aboutsummaryrefslogtreecommitdiff
path: root/src/core/cpu/kernels/CpuTransposeKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/cpu/kernels/CpuTransposeKernel.cpp')
-rw-r--r--src/core/cpu/kernels/CpuTransposeKernel.cpp510
1 files changed, 0 insertions, 510 deletions
diff --git a/src/core/cpu/kernels/CpuTransposeKernel.cpp b/src/core/cpu/kernels/CpuTransposeKernel.cpp
deleted file mode 100644
index c7cafe94a8..0000000000
--- a/src/core/cpu/kernels/CpuTransposeKernel.cpp
+++ /dev/null
@@ -1,510 +0,0 @@
-/*
- * Copyright (c) 2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/core/cpu/kernels/CpuTransposeKernel.h"
-
-#include "arm_compute/core/Error.h"
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/ITensor.h"
-#include "arm_compute/core/TensorInfo.h"
-#include "arm_compute/core/Types.h"
-#include "arm_compute/core/Validate.h"
-#include "arm_compute/core/utils/misc/ShapeCalculator.h"
-#include "src/core/helpers/AutoConfiguration.h"
-#include "src/core/helpers/WindowHelpers.h"
-
-#include <arm_neon.h>
-
-namespace arm_compute
-{
-namespace cpu
-{
-namespace kernels
-{
-namespace
-{
-unsigned int num_elems_processed(size_t element_size)
-{
- switch(element_size)
- {
- case 1:
- return 8;
- case 2:
- case 4:
- return 4;
- default:
- break;
- }
-
- ARM_COMPUTE_ERROR("Element size not supported");
-}
-
-void transpose_8bit_elements(const ITensor *in, ITensor *out, const Window &window)
-{
- const int window_step_x = 8;
- const int window_step_y = 8;
- const int window_start_x = window.x().start();
- const int window_end_x = window.x().end();
- const int window_start_y = window.y().start();
- const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
- const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
- const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
- const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
-
- // Check if we need a left-over loop for the y dimension
- bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);
-
- Window window_in(window);
- window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
- if(left_over_loop_y)
- {
- // Check if window_end_y_multiple_of is greater than window_start_y
- if(window_end_y_multiple_of > window_start_y)
- {
- window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
- }
- else
- {
- window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
- }
- }
-
- Window window_out(window);
- window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
- window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
-
- Iterator output(out, window_out);
-
- // Run the SIMD path if and only if the input is not a row-vector
- if(in->info()->dimension(1) != 1)
- {
- Iterator input(in, window_in);
- execute_window_loop(window_in, [&](const Coordinates & id)
- {
- // Compute 8x8 elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const uint8x8_t row0 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 0 * input_stride_in_bytes));
- const uint8x8_t row1 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 1 * input_stride_in_bytes));
- const uint8x8_t row2 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 2 * input_stride_in_bytes));
- const uint8x8_t row3 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 3 * input_stride_in_bytes));
- const uint8x8_t row4 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 4 * input_stride_in_bytes));
- const uint8x8_t row5 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 5 * input_stride_in_bytes));
- const uint8x8_t row6 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 6 * input_stride_in_bytes));
- const uint8x8_t row7 = vld1_u8(reinterpret_cast<const uint8_t *>(input.ptr() + x + 7 * input_stride_in_bytes));
-
- // Transpose 2x2
- const uint8x8x2_t k0_u8 = vtrn_u8(row0, row1);
- const uint8x8x2_t k1_u8 = vtrn_u8(row2, row3);
- const uint8x8x2_t k2_u8 = vtrn_u8(row4, row5);
- const uint8x8x2_t k3_u8 = vtrn_u8(row6, row7);
-
- // Transpose 4x4
- const uint16x4x2_t k0_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[0]), vreinterpret_u16_u8(k1_u8.val[0]));
- const uint16x4x2_t k1_u16 = vtrn_u16(vreinterpret_u16_u8(k0_u8.val[1]), vreinterpret_u16_u8(k1_u8.val[1]));
- const uint16x4x2_t k2_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[0]), vreinterpret_u16_u8(k3_u8.val[0]));
- const uint16x4x2_t k3_u16 = vtrn_u16(vreinterpret_u16_u8(k2_u8.val[1]), vreinterpret_u16_u8(k3_u8.val[1]));
-
- // Transpose 8x8
- const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k2_u16.val[0]));
- const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k2_u16.val[1]));
- const uint32x2x2_t k2_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[0]), vreinterpret_u32_u16(k3_u16.val[0]));
- const uint32x2x2_t k3_u32 = vtrn_u32(vreinterpret_u32_u16(k1_u16.val[1]), vreinterpret_u32_u16(k3_u16.val[1]));
-
- // Compute destination address
- const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes;
-
- vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[0])));
- vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[0])));
- vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[0])));
- vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[0])));
- vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 4 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k0_u32.val[1])));
- vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 5 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k2_u32.val[1])));
- vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 6 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k1_u32.val[1])));
- vst1_u8(reinterpret_cast<uint8_t *>(output.ptr() + dst_offset_in_bytes + 7 * output_stride_in_bytes), vreinterpret_u8_u16(vreinterpret_u16_u32(k3_u32.val[1])));
- }
-
- // Compute left-over elements along the x dimension (1x8)
- for(; x < window_end_x; ++x)
- {
- const uint8_t val0 = *(input.ptr() + x + 0 * input_stride_in_bytes);
- const uint8_t val1 = *(input.ptr() + x + 1 * input_stride_in_bytes);
- const uint8_t val2 = *(input.ptr() + x + 2 * input_stride_in_bytes);
- const uint8_t val3 = *(input.ptr() + x + 3 * input_stride_in_bytes);
- const uint8_t val4 = *(input.ptr() + x + 4 * input_stride_in_bytes);
- const uint8_t val5 = *(input.ptr() + x + 5 * input_stride_in_bytes);
- const uint8_t val6 = *(input.ptr() + x + 6 * input_stride_in_bytes);
- const uint8_t val7 = *(input.ptr() + x + 7 * input_stride_in_bytes);
-
- uint8x8_t result = vdup_n_u8(0);
- result = vset_lane_u8(val0, result, 0);
- result = vset_lane_u8(val1, result, 1);
- result = vset_lane_u8(val2, result, 2);
- result = vset_lane_u8(val3, result, 3);
- result = vset_lane_u8(val4, result, 4);
- result = vset_lane_u8(val5, result, 5);
- result = vset_lane_u8(val6, result, 6);
- result = vset_lane_u8(val7, result, 7);
-
- // Compute destination address
- const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + x * output_stride_in_bytes;
-
- vst1_u8(output.ptr() + dst_offset_in_bytes, result);
- }
- },
- input, output);
- }
-
- if(left_over_loop_y)
- {
- window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
- window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));
-
- Iterator input(in, window_in);
- Iterator output(out, window_out);
-
- // Compute left-over elements along the y dimension (1x1)
- execute_window_loop(window_in, [&](const Coordinates & id)
- {
- const uint8_t val0 = *input.ptr();
-
- // Compute destination address
- const size_t dst_offset_in_bytes = id.y() * sizeof(uint8_t) + id.x() * output_stride_in_bytes;
-
- *(output.ptr() + dst_offset_in_bytes) = val0;
- },
- input, output);
- }
-}
-
-void transpose_16bit_elements(const ITensor *in, ITensor *out, const Window &window)
-{
- const int window_step_x = 4;
- const int window_step_y = 4;
- const int window_start_x = window.x().start();
- const int window_end_x = window.x().end();
- const int window_start_y = window.y().start();
- const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
- const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
- const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
- const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
-
- // Check if we need a left-over loop for the y dimension
- bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);
-
- Window window_in(window);
- window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
- if(left_over_loop_y)
- {
- // Check if window_end_y_multiple_of is greater than window_start_y
- if(window_end_y_multiple_of > window_start_y)
- {
- window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
- }
- else
- {
- window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
- }
- }
-
- Window window_out(window);
- window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
- window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
-
- Iterator output(out, window_out);
-
- // Run the SIMD path if and only if the input is not a row-vector
- if(in->info()->dimension(1) != 1)
- {
- Iterator input(in, window_in);
- execute_window_loop(window_in, [&](const Coordinates & id)
- {
- // Compute 4x4 elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const uint16x4_t row0 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
- const uint16x4_t row1 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
- const uint16x4_t row2 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
- const uint16x4_t row3 = vld1_u16(reinterpret_cast<const uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
-
- // Transpose 2x2
- const uint16x4x2_t k0_u16 = vtrn_u16(row0, row1);
- const uint16x4x2_t k1_u16 = vtrn_u16(row2, row3);
-
- // Transpose 4x4
- const uint32x2x2_t k0_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[0]), vreinterpret_u32_u16(k1_u16.val[0]));
- const uint32x2x2_t k1_u32 = vtrn_u32(vreinterpret_u32_u16(k0_u16.val[1]), vreinterpret_u32_u16(k1_u16.val[1]));
-
- // Compute destination address
- const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes;
-
- vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[0]));
- vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[0]));
- vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vreinterpret_u16_u32(k0_u32.val[1]));
- vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vreinterpret_u16_u32(k1_u32.val[1]));
- }
-
- // Compute left-over elements (1x4)
- for(; x < window_end_x; ++x)
- {
- const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
- const uint16_t val1 = *(reinterpret_cast<uint16_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
- const uint16_t val2 = *(reinterpret_cast<uint16_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
- const uint16_t val3 = *(reinterpret_cast<uint16_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
-
- uint16x4_t result = vdup_n_u16(0);
- result = vset_lane_u16(val0, result, 0);
- result = vset_lane_u16(val1, result, 1);
- result = vset_lane_u16(val2, result, 2);
- result = vset_lane_u16(val3, result, 3);
-
- // Compute destination address
- const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + x * output_stride_in_bytes;
-
- vst1_u16(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes), result);
- }
- },
- input, output);
- }
-
- if(left_over_loop_y)
- {
- window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
- window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));
-
- Iterator input(in, window_in);
- Iterator output(out, window_out);
-
- // Compute left-over elements along the y dimension (1x1)
- execute_window_loop(window_in, [&](const Coordinates & id)
- {
- const uint16_t val0 = *(reinterpret_cast<uint16_t *>(input.ptr()));
-
- // Compute destination address
- const size_t dst_offset_in_bytes = id.y() * sizeof(uint16_t) + id.x() * output_stride_in_bytes;
-
- *(reinterpret_cast<uint16_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
- },
- input, output);
- }
-}
-
-void transpose_32bit_elements(const ITensor *in, ITensor *out, const Window &window)
-{
- const int window_step_x = 4;
- const int window_step_y = 4;
- const int window_start_x = window.x().start();
- const int window_end_x = window.x().end();
- const int window_start_y = window.y().start();
- const int window_end_y = std::min(window.y().end(), static_cast<int>(in->info()->dimension(1)));
- const int window_end_y_multiple_of = ((window_end_y - window_start_y) / window_step_y) * window_step_y;
- const size_t input_stride_in_bytes = in->info()->strides_in_bytes()[1];
- const size_t output_stride_in_bytes = out->info()->strides_in_bytes()[1];
-
- // Check if we need a left-over loop for the y dimension
- bool left_over_loop_y = (((window_end_y - window_start_y) % window_step_y) != 0);
-
- Window window_in(window);
- window_in.set(Window::DimX, Window::Dimension(0, 1, 1));
- if(left_over_loop_y)
- {
- // Check if window_end_y_multiple_of is greater than window_start_y
- if(window_end_y_multiple_of > window_start_y)
- {
- window_in.set(Window::DimY, Window::Dimension(window_start_y, window_end_y_multiple_of, window_step_y));
- }
- else
- {
- window_in.set(Window::DimY, Window::Dimension(0, 0, 1));
- }
- }
-
- Window window_out(window);
- window_out.set(Window::DimX, Window::Dimension(0, 0, 0));
- window_out.set(Window::DimY, Window::Dimension(0, 0, 0));
-
- Iterator output(out, window_out);
-
- // Run the SIMD path if and only if the input is not a row-vector
- if(in->info()->dimension(1) != 1)
- {
- Iterator input(in, window_in);
- execute_window_loop(window_in, [&](const Coordinates & id)
- {
- // Compute 4x4 elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const uint32x4_t row0 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
- const uint32x4_t row1 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
- const uint32x4_t row2 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
- const uint32x4_t row3 = vld1q_u32(reinterpret_cast<const uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
-
- // Transpose 2x2
- const uint32x2x2_t k0_u32 = vtrn_u32(vget_low_u32(row0), vget_low_u32(row1));
- const uint32x2x2_t k1_u32 = vtrn_u32(vget_high_u32(row2), vget_high_u32(row3));
- const uint32x2x2_t k2_u32 = vtrn_u32(vget_high_u32(row0), vget_high_u32(row1));
- const uint32x2x2_t k3_u32 = vtrn_u32(vget_low_u32(row2), vget_low_u32(row3));
-
- // Compute destination address
- const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;
-
- // Swap block 01 with block 10 and store
- vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 0 * output_stride_in_bytes), vcombine_u32(k0_u32.val[0], k3_u32.val[0]));
- vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 1 * output_stride_in_bytes), vcombine_u32(k0_u32.val[1], k3_u32.val[1]));
- vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 2 * output_stride_in_bytes), vcombine_u32(k2_u32.val[0], k1_u32.val[0]));
- vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes + 3 * output_stride_in_bytes), vcombine_u32(k2_u32.val[1], k1_u32.val[1]));
- }
-
- // Compute left-over elements (1x4)
- for(; x < window_end_x; ++x)
- {
- const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr() + 0 * input_stride_in_bytes) + x);
- const uint32_t val1 = *(reinterpret_cast<uint32_t *>(input.ptr() + 1 * input_stride_in_bytes) + x);
- const uint32_t val2 = *(reinterpret_cast<uint32_t *>(input.ptr() + 2 * input_stride_in_bytes) + x);
- const uint32_t val3 = *(reinterpret_cast<uint32_t *>(input.ptr() + 3 * input_stride_in_bytes) + x);
-
- uint32x4_t result = vdupq_n_u32(0);
- result = vsetq_lane_u32(val0, result, 0);
- result = vsetq_lane_u32(val1, result, 1);
- result = vsetq_lane_u32(val2, result, 2);
- result = vsetq_lane_u32(val3, result, 3);
-
- // Compute destination address
- const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + x * output_stride_in_bytes;
-
- vst1q_u32(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes), result);
- }
- },
- input, output);
- }
-
- if(left_over_loop_y)
- {
- window_in.set(Window::DimX, Window::Dimension(window.x().start(), window.x().end(), 1));
- window_in.set(Window::DimY, Window::Dimension(window_end_y_multiple_of, window_end_y, 1));
-
- Iterator input(in, window_in);
- Iterator output(out, window_out);
-
- // Compute left-over elements along the y dimension (1x1)
- execute_window_loop(window_in, [&](const Coordinates & id)
- {
- const uint32_t val0 = *(reinterpret_cast<uint32_t *>(input.ptr()));
-
- // Compute destination address
- const size_t dst_offset_in_bytes = id.y() * sizeof(uint32_t) + id.x() * output_stride_in_bytes;
-
- *(reinterpret_cast<uint32_t *>(output.ptr() + dst_offset_in_bytes)) = val0;
- },
- input, output);
- }
-}
-} // namespace
-
-void CpuTransposeKernel::configure(const ITensorInfo *src, ITensorInfo *dst)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(src, dst);
-
- // Destination auto inizialitation if not yet initialized
- const TensorShape dst_shape = misc::shape_calculator::compute_transposed_shape(*src);
- auto_init_if_empty(*dst, src->clone()->set_tensor_shape(dst_shape));
-
- // Perform validation step
- ARM_COMPUTE_ERROR_THROW_ON(validate(src, dst));
-
- // Note: This kernel performs 16 elements per iteration.
- // However, since we use a left-over for loop on both dimensions (X and Y), we cannot have any read or write out of memory
- // For this reason num_elems_processed_per_iteration_x is set to 1
- const unsigned int num_elems_processed_per_iteration_x = 1;
- const unsigned int num_elems_processed_per_iteration_y = num_elems_processed(src->element_size());
-
- // Configure kernel window
- Window win = calculate_max_window(*src, Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
-
- // The CpuTranspose doesn't need padding so update_window_and_padding() can be skipped
- Coordinates coord;
- coord.set_num_dimensions(dst->num_dimensions());
- dst->set_valid_region(ValidRegion(coord, dst->tensor_shape()));
-
- ICpuKernel::configure(win);
-}
-
-Status CpuTransposeKernel::validate(const ITensorInfo *src, const ITensorInfo *dst)
-{
- ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src);
- //Note: ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input) is not needed here as this kernel doesn't use CPU FP16 instructions.
- ARM_COMPUTE_RETURN_ERROR_ON(src->data_type() == DataType::UNKNOWN);
-
- // Error if input is not 8 bit, 16bit or 32bit
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(src->element_size() != 1 && src->element_size() != 2 && src->element_size() != 4,
- "Element size not supported");
-
- // Validate configured destination
- if(dst->total_size() != 0)
- {
- const TensorShape dst_shape = misc::shape_calculator::compute_transposed_shape(*src);
-
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), dst_shape);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_QUANTIZATION_INFO(src, dst);
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
- }
-
- return Status{};
-}
-
-void CpuTransposeKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
-{
- ARM_COMPUTE_UNUSED(info);
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
-
- const auto src = tensors.get_const_tensor(TensorType::ACL_SRC);
- auto dst = tensors.get_tensor(TensorType::ACL_DST);
-
- switch(src->info()->element_size())
- {
- case 1:
- transpose_8bit_elements(src, dst, window);
- break;
- case 2:
- transpose_16bit_elements(src, dst, window);
- break;
- case 4:
- transpose_32bit_elements(src, dst, window);
- break;
- default:
- ARM_COMPUTE_ERROR("Element size not supported");
- break;
- }
-}
-
-const char *CpuTransposeKernel::name() const
-{
- return "CpuTransposeKernel";
-}
-} // namespace kernels
-} // namespace cpu
-} // namespace arm_compute