm3d)
+{
+ Window collapsed_window = window.collapse_if_possible(window, Window::DimZ);
+ collapsed_window.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0;
+ const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1;
+
+ const int window_start_x = window.x().start();
+ const int window_end_x = window.x().end();
+ const int window_step_x = 16;
+
+ // if vector_sum_col is nullptr then stride_y is 0, else get stride_y
+ const size_t sum_col_stride_y = (vector_sum_col != nullptr) ? (vector_sum_col->info()->strides_in_bytes().y()) : 0;
+ Iterator mm_result_it(mm_result, collapsed_window);
+
+ if ((a_offset != 0) && (b_offset != 0) && (vector_sum_col != nullptr) && (vector_sum_row != nullptr)) // true, true
+ {
+ // Set window for vector_sum_col
+ Window win_vector_sum_col(collapsed_window);
+ win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ // Set window for vector_sum_row
+ Window win_vector_sum_row(collapsed_window);
+ win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
+ win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col);
+ Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
+
+ const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
+
+ // Offset in case vector_sum_col is batched
+ const int vector_sum_col_batch_offset =
+ slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
+
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const size_t batch_offset_col = batch_id * (sum_col_stride_y);
+ auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_offset_col +
+ batch_id * vector_sum_col_batch_offset);
+ auto mm_result_ptr = reinterpret_cast<float *>(mm_result_it.ptr());
+
+ // Compute the leftover term due to b_offset.
+ int32_t b_offset_term_s32 =
+ *(reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) +
+ id.y() + (id.z() % depth_input) * height_input);
+ b_offset_term_s32 *= b_offset;
+
+ const int32x4_t b_offset_term_s32_vec = vdupq_n_s32(b_offset_term_s32);
+
+ int x = window_start_x;
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ // Compute the leftover term due to a_offset.
+ int32x4x4_t a_offset_term_s32 = {
+ {vld1q_s32(vector_sum_col_ptr + x + 0), vld1q_s32(vector_sum_col_ptr + x + 4),
+ vld1q_s32(vector_sum_col_ptr + x + 8), vld1q_s32(vector_sum_col_ptr + x + 12)}};
+
+ a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
+ a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
+ a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
+ a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
+
+ // Add a_offset_term_s32 and b_offset_term_s32
+ int32x4x4_t offset_term_s32 = {
+ {vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset)}};
+
+ offset_term_s32.val[0] =
+ vaddq_s32(offset_term_s32.val[0], vaddq_s32(a_offset_term_s32.val[0], b_offset_term_s32_vec));
+ offset_term_s32.val[1] =
+ vaddq_s32(offset_term_s32.val[1], vaddq_s32(a_offset_term_s32.val[1], b_offset_term_s32_vec));
+ offset_term_s32.val[2] =
+ vaddq_s32(offset_term_s32.val[2], vaddq_s32(a_offset_term_s32.val[2], b_offset_term_s32_vec));
+ offset_term_s32.val[3] =
+ vaddq_s32(offset_term_s32.val[3], vaddq_s32(a_offset_term_s32.val[3], b_offset_term_s32_vec));
+
+ float32x4x4_t in_f32 = {{vld1q_f32(mm_result_ptr + x + 0), vld1q_f32(mm_result_ptr + x + 4),
+ vld1q_f32(mm_result_ptr + x + 8), vld1q_f32(mm_result_ptr + x + 12)}};
+
+ // Convert and scale the S32 offsets to match the already scaled GEMM results
+ float32x4x4_t offset_terms_scaled = {{
+ vmulq_n_f32(vcvtq_f32_s32(offset_term_s32.val[0]), scale),
+ vmulq_n_f32(vcvtq_f32_s32(offset_term_s32.val[1]), scale),
+ vmulq_n_f32(vcvtq_f32_s32(offset_term_s32.val[2]), scale),
+ vmulq_n_f32(vcvtq_f32_s32(offset_term_s32.val[3]), scale),
+ }};
+
+ // Add the offset terms to the GEMM result
+ in_f32.val[0] = vaddq_f32(in_f32.val[0], offset_terms_scaled.val[0]);
+ in_f32.val[1] = vaddq_f32(in_f32.val[1], offset_terms_scaled.val[1]);
+ in_f32.val[2] = vaddq_f32(in_f32.val[2], offset_terms_scaled.val[2]);
+ in_f32.val[3] = vaddq_f32(in_f32.val[3], offset_terms_scaled.val[3]);
+
+ // Store the result with the offset contribution
+ vst1q_f32(mm_result_ptr + x + 0, in_f32.val[0]);
+ vst1q_f32(mm_result_ptr + x + 4, in_f32.val[1]);
+ vst1q_f32(mm_result_ptr + x + 8, in_f32.val[2]);
+ vst1q_f32(mm_result_ptr + x + 12, in_f32.val[3]);
+ }
+
+ // Left-overs loop
+ for (; x < window_end_x; ++x)
+ {
+ // Compute the leftover term due to a_offset.
+ int32_t a_offset_term_s32 = *(vector_sum_col_ptr + x);
+
+ a_offset_term_s32 *= a_offset;
+
+ // Add the offset terms to GEMM's result
+ // Store the result with the offset contribution
+ mm_result_ptr[x] += (k_offset + a_offset_term_s32 + b_offset_term_s32) * scale;
+ }
+ },
+ vector_sum_col_it, vector_sum_row_it, mm_result_it);
+ }
+ else if ((a_offset == 0) && (b_offset != 0) && (vector_sum_row != nullptr)) // false, true
+ {
+ ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
+
+ // Set window for vector_sum_row
+ Window win_vector_sum_row(collapsed_window);
+ win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
+ win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
+
+ const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
+
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ auto mm_result_ptr = reinterpret_cast<float *>(mm_result_it.ptr());
+
+ // Compute the leftover term due to b_offset.
+ int32_t row_sum =
+ *(reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) +
+ id.y() + (id.z() % depth_input) * height_input);
+ float scaled_b_offset_term_f32 = row_sum * b_offset * scale;
+
+ const float32x4_t b_offset_term_f32_vec = vdupq_n_f32(scaled_b_offset_term_f32);
+
+ int x = window_start_x;
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ float32x4x4_t in_f32 = {{vld1q_f32(mm_result_ptr + x + 0), vld1q_f32(mm_result_ptr + x + 4),
+ vld1q_f32(mm_result_ptr + x + 8), vld1q_f32(mm_result_ptr + x + 12)}};
+
+ // Add the offset terms to GEMM's result
+ in_f32.val[0] = vaddq_f32(in_f32.val[0], b_offset_term_f32_vec);
+ in_f32.val[1] = vaddq_f32(in_f32.val[1], b_offset_term_f32_vec);
+ in_f32.val[2] = vaddq_f32(in_f32.val[2], b_offset_term_f32_vec);
+ in_f32.val[3] = vaddq_f32(in_f32.val[3], b_offset_term_f32_vec);
+
+ // Store the result with the offset contribution
+ vst1q_f32(mm_result_ptr + x + 0, in_f32.val[0]);
+ vst1q_f32(mm_result_ptr + x + 4, in_f32.val[1]);
+ vst1q_f32(mm_result_ptr + x + 8, in_f32.val[2]);
+ vst1q_f32(mm_result_ptr + x + 12, in_f32.val[3]);
+ }
+
+ // Left-overs loop
+ for (; x < window_end_x; ++x)
+ {
+ // Add the offset terms to GEMM's result
+ // Store the result with the offset contribution
+ mm_result_ptr[x] += scaled_b_offset_term_f32;
+ }
+ },
+ vector_sum_row_it, mm_result_it);
+ }
+ else if ((a_offset != 0) && (b_offset == 0) && (vector_sum_col != nullptr)) // true, false
+ {
+ // Set window for vector_sum_col
+ Window win_vector_sum_col(collapsed_window);
+ win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col);
+
+ // Offset in case vector_sum_col is batched
+ const int vector_sum_col_batch_offset =
+ slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
+
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const size_t batch_offset_col =
+ batch_id *
+ (sum_col_stride_y); // Value to offset vector_sum_col_ptr to allow for iteration of y values in tensor
+ auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_offset_col +
+ batch_id * vector_sum_col_batch_offset);
+ auto mm_result_ptr = reinterpret_cast<float *>(mm_result_it.ptr());
+
+ int x = window_start_x;
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ // Compute the leftover term due to a_offset.
+ int32x4x4_t a_offset_term_s32 = {
+ {vld1q_s32(vector_sum_col_ptr + x + 0), vld1q_s32(vector_sum_col_ptr + x + 4),
+ vld1q_s32(vector_sum_col_ptr + x + 8), vld1q_s32(vector_sum_col_ptr + x + 12)}};
+
+ a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
+ a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
+ a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
+ a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
+
+ float32x4x4_t a_offset_term_scaled = {{
+ vmulq_n_f32(vcvtq_f32_s32(a_offset_term_s32.val[0]), scale),
+ vmulq_n_f32(vcvtq_f32_s32(a_offset_term_s32.val[1]), scale),
+ vmulq_n_f32(vcvtq_f32_s32(a_offset_term_s32.val[2]), scale),
+ vmulq_n_f32(vcvtq_f32_s32(a_offset_term_s32.val[3]), scale),
+ }};
+
+ float32x4x4_t in_f32 = {{vld1q_f32(mm_result_ptr + x + 0), vld1q_f32(mm_result_ptr + x + 4),
+ vld1q_f32(mm_result_ptr + x + 8), vld1q_f32(mm_result_ptr + x + 12)}};
+
+ // Add the offset terms to GEMM's result
+ in_f32.val[0] = vaddq_f32(in_f32.val[0], a_offset_term_scaled.val[0]);
+ in_f32.val[1] = vaddq_f32(in_f32.val[1], a_offset_term_scaled.val[1]);
+ in_f32.val[2] = vaddq_f32(in_f32.val[2], a_offset_term_scaled.val[2]);
+ in_f32.val[3] = vaddq_f32(in_f32.val[3], a_offset_term_scaled.val[3]);
+
+ // Store the result with the offset contribution
+ vst1q_f32(mm_result_ptr + x + 0, in_f32.val[0]);
+ vst1q_f32(mm_result_ptr + x + 4, in_f32.val[1]);
+ vst1q_f32(mm_result_ptr + x + 8, in_f32.val[2]);
+ vst1q_f32(mm_result_ptr + x + 12, in_f32.val[3]);
+ }
+
+ // Left-overs loop
+ for (; x < window_end_x; ++x)
+ {
+ // Compute the leftover term due to a_offset.
+ const int32_t a_offset_term_s32 = *(vector_sum_col_ptr + x);
+
+ // Add the offset terms to GEMM's result
+ // Store the result with the offset contribution
+ mm_result_ptr[x] += a_offset_term_s32 * a_offset * scale;
+ }
+ },
+ vector_sum_col_it, mm_result_it);
+ }
+ else // false, false
+ {
+ // No offset contribution from matrix A and matrix B
+ return;
+ }
+}
+
+void run_offset_contribution(const Window &window,
+ ITensor *mm_result,
+ const ITensor *vector_sum_col,
+ const ITensor *vector_sum_row,
+ int32_t a_offset,
+ int32_t b_offset,
+ int32_t k_offset,
+ bool slide_vector_sum_col,
+ bool is_gemm3d)
+{
+ Window collapsed_window = window.collapse_if_possible(window, Window::DimZ);
+ collapsed_window.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ const int height_input = is_gemm3d ? mm_result->info()->dimension(1) : 0;
+ const int depth_input = is_gemm3d ? mm_result->info()->dimension(2) : 1;
+
+ const int window_start_x = window.x().start();
+ const int window_end_x = window.x().end();
+ const int window_step_x = 16;
+
+ // if vector_sum_col is nullptr then stride_y is 0, else get stride_y
+ const size_t sum_col_stride_y = (vector_sum_col != nullptr) ? (vector_sum_col->info()->strides_in_bytes().y()) : 0;
+ Iterator mm_result_it(mm_result, collapsed_window);
+
+ if ((a_offset != 0) && (b_offset != 0) && (vector_sum_col != nullptr) && (vector_sum_row != nullptr)) // true, true
+ {
+ // Set window for vector_sum_col
+ Window win_vector_sum_col(collapsed_window);
+ win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ // Set window for vector_sum_row
+ Window win_vector_sum_row(collapsed_window);
+ win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
+ win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col);
+ Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
+
+ const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
+
+ // Offset in case vector_sum_col is batched
+ const int vector_sum_col_batch_offset =
+ slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
+
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const size_t batch_offset_col = batch_id * (sum_col_stride_y);
+ auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_offset_col +
+ batch_id * vector_sum_col_batch_offset);
+ auto mm_result_ptr = reinterpret_cast<int32_t *>(mm_result_it.ptr());
+
+ // Compute the leftover term due to b_offset.
+ int32_t b_offset_term_s32 =
+ *(reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) +
+ id.y() + (id.z() % depth_input) * height_input);
+ b_offset_term_s32 *= b_offset;
+
+ const int32x4_t b_offset_term_s32_vec = vdupq_n_s32(b_offset_term_s32);
+
+ int x = window_start_x;
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ // Compute the leftover term due to a_offset.
+ int32x4x4_t a_offset_term_s32 = {
+ {vld1q_s32(vector_sum_col_ptr + x + 0), vld1q_s32(vector_sum_col_ptr + x + 4),
+ vld1q_s32(vector_sum_col_ptr + x + 8), vld1q_s32(vector_sum_col_ptr + x + 12)}};
+
+ a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
+ a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
+ a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
+ a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
+
+ // Add a_offset_term_s32 and b_offset_term_s32
+ int32x4x4_t offset_term_s32 = {
+ {vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset), vdupq_n_s32(k_offset)}};
+
+ offset_term_s32.val[0] =
+ vaddq_s32(offset_term_s32.val[0], vaddq_s32(a_offset_term_s32.val[0], b_offset_term_s32_vec));
+ offset_term_s32.val[1] =
+ vaddq_s32(offset_term_s32.val[1], vaddq_s32(a_offset_term_s32.val[1], b_offset_term_s32_vec));
+ offset_term_s32.val[2] =
+ vaddq_s32(offset_term_s32.val[2], vaddq_s32(a_offset_term_s32.val[2], b_offset_term_s32_vec));
+ offset_term_s32.val[3] =
+ vaddq_s32(offset_term_s32.val[3], vaddq_s32(a_offset_term_s32.val[3], b_offset_term_s32_vec));
+
+ int32x4x4_t in_s32 = {{vld1q_s32(mm_result_ptr + x + 0), vld1q_s32(mm_result_ptr + x + 4),
+ vld1q_s32(mm_result_ptr + x + 8), vld1q_s32(mm_result_ptr + x + 12)}};
+
+ // Add the offset terms to GEMM's result
+ in_s32.val[0] = vaddq_s32(in_s32.val[0], offset_term_s32.val[0]);
+ in_s32.val[1] = vaddq_s32(in_s32.val[1], offset_term_s32.val[1]);
+ in_s32.val[2] = vaddq_s32(in_s32.val[2], offset_term_s32.val[2]);
+ in_s32.val[3] = vaddq_s32(in_s32.val[3], offset_term_s32.val[3]);
+
+ // Store the result with the offset contribution
+ vst1q_s32(mm_result_ptr + x + 0, in_s32.val[0]);
+ vst1q_s32(mm_result_ptr + x + 4, in_s32.val[1]);
+ vst1q_s32(mm_result_ptr + x + 8, in_s32.val[2]);
+ vst1q_s32(mm_result_ptr + x + 12, in_s32.val[3]);
+ }
+
+ // Left-overs loop
+ for (; x < window_end_x; ++x)
+ {
+ // Compute the leftover term due to a_offset.
+ int32_t a_offset_term_s32 = *(vector_sum_col_ptr + x);
+
+ a_offset_term_s32 *= a_offset;
+
+ // Add the offset terms to GEMM's result
+ // Store the result with the offset contribution
+ mm_result_ptr[x] += k_offset + a_offset_term_s32 + b_offset_term_s32;
+ }
+ },
+ vector_sum_col_it, vector_sum_row_it, mm_result_it);
+ }
+ else if ((a_offset == 0) && (b_offset != 0) && (vector_sum_row != nullptr)) // false, true
+ {
+ ARM_COMPUTE_ERROR_ON_NULLPTR(vector_sum_row);
+
+ // Set window for vector_sum_row
+ Window win_vector_sum_row(collapsed_window);
+ win_vector_sum_row.set(Window::DimX, Window::Dimension(0, 0, 0));
+ win_vector_sum_row.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_vector_sum_row.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ Iterator vector_sum_row_it(vector_sum_row, win_vector_sum_row);
+
+ const size_t sum_row_stride_y = vector_sum_row->info()->strides_in_bytes().y();
+
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ auto mm_result_ptr = reinterpret_cast<int32_t *>(mm_result_it.ptr());
+
+ // Compute the leftover term due to b_offset.
+ int32_t b_offset_term_s32 =
+ *(reinterpret_cast<const int32_t *>(vector_sum_row_it.ptr() + batch_id * sum_row_stride_y) +
+ id.y() + (id.z() % depth_input) * height_input);
+ b_offset_term_s32 *= b_offset;
+
+ const int32x4_t b_offset_term_s32_vec = vdupq_n_s32(b_offset_term_s32);
+
+ int x = window_start_x;
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ int32x4x4_t in_s32 = {{vld1q_s32(mm_result_ptr + x + 0), vld1q_s32(mm_result_ptr + x + 4),
+ vld1q_s32(mm_result_ptr + x + 8), vld1q_s32(mm_result_ptr + x + 12)}};
+
+ // Add the offset terms to GEMM's result
+ in_s32.val[0] = vaddq_s32(in_s32.val[0], b_offset_term_s32_vec);
+ in_s32.val[1] = vaddq_s32(in_s32.val[1], b_offset_term_s32_vec);
+ in_s32.val[2] = vaddq_s32(in_s32.val[2], b_offset_term_s32_vec);
+ in_s32.val[3] = vaddq_s32(in_s32.val[3], b_offset_term_s32_vec);
+
+ // Store the result with the offset contribution
+ vst1q_s32(mm_result_ptr + x + 0, in_s32.val[0]);
+ vst1q_s32(mm_result_ptr + x + 4, in_s32.val[1]);
+ vst1q_s32(mm_result_ptr + x + 8, in_s32.val[2]);
+ vst1q_s32(mm_result_ptr + x + 12, in_s32.val[3]);
+ }
+
+ // Left-overs loop
+ for (; x < window_end_x; ++x)
+ {
+ // Add the offset terms to GEMM's result
+ // Store the result with the offset contribution
+ mm_result_ptr[x] += b_offset_term_s32;
+ }
+ },
+ vector_sum_row_it, mm_result_it);
+ }
+ else if ((a_offset != 0) && (b_offset == 0) && (vector_sum_col != nullptr)) // true, false
+ {
+ // Set window for vector_sum_col
+ Window win_vector_sum_col(collapsed_window);
+ win_vector_sum_col.set(Window::DimY, Window::Dimension(0, 0, 0));
+ win_vector_sum_col.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ Iterator vector_sum_col_it(vector_sum_col, win_vector_sum_col);
+
+ // Offset in case vector_sum_col is batched
+ const int vector_sum_col_batch_offset =
+ slide_vector_sum_col ? vector_sum_col->info()->strides_in_bytes().z() : 0;
+
+ execute_window_loop(
+ collapsed_window,
+ [&](const Coordinates &id)
+ {
+ const int batch_id = id.z() / depth_input;
+ const size_t batch_offset_col =
+ batch_id *
+ (sum_col_stride_y); // Value to offset vector_sum_col_ptr to allow for iteration of y values in tensor
+ auto vector_sum_col_ptr = reinterpret_cast<const int32_t *>(vector_sum_col_it.ptr() + batch_offset_col +
+ batch_id * vector_sum_col_batch_offset);
+ auto mm_result_ptr = reinterpret_cast<int32_t *>(mm_result_it.ptr());
+
+ int x = window_start_x;
+ for (; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ // Compute the leftover term due to a_offset.
+ int32x4x4_t a_offset_term_s32 = {
+ {vld1q_s32(vector_sum_col_ptr + x + 0), vld1q_s32(vector_sum_col_ptr + x + 4),
+ vld1q_s32(vector_sum_col_ptr + x + 8), vld1q_s32(vector_sum_col_ptr + x + 12)}};
+
+ a_offset_term_s32.val[0] = vmulq_n_s32(a_offset_term_s32.val[0], a_offset);
+ a_offset_term_s32.val[1] = vmulq_n_s32(a_offset_term_s32.val[1], a_offset);
+ a_offset_term_s32.val[2] = vmulq_n_s32(a_offset_term_s32.val[2], a_offset);
+ a_offset_term_s32.val[3] = vmulq_n_s32(a_offset_term_s32.val[3], a_offset);
+
+ int32x4x4_t in_s32 = {{vld1q_s32(mm_result_ptr + x + 0), vld1q_s32(mm_result_ptr + x + 4),
+ vld1q_s32(mm_result_ptr + x + 8), vld1q_s32(mm_result_ptr + x + 12)}};
+
+ // Add the offset terms to GEMM's result
+ in_s32.val[0] = vaddq_s32(in_s32.val[0], a_offset_term_s32.val[0]);
+ in_s32.val[1] = vaddq_s32(in_s32.val[1], a_offset_term_s32.val[1]);
+ in_s32.val[2] = vaddq_s32(in_s32.val[2], a_offset_term_s32.val[2]);
+ in_s32.val[3] = vaddq_s32(in_s32.val[3], a_offset_term_s32.val[3]);
+
+ // Store the result with the offset contribution
+ vst1q_s32(mm_result_ptr + x + 0, in_s32.val[0]);
+ vst1q_s32(mm_result_ptr + x + 4, in_s32.val[1]);
+ vst1q_s32(mm_result_ptr + x + 8, in_s32.val[2]);
+ vst1q_s32(mm_result_ptr + x + 12, in_s32.val[3]);
+ }
+
+ // Left-overs loop
+ for (; x < window_end_x; ++x)
+ {
+ // Compute the leftover term due to a_offset.
+ const int32_t a_offset_term_s32 = *(vector_sum_col_ptr + x);
+
+ // Add the offset terms to GEMM's result
+ // Store the result with the offset contribution
+ mm_result_ptr[x] += a_offset_term_s32 * a_offset;
+ }
+ },
+ vector_sum_col_it, mm_result_it);
+ }
+ else // false, false
+ {
+ // No offset contribution from matrix A and matrix B
+ return;
+ }
+}
+} // namespace
+
+void CpuGemmLowpOffsetContributionKernel::configure(ITensorInfo *mm_result,
+ ITensorInfo *vector_sum_col,
+ ITensorInfo *vector_sum_row,
+ int32_t k,
+ int32_t a_offset,
+ int32_t b_offset,
+ float scale)
+{
+ // Perform validate step
+ ARM_COMPUTE_UNUSED(vector_sum_row);
+ ARM_COMPUTE_ERROR_ON_NULLPTR(mm_result);
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(mm_result, vector_sum_col, vector_sum_row, a_offset, b_offset));
+
+ _a_offset = a_offset;
+ _b_offset = b_offset;
+ _k = k;
+
+ _scale = scale;
+
+ if (vector_sum_col != nullptr)
+ {
+ // Check if vector_sum_col_shape should be slidden or not
+ // Don't slide vector_sum_col_shape along the y dimension if vector_sum_col_shape has just 1 dimension and vector_sum_row_shape more than 1
+ // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
+ _slide_vector_sum_col = vector_sum_col->tensor_shape().num_dimensions() > 1;
+ }
+
+ // Configure kernel window
+ Window win = calculate_max_window(*mm_result, Steps());
+ ICpuKernel::configure(win);
+}
+
+void CpuGemmLowpOffsetContributionKernel::set_a_offset(int32_t a_offset)
+{
+ _a_offset = a_offset;
+}
+
+void CpuGemmLowpOffsetContributionKernel::set_b_offset(int32_t b_offset)
+{
+ _b_offset = b_offset;
+}
+
+void CpuGemmLowpOffsetContributionKernel::set_scale(float scale)
+{
+ _scale = scale;
+}
+
+Status CpuGemmLowpOffsetContributionKernel::validate(const ITensorInfo *mm_result,
+ const ITensorInfo *vector_sum_col,
+ const ITensorInfo *vector_sum_row,
+ int32_t a_offset,
+ int32_t b_offset)
+{
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(mm_result, vector_sum_col, vector_sum_row, a_offset, b_offset));
+ return Status{};
+}
+
+void CpuGemmLowpOffsetContributionKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+ auto vector_sum_col = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+ auto vector_sum_row = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+ auto mm_result = tensors.get_tensor(TensorType::ACL_DST);
+
+ // Check if input is a 3D reinterpretation
+ const bool reinterpret_as_3d = vector_sum_row != nullptr && mm_result->info()->num_dimensions() > 1 &&
+ mm_result->info()->tensor_shape().y() != vector_sum_row->info()->tensor_shape().x();
+
+ // check to see what is the output type of result
+ auto k_offset = _a_offset * _b_offset * _k;
+ if (mm_result->info()->data_type() == DataType::F32)
+ {
+ run_offset_contribution_float(window, mm_result, vector_sum_col, vector_sum_row, _a_offset, _b_offset, k_offset,
+ _scale, _slide_vector_sum_col, reinterpret_as_3d);
+ }
+ else
+ {
+ run_offset_contribution(window, mm_result, vector_sum_col, vector_sum_row, _a_offset, _b_offset, k_offset,
+ _slide_vector_sum_col, reinterpret_as_3d);
+ }
+}
+
+const char *CpuGemmLowpOffsetContributionKernel::name() const
+{
+ return "CpuGemmLowpOffsetContributionKernel";
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute