aboutsummaryrefslogtreecommitdiff
path: root/src/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.cpp')
-rw-r--r--src/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.cpp877
1 files changed, 877 insertions, 0 deletions
diff --git a/src/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.cpp b/src/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.cpp
new file mode 100644
index 0000000000..a3ed2cd171
--- /dev/null
+++ b/src/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.cpp
@@ -0,0 +1,877 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/cpu/kernels/CpuGemmLowpMatrixMultiplyKernel.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/Window.h"
+
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+void inline vector_matrix_multiply_u8(Iterator &ina,
+ Iterator &inb,
+ Iterator &out,
+ int width_a,
+ int width_b,
+ int width_out,
+ size_t stride_b,
+ const Window &window)
+{
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ if (id.x() > width_b)
+ {
+ return;
+ }
+
+ // Note: Since the input are all positives, we can use uint32_t
+ // Accumulators for the block 0
+ uint32x4x4_t c0 = {{vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0)}};
+
+ auto vec_a = reinterpret_cast<const uint8_t *>(ina.ptr());
+ auto matrix_b = reinterpret_cast<const uint8_t *>(inb.ptr());
+ auto vec_a_end_addr = vec_a + width_a;
+
+ // This for loop performs 8 accumulations
+ for (; vec_a <= (vec_a_end_addr - 8);)
+ {
+ const uint8x8_t a00_u8 = vld1_u8(vec_a);
+ const uint8x16_t b00_u8 = vld1q_u8(matrix_b + 0 * stride_b);
+ const uint8x16_t b10_u8 = vld1q_u8(matrix_b + 1 * stride_b);
+ const uint8x16_t b20_u8 = vld1q_u8(matrix_b + 2 * stride_b);
+ const uint8x16_t b30_u8 = vld1q_u8(matrix_b + 3 * stride_b);
+ const uint8x16_t b40_u8 = vld1q_u8(matrix_b + 4 * stride_b);
+ const uint8x16_t b50_u8 = vld1q_u8(matrix_b + 5 * stride_b);
+ const uint8x16_t b60_u8 = vld1q_u8(matrix_b + 6 * stride_b);
+ const uint8x16_t b70_u8 = vld1q_u8(matrix_b + 7 * stride_b);
+
+ // Convert a00_u8 to uint16_t and get the lower part
+ const uint16x4x2_t a00_u16 = {{vget_low_u16(vmovl_u8(a00_u8)), vget_high_u16(vmovl_u8(a00_u8))}};
+
+ const uint16x4x4_t b00_u16 = {
+ {vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
+ vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))}};
+
+ const uint16x4x4_t b10_u16 = {
+ {vget_low_u16(vmovl_u8(vget_low_u8(b10_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b10_u8))),
+ vget_low_u16(vmovl_u8(vget_high_u8(b10_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b10_u8)))}};
+
+ const uint16x4x4_t b20_u16 = {
+ {vget_low_u16(vmovl_u8(vget_low_u8(b20_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b20_u8))),
+ vget_low_u16(vmovl_u8(vget_high_u8(b20_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b20_u8)))}};
+
+ const uint16x4x4_t b30_u16 = {
+ {vget_low_u16(vmovl_u8(vget_low_u8(b30_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b30_u8))),
+ vget_low_u16(vmovl_u8(vget_high_u8(b30_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b30_u8)))}};
+
+ const uint16x4x4_t b40_u16 = {
+ {vget_low_u16(vmovl_u8(vget_low_u8(b40_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b40_u8))),
+ vget_low_u16(vmovl_u8(vget_high_u8(b40_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b40_u8)))}};
+
+ const uint16x4x4_t b50_u16 = {
+ {vget_low_u16(vmovl_u8(vget_low_u8(b50_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b50_u8))),
+ vget_low_u16(vmovl_u8(vget_high_u8(b50_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b50_u8)))}};
+
+ const uint16x4x4_t b60_u16 = {
+ {vget_low_u16(vmovl_u8(vget_low_u8(b60_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b60_u8))),
+ vget_low_u16(vmovl_u8(vget_high_u8(b60_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b60_u8)))}};
+
+ const uint16x4x4_t b70_u16 = {
+ {vget_low_u16(vmovl_u8(vget_low_u8(b70_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b70_u8))),
+ vget_low_u16(vmovl_u8(vget_high_u8(b70_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b70_u8)))}};
+
+ // Accumulate 0:
+ c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16.val[0], 0);
+ c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16.val[0], 0);
+ c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16.val[0], 0);
+ c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16.val[0], 0);
+
+ // Accumulate 1:
+ c0.val[0] = vmlal_lane_u16(c0.val[0], b10_u16.val[0], a00_u16.val[0], 1);
+ c0.val[1] = vmlal_lane_u16(c0.val[1], b10_u16.val[1], a00_u16.val[0], 1);
+ c0.val[2] = vmlal_lane_u16(c0.val[2], b10_u16.val[2], a00_u16.val[0], 1);
+ c0.val[3] = vmlal_lane_u16(c0.val[3], b10_u16.val[3], a00_u16.val[0], 1);
+
+ // Accumulate 2:
+ c0.val[0] = vmlal_lane_u16(c0.val[0], b20_u16.val[0], a00_u16.val[0], 2);
+ c0.val[1] = vmlal_lane_u16(c0.val[1], b20_u16.val[1], a00_u16.val[0], 2);
+ c0.val[2] = vmlal_lane_u16(c0.val[2], b20_u16.val[2], a00_u16.val[0], 2);
+ c0.val[3] = vmlal_lane_u16(c0.val[3], b20_u16.val[3], a00_u16.val[0], 2);
+
+ // Accumulate 3:
+ c0.val[0] = vmlal_lane_u16(c0.val[0], b30_u16.val[0], a00_u16.val[0], 3);
+ c0.val[1] = vmlal_lane_u16(c0.val[1], b30_u16.val[1], a00_u16.val[0], 3);
+ c0.val[2] = vmlal_lane_u16(c0.val[2], b30_u16.val[2], a00_u16.val[0], 3);
+ c0.val[3] = vmlal_lane_u16(c0.val[3], b30_u16.val[3], a00_u16.val[0], 3);
+
+ // Accumulate 4:
+ c0.val[0] = vmlal_lane_u16(c0.val[0], b40_u16.val[0], a00_u16.val[1], 0);
+ c0.val[1] = vmlal_lane_u16(c0.val[1], b40_u16.val[1], a00_u16.val[1], 0);
+ c0.val[2] = vmlal_lane_u16(c0.val[2], b40_u16.val[2], a00_u16.val[1], 0);
+ c0.val[3] = vmlal_lane_u16(c0.val[3], b40_u16.val[3], a00_u16.val[1], 0);
+
+ // Accumulate 5:
+ c0.val[0] = vmlal_lane_u16(c0.val[0], b50_u16.val[0], a00_u16.val[1], 1);
+ c0.val[1] = vmlal_lane_u16(c0.val[1], b50_u16.val[1], a00_u16.val[1], 1);
+ c0.val[2] = vmlal_lane_u16(c0.val[2], b50_u16.val[2], a00_u16.val[1], 1);
+ c0.val[3] = vmlal_lane_u16(c0.val[3], b50_u16.val[3], a00_u16.val[1], 1);
+
+ // Accumulate 6:
+ c0.val[0] = vmlal_lane_u16(c0.val[0], b60_u16.val[0], a00_u16.val[1], 2);
+ c0.val[1] = vmlal_lane_u16(c0.val[1], b60_u16.val[1], a00_u16.val[1], 2);
+ c0.val[2] = vmlal_lane_u16(c0.val[2], b60_u16.val[2], a00_u16.val[1], 2);
+ c0.val[3] = vmlal_lane_u16(c0.val[3], b60_u16.val[3], a00_u16.val[1], 2);
+
+ // Accumulate 7:
+ c0.val[0] = vmlal_lane_u16(c0.val[0], b70_u16.val[0], a00_u16.val[1], 3);
+ c0.val[1] = vmlal_lane_u16(c0.val[1], b70_u16.val[1], a00_u16.val[1], 3);
+ c0.val[2] = vmlal_lane_u16(c0.val[2], b70_u16.val[2], a00_u16.val[1], 3);
+ c0.val[3] = vmlal_lane_u16(c0.val[3], b70_u16.val[3], a00_u16.val[1], 3);
+
+ vec_a += 8;
+ matrix_b += 8 * stride_b;
+ }
+
+ // This for loop performs the left-over accumulations
+ for (; vec_a < vec_a_end_addr;)
+ {
+ const uint8x8_t a00_u8 = vld1_dup_u8(vec_a);
+ const uint8x16_t b00_u8 = vld1q_u8(matrix_b);
+
+ const uint16x4x4_t b00_u16 = {
+ {vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
+ vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))}};
+
+ // Convert a00_u8 to uint16_t and get the lower part
+ const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8));
+
+ // Accumulate 0:
+ c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0);
+ c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0);
+ c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0);
+ c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0);
+
+ vec_a += 1;
+ matrix_b += stride_b;
+ }
+
+ auto vec_out = reinterpret_cast<int32_t *>(out.ptr());
+ if (id.x() < (width_out - 16))
+ {
+ vst1q_s32(vec_out + 0, vreinterpretq_s32_u32(c0.val[0]));
+ vst1q_s32(vec_out + 4, vreinterpretq_s32_u32(c0.val[1]));
+ vst1q_s32(vec_out + 8, vreinterpretq_s32_u32(c0.val[2]));
+ vst1q_s32(vec_out + 12, vreinterpretq_s32_u32(c0.val[3]));
+ }
+ else
+ {
+ auto left_over = width_out - id.x();
+ for (auto k = 0; k < 4 && left_over; ++k)
+ {
+ for (auto j = 0; j < 4 && left_over; ++j, --left_over)
+ {
+ *(vec_out + k * 4 + j) = c0.val[k][j];
+ }
+ }
+ }
+ },
+ ina, inb, out);
+}
+
+void inline vector_matrix_multiply_s8(Iterator &ina,
+ Iterator &inb,
+ Iterator &out,
+ int width_a,
+ int width_b,
+ int width_out,
+ size_t stride_b,
+ const Window &window)
+{
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ if (id.x() > width_b)
+ {
+ return;
+ }
+
+ // Accumulators for the block 0
+ int32x4x4_t c0 = {{vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0)}};
+
+ auto vec_a = reinterpret_cast<const int8_t *>(ina.ptr());
+ auto matrix_b = reinterpret_cast<const int8_t *>(inb.ptr());
+ auto vec_a_end_addr = vec_a + width_a;
+
+ // This for loop performs 8 accumulations
+ for (; vec_a <= (vec_a_end_addr - 8);)
+ {
+ const int8x8_t a00_s8 = vld1_s8(vec_a);
+ const int8x16_t b00_s8 = vld1q_s8(matrix_b + 0 * stride_b);
+ const int8x16_t b10_s8 = vld1q_s8(matrix_b + 1 * stride_b);
+ const int8x16_t b20_s8 = vld1q_s8(matrix_b + 2 * stride_b);
+ const int8x16_t b30_s8 = vld1q_s8(matrix_b + 3 * stride_b);
+ const int8x16_t b40_s8 = vld1q_s8(matrix_b + 4 * stride_b);
+ const int8x16_t b50_s8 = vld1q_s8(matrix_b + 5 * stride_b);
+ const int8x16_t b60_s8 = vld1q_s8(matrix_b + 6 * stride_b);
+ const int8x16_t b70_s8 = vld1q_s8(matrix_b + 7 * stride_b);
+
+ // Convert a00_s8 to int16_t and get the lower part
+ const int16x4x2_t a00_s16 = {{vget_low_s16(vmovl_s8(a00_s8)), vget_high_s16(vmovl_s8(a00_s8))}};
+
+ const int16x4x4_t b00_s16 = {
+ {vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
+ vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))}};
+
+ const int16x4x4_t b10_s16 = {
+ {vget_low_s16(vmovl_s8(vget_low_s8(b10_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b10_s8))),
+ vget_low_s16(vmovl_s8(vget_high_s8(b10_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b10_s8)))}};
+
+ const int16x4x4_t b20_s16 = {
+ {vget_low_s16(vmovl_s8(vget_low_s8(b20_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b20_s8))),
+ vget_low_s16(vmovl_s8(vget_high_s8(b20_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b20_s8)))}};
+
+ const int16x4x4_t b30_s16 = {
+ {vget_low_s16(vmovl_s8(vget_low_s8(b30_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b30_s8))),
+ vget_low_s16(vmovl_s8(vget_high_s8(b30_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b30_s8)))}};
+
+ const int16x4x4_t b40_s16 = {
+ {vget_low_s16(vmovl_s8(vget_low_s8(b40_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b40_s8))),
+ vget_low_s16(vmovl_s8(vget_high_s8(b40_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b40_s8)))}};
+
+ const int16x4x4_t b50_s16 = {
+ {vget_low_s16(vmovl_s8(vget_low_s8(b50_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b50_s8))),
+ vget_low_s16(vmovl_s8(vget_high_s8(b50_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b50_s8)))}};
+
+ const int16x4x4_t b60_s16 = {
+ {vget_low_s16(vmovl_s8(vget_low_s8(b60_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b60_s8))),
+ vget_low_s16(vmovl_s8(vget_high_s8(b60_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b60_s8)))}};
+
+ const int16x4x4_t b70_s16 = {
+ {vget_low_s16(vmovl_s8(vget_low_s8(b70_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b70_s8))),
+ vget_low_s16(vmovl_s8(vget_high_s8(b70_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b70_s8)))}};
+
+ // Accumulate 0:
+ c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16.val[0], 0);
+ c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16.val[0], 0);
+ c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16.val[0], 0);
+ c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16.val[0], 0);
+
+ // Accumulate 1:
+ c0.val[0] = vmlal_lane_s16(c0.val[0], b10_s16.val[0], a00_s16.val[0], 1);
+ c0.val[1] = vmlal_lane_s16(c0.val[1], b10_s16.val[1], a00_s16.val[0], 1);
+ c0.val[2] = vmlal_lane_s16(c0.val[2], b10_s16.val[2], a00_s16.val[0], 1);
+ c0.val[3] = vmlal_lane_s16(c0.val[3], b10_s16.val[3], a00_s16.val[0], 1);
+
+ // Accumulate 2:
+ c0.val[0] = vmlal_lane_s16(c0.val[0], b20_s16.val[0], a00_s16.val[0], 2);
+ c0.val[1] = vmlal_lane_s16(c0.val[1], b20_s16.val[1], a00_s16.val[0], 2);
+ c0.val[2] = vmlal_lane_s16(c0.val[2], b20_s16.val[2], a00_s16.val[0], 2);
+ c0.val[3] = vmlal_lane_s16(c0.val[3], b20_s16.val[3], a00_s16.val[0], 2);
+
+ // Accumulate 3:
+ c0.val[0] = vmlal_lane_s16(c0.val[0], b30_s16.val[0], a00_s16.val[0], 3);
+ c0.val[1] = vmlal_lane_s16(c0.val[1], b30_s16.val[1], a00_s16.val[0], 3);
+ c0.val[2] = vmlal_lane_s16(c0.val[2], b30_s16.val[2], a00_s16.val[0], 3);
+ c0.val[3] = vmlal_lane_s16(c0.val[3], b30_s16.val[3], a00_s16.val[0], 3);
+
+ // Accumulate 4:
+ c0.val[0] = vmlal_lane_s16(c0.val[0], b40_s16.val[0], a00_s16.val[1], 0);
+ c0.val[1] = vmlal_lane_s16(c0.val[1], b40_s16.val[1], a00_s16.val[1], 0);
+ c0.val[2] = vmlal_lane_s16(c0.val[2], b40_s16.val[2], a00_s16.val[1], 0);
+ c0.val[3] = vmlal_lane_s16(c0.val[3], b40_s16.val[3], a00_s16.val[1], 0);
+
+ // Accumulate 5:
+ c0.val[0] = vmlal_lane_s16(c0.val[0], b50_s16.val[0], a00_s16.val[1], 1);
+ c0.val[1] = vmlal_lane_s16(c0.val[1], b50_s16.val[1], a00_s16.val[1], 1);
+ c0.val[2] = vmlal_lane_s16(c0.val[2], b50_s16.val[2], a00_s16.val[1], 1);
+ c0.val[3] = vmlal_lane_s16(c0.val[3], b50_s16.val[3], a00_s16.val[1], 1);
+
+ // Accumulate 6:
+ c0.val[0] = vmlal_lane_s16(c0.val[0], b60_s16.val[0], a00_s16.val[1], 2);
+ c0.val[1] = vmlal_lane_s16(c0.val[1], b60_s16.val[1], a00_s16.val[1], 2);
+ c0.val[2] = vmlal_lane_s16(c0.val[2], b60_s16.val[2], a00_s16.val[1], 2);
+ c0.val[3] = vmlal_lane_s16(c0.val[3], b60_s16.val[3], a00_s16.val[1], 2);
+
+ // Accumulate 7:
+ c0.val[0] = vmlal_lane_s16(c0.val[0], b70_s16.val[0], a00_s16.val[1], 3);
+ c0.val[1] = vmlal_lane_s16(c0.val[1], b70_s16.val[1], a00_s16.val[1], 3);
+ c0.val[2] = vmlal_lane_s16(c0.val[2], b70_s16.val[2], a00_s16.val[1], 3);
+ c0.val[3] = vmlal_lane_s16(c0.val[3], b70_s16.val[3], a00_s16.val[1], 3);
+
+ vec_a += 8;
+ matrix_b += 8 * stride_b;
+ }
+
+ // This for loop performs the left-over accumulations
+ for (; vec_a < vec_a_end_addr;)
+ {
+ const int8x8_t a00_s8 = vld1_dup_s8(vec_a);
+ const int8x16_t b00_s8 = vld1q_s8(matrix_b);
+
+ const int16x4x4_t b00_s16 = {
+ {vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
+ vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))}};
+
+ // Convert a00_s8 to uint16_t and get the lower part
+ const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8));
+
+ // Accumulate 0:
+ c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0);
+ c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0);
+ c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0);
+ c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0);
+
+ vec_a += 1;
+ matrix_b += stride_b;
+ }
+
+ auto vec_out = reinterpret_cast<int32_t *>(out.ptr());
+ if (id.x() < (width_out - 16))
+ {
+ vst1q_s32(vec_out + 0, c0.val[0]);
+ vst1q_s32(vec_out + 4, c0.val[1]);
+ vst1q_s32(vec_out + 8, c0.val[2]);
+ vst1q_s32(vec_out + 12, c0.val[3]);
+ }
+ else
+ {
+ auto left_over = width_out - id.x();
+ for (auto k = 0; k < 4 && left_over; ++k)
+ {
+ for (auto j = 0; j < 4 && left_over; ++j, --left_over)
+ {
+ *(vec_out + k * 4 + j) = c0.val[k][j];
+ }
+ }
+ }
+ },
+ ina, inb, out);
+}
+
+void inline matrix_multiply_u8(
+ Iterator &ina, Iterator &inb, Iterator &out, int width_b, const TensorInfo &out_info, const Window &window)
+{
+ const auto width_out = static_cast<int>(out_info.dimension(0));
+ const auto height_out = static_cast<int>(out_info.dimension(1));
+ const size_t out_stride = out_info.strides_in_bytes()[1] / out_info.element_size();
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ const uint8_t *mtx_a0 = ina.ptr();
+ const uint8_t *mtx_b0 = inb.ptr();
+
+ // Note: Since the input are all positives, we can use uint32_t
+ // Accumulators for the block 0
+ uint32x4x4_t c0 = {{vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0)}};
+
+ // Accumulators for the block 1
+ uint32x4x4_t c1 = {{vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0)}};
+
+ // Accumulators for the block 2
+ uint32x4x4_t c2 = {{vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0)}};
+
+ // Accumulators for the block 3
+ uint32x4x4_t c3 = {{vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0), vdupq_n_u32(0)}};
+
+ for (int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16)
+ {
+ const uint8x8_t a00_u8 = vld1_u8(mtx_a0);
+ const uint8x16_t b00_u8 = vld1q_u8(mtx_b0);
+
+ // Convert a00_u8 to uint16_t and get the lower part
+ const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8));
+
+ // Convert b00_s8 to uint16_t
+ const uint16x4x4_t b00_u16 = {
+ {vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
+ vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))), vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))}};
+
+ // 4x4 block 0
+ c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0);
+ c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0);
+ c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0);
+ c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0);
+
+ // 4x4 block 1
+ c1.val[0] = vmlal_lane_u16(c1.val[0], b00_u16.val[0], a00_u16, 1);
+ c1.val[1] = vmlal_lane_u16(c1.val[1], b00_u16.val[1], a00_u16, 1);
+ c1.val[2] = vmlal_lane_u16(c1.val[2], b00_u16.val[2], a00_u16, 1);
+ c1.val[3] = vmlal_lane_u16(c1.val[3], b00_u16.val[3], a00_u16, 1);
+
+ // 4x4 block 2
+ c2.val[0] = vmlal_lane_u16(c2.val[0], b00_u16.val[0], a00_u16, 2);
+ c2.val[1] = vmlal_lane_u16(c2.val[1], b00_u16.val[1], a00_u16, 2);
+ c2.val[2] = vmlal_lane_u16(c2.val[2], b00_u16.val[2], a00_u16, 2);
+ c2.val[3] = vmlal_lane_u16(c2.val[3], b00_u16.val[3], a00_u16, 2);
+
+ // 4x4 block 3
+ c3.val[0] = vmlal_lane_u16(c3.val[0], b00_u16.val[0], a00_u16, 3);
+ c3.val[1] = vmlal_lane_u16(c3.val[1], b00_u16.val[1], a00_u16, 3);
+ c3.val[2] = vmlal_lane_u16(c3.val[2], b00_u16.val[2], a00_u16, 3);
+ c3.val[3] = vmlal_lane_u16(c3.val[3], b00_u16.val[3], a00_u16, 3);
+ }
+
+ auto mtx_out = reinterpret_cast<int32_t *>(out.ptr());
+
+ if (id.y() < height_out && id.x() < (width_out - 16))
+ {
+ vst1q_s32(mtx_out + 0 * out_stride + 0, vreinterpretq_s32_u32(c0.val[0]));
+ vst1q_s32(mtx_out + 0 * out_stride + 4, vreinterpretq_s32_u32(c0.val[1]));
+ vst1q_s32(mtx_out + 0 * out_stride + 8, vreinterpretq_s32_u32(c0.val[2]));
+ vst1q_s32(mtx_out + 0 * out_stride + 12, vreinterpretq_s32_u32(c0.val[3]));
+ if (id.y() + 1 < height_out)
+ {
+ vst1q_s32(mtx_out + 1 * out_stride + 0, vreinterpretq_s32_u32(c1.val[0]));
+ vst1q_s32(mtx_out + 1 * out_stride + 4, vreinterpretq_s32_u32(c1.val[1]));
+ vst1q_s32(mtx_out + 1 * out_stride + 8, vreinterpretq_s32_u32(c1.val[2]));
+ vst1q_s32(mtx_out + 1 * out_stride + 12, vreinterpretq_s32_u32(c1.val[3]));
+ if (id.y() + 2 < height_out)
+ {
+ vst1q_s32(mtx_out + 2 * out_stride + 0, vreinterpretq_s32_u32(c2.val[0]));
+ vst1q_s32(mtx_out + 2 * out_stride + 4, vreinterpretq_s32_u32(c2.val[1]));
+ vst1q_s32(mtx_out + 2 * out_stride + 8, vreinterpretq_s32_u32(c2.val[2]));
+ vst1q_s32(mtx_out + 2 * out_stride + 12, vreinterpretq_s32_u32(c2.val[3]));
+ if (id.y() + 3 < height_out)
+ {
+ vst1q_s32(mtx_out + 3 * out_stride + 0, vreinterpretq_s32_u32(c3.val[0]));
+ vst1q_s32(mtx_out + 3 * out_stride + 4, vreinterpretq_s32_u32(c3.val[1]));
+ vst1q_s32(mtx_out + 3 * out_stride + 8, vreinterpretq_s32_u32(c3.val[2]));
+ vst1q_s32(mtx_out + 3 * out_stride + 12, vreinterpretq_s32_u32(c3.val[3]));
+ }
+ }
+ }
+ }
+ else
+ {
+ const auto left_over_value = width_out - id.x();
+ auto left_over = left_over_value;
+ for (auto k = 0; k < 4 && left_over; ++k)
+ {
+ for (auto j = 0; j < 4 && left_over; ++j, --left_over)
+ {
+ *(mtx_out + k * 4 + j) = c0.val[k][j];
+ }
+ }
+ if (id.y() + 1 < height_out)
+ {
+ left_over = left_over_value;
+ for (auto k = 0; k < 4 && left_over; ++k)
+ {
+ for (auto j = 0; j < 4 && left_over; ++j, --left_over)
+ {
+ *(mtx_out + out_stride + k * 4 + j) = c1.val[k][j];
+ }
+ }
+ if (id.y() + 2 < height_out)
+ {
+ left_over = left_over_value;
+ for (auto k = 0; k < 4 && left_over; ++k)
+ {
+ for (auto j = 0; j < 4 && left_over; ++j, --left_over)
+ {
+ *(mtx_out + out_stride * 2 + k * 4 + j) = c2.val[k][j];
+ }
+ }
+ if (id.y() + 3 < height_out)
+ {
+ left_over = left_over_value;
+ for (auto k = 0; k < 4 && left_over; ++k)
+ {
+ for (auto j = 0; j < 4 && left_over; ++j, --left_over)
+ {
+ *(mtx_out + out_stride * 3 + k * 4 + j) = c3.val[k][j];
+ }
+ }
+ }
+ }
+ }
+ }
+ },
+ ina, inb, out);
+}
+
+void inline matrix_multiply_s8(
+ Iterator &ina, Iterator &inb, Iterator &out, int width_b, const TensorInfo &out_info, const Window &window)
+{
+ const auto width_out = static_cast<int>(out_info.dimension(0));
+ const auto height_out = static_cast<int>(out_info.dimension(1));
+ const size_t out_stride = out_info.strides_in_bytes()[1] / out_info.element_size();
+ // The implementation assumes that the matrix A and Matrix B have been reshaped respectively with CpuGemmInterleave4x4 and CpuGemmTranspose1xW
+ // The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration
+ // All the values needed for computing a single 4x4 block will be read from consecutive memory positions
+ execute_window_loop(
+ window,
+ [&](const Coordinates &id)
+ {
+ auto *mtx_a0 = reinterpret_cast<const int8_t *>(ina.ptr());
+ auto *mtx_b0 = reinterpret_cast<const int8_t *>(inb.ptr());
+
+ // Note: Since the input are all positives, we can use uint32_t
+ // Accumulators for the block 0
+ int32x4x4_t c0 = {{vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0)}};
+
+ // Accumulators for the block 1
+ int32x4x4_t c1 = {{vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0)}};
+
+ // Accumulators for the block 2
+ int32x4x4_t c2 = {{vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0)}};
+
+ // Accumulators for the block 3
+ int32x4x4_t c3 = {{vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0), vdupq_n_s32(0)}};
+
+ for (int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16)
+ {
+ const int8x8_t a00_s8 = vld1_s8(mtx_a0);
+ const int8x16_t b00_s8 = vld1q_s8(mtx_b0);
+
+ // Convert a00_s8 to uint16_t and get the lower part
+ const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8));
+
+ // Convert b00_s8 to int16_t
+ const int16x4x4_t b00_s16 = {
+ {vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
+ vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))), vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))}};
+
+ // 4x4 block 0
+ c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0);
+ c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0);
+ c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0);
+ c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0);
+
+ // 4x4 block 1
+ c1.val[0] = vmlal_lane_s16(c1.val[0], b00_s16.val[0], a00_s16, 1);
+ c1.val[1] = vmlal_lane_s16(c1.val[1], b00_s16.val[1], a00_s16, 1);
+ c1.val[2] = vmlal_lane_s16(c1.val[2], b00_s16.val[2], a00_s16, 1);
+ c1.val[3] = vmlal_lane_s16(c1.val[3], b00_s16.val[3], a00_s16, 1);
+
+ // 4x4 block 2
+ c2.val[0] = vmlal_lane_s16(c2.val[0], b00_s16.val[0], a00_s16, 2);
+ c2.val[1] = vmlal_lane_s16(c2.val[1], b00_s16.val[1], a00_s16, 2);
+ c2.val[2] = vmlal_lane_s16(c2.val[2], b00_s16.val[2], a00_s16, 2);
+ c2.val[3] = vmlal_lane_s16(c2.val[3], b00_s16.val[3], a00_s16, 2);
+
+ // 4x4 block 3
+ c3.val[0] = vmlal_lane_s16(c3.val[0], b00_s16.val[0], a00_s16, 3);
+ c3.val[1] = vmlal_lane_s16(c3.val[1], b00_s16.val[1], a00_s16, 3);
+ c3.val[2] = vmlal_lane_s16(c3.val[2], b00_s16.val[2], a00_s16, 3);
+ c3.val[3] = vmlal_lane_s16(c3.val[3], b00_s16.val[3], a00_s16, 3);
+ }
+ auto mtx_out = reinterpret_cast<int32_t *>(out.ptr());
+ if (id.y() < height_out && id.x() < (width_out - 16))
+ {
+ vst1q_s32(mtx_out + 0 * out_stride + 0, c0.val[0]);
+ vst1q_s32(mtx_out + 0 * out_stride + 4, c0.val[1]);
+ vst1q_s32(mtx_out + 0 * out_stride + 8, c0.val[2]);
+ vst1q_s32(mtx_out + 0 * out_stride + 12, c0.val[3]);
+ if (id.y() + 1 < height_out)
+ {
+ vst1q_s32(mtx_out + 1 * out_stride + 0, c1.val[0]);
+ vst1q_s32(mtx_out + 1 * out_stride + 4, c1.val[1]);
+ vst1q_s32(mtx_out + 1 * out_stride + 8, c1.val[2]);
+ vst1q_s32(mtx_out + 1 * out_stride + 12, c1.val[3]);
+ if (id.y() + 2 < height_out)
+ {
+ vst1q_s32(mtx_out + 2 * out_stride + 0, c2.val[0]);
+ vst1q_s32(mtx_out + 2 * out_stride + 4, c2.val[1]);
+ vst1q_s32(mtx_out + 2 * out_stride + 8, c2.val[2]);
+ vst1q_s32(mtx_out + 2 * out_stride + 12, c2.val[3]);
+ if (id.y() + 3 < height_out)
+ {
+ vst1q_s32(mtx_out + 3 * out_stride + 0, c3.val[0]);
+ vst1q_s32(mtx_out + 3 * out_stride + 4, c3.val[1]);
+ vst1q_s32(mtx_out + 3 * out_stride + 8, c3.val[2]);
+ vst1q_s32(mtx_out + 3 * out_stride + 12, c3.val[3]);
+ }
+ }
+ }
+ }
+ else if (id.y() < height_out)
+ {
+ const auto left_over_value = width_out - id.x();
+ auto left_over = left_over_value;
+ for (auto k = 0; k < 4 && left_over; ++k)
+ {
+ for (auto j = 0; j < 4 && left_over; ++j, --left_over)
+ {
+ *(mtx_out + k * 4 + j) = c0.val[k][j];
+ }
+ }
+ if (id.y() + 1 < height_out)
+ {
+ left_over = left_over_value;
+ for (auto k = 0; k < 4 && left_over; ++k)
+ {
+ for (auto j = 0; j < 4 && left_over; ++j, --left_over)
+ {
+ *(mtx_out + out_stride + k * 4 + j) = c1.val[k][j];
+ }
+ }
+ if (id.y() + 2 < height_out)
+ {
+ left_over = left_over_value;
+ for (auto k = 0; k < 4 && left_over; ++k)
+ {
+ for (auto j = 0; j < 4 && left_over; ++j, --left_over)
+ {
+ *(mtx_out + out_stride * 2 + k * 4 + j) = c2.val[k][j];
+ }
+ }
+ if (id.y() + 3 < height_out)
+ {
+ left_over = left_over_value;
+ for (auto k = 0; k < 4 && left_over; ++k)
+ {
+ for (auto j = 0; j < 4 && left_over; ++j, --left_over)
+ {
+ *(mtx_out + out_stride * 3 + k * 4 + j) = c3.val[k][j];
+ }
+ }
+ }
+ }
+ }
+ }
+ },
+ ina, inb, out);
+}
+
+Status validate_arguments(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
+ DataType::S8, DataType::U8);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
+ DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL, DataType::S8,
+ DataType::U8);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::S32);
+
+ TensorShape in0_shape = src0->tensor_shape();
+ TensorShape in1_shape = src1->tensor_shape();
+ TensorShape out_shape = dst->tensor_shape();
+
+ // Check vector-by-matrix case
+ if (out_shape[1] == 1)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[0] != in1_shape[1],
+ "The number of input0's columns must be equal to input1's rows");
+ }
+ else
+ {
+ in0_shape.collapse(2);
+ in1_shape.collapse(2);
+ out_shape.collapse(2);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[2] != out_shape[2],
+ "Output tensor must have the same number of batches of input0 tensor");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ in1_shape[2] != 1 && in0_shape[2] != in1_shape[2],
+ "Input1 tensor must have the same number of batches of input0 or the number of batches must be set to 1");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_shape[0] % 16, "Input1's width must be a multiple of 16");
+ }
+
+ return Status{};
+}
+} // namespace
+
+void CpuGemmLowpMatrixMultiplyKernel::configure(const ITensorInfo *src0, const ITensorInfo *src1, ITensorInfo *dst)
+{
+ ARM_COMPUTE_UNUSED(src0);
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src0, src1, dst);
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src0, src1, dst));
+
+ TensorShape in1_shape = src1->tensor_shape();
+ in1_shape.collapse(2);
+
+ _slide_matrix_b = in1_shape[2] != 1;
+
+ constexpr unsigned int num_elems_processed_per_iteration_x = 16;
+ constexpr unsigned int num_elems_processed_per_iteration_y = 4;
+
+ Window win;
+ // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
+ if ((dst->dimension(1) == 1))
+ {
+ // Configure kernel window
+ win = calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x));
+ }
+ else
+ {
+ win =
+ calculate_max_window(*dst, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
+ }
+
+ ICpuKernel::configure(win);
+}
+
+Status
+CpuGemmLowpMatrixMultiplyKernel::validate(const ITensorInfo *src0, const ITensorInfo *src1, const ITensorInfo *dst)
+{
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src0, src1, dst));
+ return Status{};
+}
+
+void CpuGemmLowpMatrixMultiplyKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+ auto src0 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+ auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+ auto dst = tensors.get_tensor(TensorType::ACL_DST);
+
+ // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication path
+ if ((dst->info()->dimension(1) == 1))
+ {
+ const auto width_matrix_a = static_cast<int>(src0->info()->dimension(0));
+ const auto width_matrix_b = static_cast<int>(src1->info()->dimension(0));
+ const auto width_out = static_cast<int>(dst->info()->dimension(0));
+ const auto in_b_stride =
+ static_cast<int>(src1->info()->strides_in_bytes()[1] / data_size_from_type(src1->info()->data_type()));
+
+ // The implementation computes 16 elements per iteration
+ const int window_start_x = 16 * info.thread_id;
+ const int window_step_x = 16 * info.num_threads;
+ // Make sure (window_end_x - window_start_x) is a multiple of window_step_x
+ const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
+
+ Window win_out(window);
+ win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
+ win_out.set(Window::DimY, Window::Dimension(0, 1, 1));
+
+ Window win_a(window);
+ win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
+ win_a.set(Window::DimY, Window::Dimension(0, 0, 0));
+
+ Window win_b;
+ // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
+ // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
+ if (src1->info()->num_dimensions() >= 3)
+ {
+ win_b = window;
+ }
+ win_b.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
+ win_b.set(Window::DimY, Window::Dimension(0, 1, 1));
+
+ Iterator ina(src0, win_a);
+ Iterator inb(src1, win_b);
+ Iterator out(dst, win_out);
+
+ switch (src0->info()->data_type())
+ {
+ case DataType::S8:
+ case DataType::QASYMM8_SIGNED:
+ {
+ vector_matrix_multiply_s8(ina, inb, out, width_matrix_a, width_matrix_b, width_out, in_b_stride,
+ window);
+ break;
+ }
+ case DataType::U8:
+ case DataType::QASYMM8:
+ {
+ vector_matrix_multiply_u8(ina, inb, out, width_matrix_a, width_matrix_b, width_out, in_b_stride,
+ window);
+ break;
+ }
+ default:
+ {
+ ARM_COMPUTE_ERROR("Not supported");
+ break;
+ }
+ }
+ }
+ else
+ {
+ const size_t in_b_stride = src1->info()->strides_in_bytes()[1];
+ const int width_b = src1->info()->dimension(0);
+
+ // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix
+ Window win_a(window);
+ win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
+ win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, window.y().end() / 4, 1));
+
+ // Set step_x and step_y for matrix B. Scale by a factor of 16 the X range as the input transposed matrix A has 16 times less the columns of the output matrix
+ Window win_b;
+ // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
+ // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
+ if (_slide_matrix_b)
+ {
+ win_b = window;
+ }
+ win_b.set(Window::DimX, Window::Dimension(window.x().start() / 16, window.x().end() / 16, in_b_stride));
+ win_b.set(Window::DimY, Window::Dimension(0, 0, 0));
+
+ // The step x and step y for the output matrix has been already set using in configure()
+ Iterator ina(src0, win_a);
+ Iterator inb(src1, win_b);
+ Iterator out(dst, window);
+
+ switch (src0->info()->data_type())
+ {
+ case DataType::S8:
+ case DataType::QASYMM8_SIGNED:
+ {
+ matrix_multiply_s8(ina, inb, out, width_b, *dst->info(), window);
+ break;
+ }
+ case DataType::U8:
+ case DataType::QASYMM8:
+ {
+ matrix_multiply_u8(ina, inb, out, width_b, *dst->info(), window);
+ break;
+ }
+ default:
+ {
+ ARM_COMPUTE_ERROR("Not supported");
+ break;
+ }
+ }
+ }
+}
+
+const char *CpuGemmLowpMatrixMultiplyKernel::name() const
+{
+ return "CpuGemmLowpMatrixMultiplyKernel";
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute