aboutsummaryrefslogtreecommitdiff
path: root/src/core/cpu/kernels/CpuMulKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/cpu/kernels/CpuMulKernel.cpp')
-rw-r--r--src/core/cpu/kernels/CpuMulKernel.cpp1729
1 files changed, 1729 insertions, 0 deletions
diff --git a/src/core/cpu/kernels/CpuMulKernel.cpp b/src/core/cpu/kernels/CpuMulKernel.cpp
new file mode 100644
index 0000000000..dabf656e6e
--- /dev/null
+++ b/src/core/cpu/kernels/CpuMulKernel.cpp
@@ -0,0 +1,1729 @@
+/*
+ * Copyright (c) 2016-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/cpu/kernels/CpuMulKernel.h"
+
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/TensorInfo.h"
+#include "src/core/CPP/Validate.h"
+#include "src/core/NEON/NEAsymm.h"
+#include "src/core/NEON/NESymm.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+const float scale255_constant = 1.f / 255.f;
+const float32x4_t scale255_constant_f32q = vdupq_n_f32(scale255_constant);
+const float32x4_t positive_round_f32q = vdupq_n_f32(0.5f);
+
+inline Status validate_arguments(const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
+{
+ ARM_COMPUTE_UNUSED(overflow_policy);
+ ARM_COMPUTE_UNUSED(rounding_policy);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src1);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::S32, DataType::QSYMM16, DataType::F16,
+ DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src2, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::S32, DataType::QSYMM16, DataType::F16,
+ DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
+ DataType::S16, DataType::QSYMM16,
+ DataType::S32, DataType::F16, DataType::F32);
+ if(is_data_type_quantized(src1->data_type()) || is_data_type_quantized(src2->data_type()))
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src1, src2);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(overflow_policy == ConvertPolicy::WRAP, "ConvertPolicy cannot be WRAP if datatype is quantized");
+ }
+
+ if(dst->total_size() > 0)
+ {
+ const TensorShape &out_shape = TensorShape::broadcast_shape(src1->tensor_shape(), src2->tensor_shape());
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst->tensor_shape(), 0), "Wrong shape for dst");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
+ // clang-format off
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(
+ !(src1->data_type() == src2->data_type() && src2->data_type() == dst->data_type()) &&
+ !(src1->data_type() == DataType::U8 && src2->data_type() == DataType::U8 && dst->data_type() == DataType::S16) &&
+ !(src1->data_type() == DataType::U8 && src2->data_type() == DataType::S16 && dst->data_type() == DataType::S16) &&
+ !(src1->data_type() == DataType::S16 && src2->data_type() == DataType::U8 && dst->data_type() == DataType::S16) &&
+ !(src1->data_type() == DataType::S16 && src2->data_type() == DataType::U8 && dst->data_type() == DataType::S16) &&
+ !(src1->data_type() == DataType::QSYMM16 && src2->data_type() == DataType::QSYMM16 && dst->data_type() == DataType::S32)
+ , "Invalid data type combination");
+ // clang-format on
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->data_type() == DataType::S16 && dst->data_type() == DataType::S32 && scale != 1.f, "Unsupported scale for QSYMM16 inputs and S32 dst");
+ }
+
+ if(std::abs(scale - scale255_constant) < 0.00001f)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_NEAREST_UP && rounding_policy != RoundingPolicy::TO_NEAREST_EVEN);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(src1->data_type() == DataType::S32 && src2->data_type() == DataType::S32 && dst->data_type() == DataType::S32,
+ "Scale == 1/255 is not supported if input and dst are of data type S32");
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_ZERO);
+
+ int exponent = 0;
+ const float normalized_mantissa = std::frexp(scale, &exponent);
+
+ // Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15
+ // frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <= 14
+ // Moreover, it will be negative as we deal with 1/2^n
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(!((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1)), "Scale value not supported (Should be 1/(2^n) or 1/255");
+ }
+
+ return Status{};
+}
+
+/* Scales a given vector by 1/255.
+ *
+ * @note This does not work for all cases. e.g. for float of 0.49999999999999994 and large floats.
+ *
+ * @param in Input vector to scale.
+ * @return Scaled dst rounded to nearest (round half up).
+ */
+inline int32x4_t scale255_S32_S32(int32x4_t in)
+{
+ // Scale
+ const float32x4_t tmp = vmulq_f32(vcvtq_f32_s32(in), scale255_constant_f32q);
+ // Round to nearest (round half up)
+ // Add +0.5 for all values
+ // Afterwards vcvt rounds toward zero
+ return vcvtq_s32_f32(vaddq_f32(tmp, positive_round_f32q));
+}
+
+inline uint16x8_t scale255_U16_U16(uint16x8_t in)
+{
+ const int32x4_t tmp_s1 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(in))));
+ const int32x4_t tmp_s2 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(in))));
+ return vreinterpretq_u16_s16(vcombine_s16(vmovn_s32(tmp_s2), vmovn_s32(tmp_s1)));
+}
+
+template <typename T>
+inline typename std::enable_if<std::is_same<T, int8_t>::value, int8x16_t>::type
+vquantize(float32x4x4_t val, const UniformQuantizationInfo &info)
+{
+ return vquantize_signed(val, info);
+}
+
+template <typename T>
+inline typename std::enable_if<std::is_same<T, uint8_t>::value, uint8x16_t>::type
+vquantize(float32x4x4_t val, const UniformQuantizationInfo &info)
+{
+ return vquantize(val, info);
+}
+
+template <typename T>
+void mul_saturate_quantized_8(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, float scale)
+{
+ // Create input windows
+ Window win = window;
+ Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ const int window_step_x = 16 / sizeof(T);
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const bool is_broadcast_across_x = src1->info()->tensor_shape().x() != src2->info()->tensor_shape().x();
+
+ const UniformQuantizationInfo output_qua_info = out->info()->quantization_info().uniform();
+ const UniformQuantizationInfo tmp_qua_info = { output_qua_info.scale / scale, output_qua_info.offset };
+
+ if(is_broadcast_across_x)
+ {
+ const bool is_broadcast_input_2 = input2_win.x().step() == 0;
+ Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
+ Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
+ const ITensor *broadcast_tensor = is_broadcast_input_2 ? src2 : src1;
+ const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src2 : src1;
+ const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform();
+ const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
+
+ // Clear X Dimension on execution window as we handle manually
+ non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator broadcast_input(broadcast_tensor, broadcast_win);
+ Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
+ Iterator dst(out, win);
+
+ using ExactTagType = typename wrapper::traits::neon_vector<T, window_step_x>::tag_type;
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto non_broadcast_input_ptr = reinterpret_cast<const T *>(non_broadcast_input.ptr());
+ const auto output_ptr = reinterpret_cast<T *>(dst.ptr());
+
+ const auto broadcast_value = *reinterpret_cast<const T *>(broadcast_input.ptr());
+ const auto broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{});
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x);
+
+ // Dequantize inputs
+ const float32x4x4_t in1_f32x4x4 = vdequantize(non_broadcast_v, non_broadcast_qinfo);
+ const float32x4x4_t in2_f32x4x4 = vdequantize(broadcast_value_vec, broadcast_qinfo);
+
+ const float32x4x4_t out_f32x4x4 =
+ {
+ vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
+ vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
+ vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
+ vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]),
+ };
+
+ // Quantize dst
+ const auto result = vquantize<T>(out_f32x4x4, tmp_qua_info);
+ wrapper::vstore(output_ptr + x, result);
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ // Dequantize inputs
+ const T src1 = *(non_broadcast_input_ptr + x);
+ const float tmp_in1 = Qasymm8QuantizationHelper<T>::dequantize(src1, non_broadcast_qinfo);
+ const float tmp_in2 = Qasymm8QuantizationHelper<T>::dequantize(broadcast_value, broadcast_qinfo);
+ const float tmp_f = tmp_in1 * tmp_in2;
+
+ // Quantize dst
+ const auto tmp_qua = Qasymm8QuantizationHelper<T>::quantize(tmp_f, tmp_qua_info);
+ *(output_ptr + x) = tmp_qua;
+ }
+ },
+ broadcast_input, non_broadcast_input, dst);
+ }
+ else
+ {
+ const UniformQuantizationInfo input1_qua_info = src1->info()->quantization_info().uniform();
+ const UniformQuantizationInfo input2_qua_info = src2->info()->quantization_info().uniform();
+
+ // Clear X Dimension on execution window as we handle manually
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(src1, input1_win);
+ Iterator input2(src2, input2_win);
+ Iterator dst(out, win);
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto input1_ptr = reinterpret_cast<const T *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const T *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<T *>(dst.ptr());
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const auto input1_q = wrapper::vloadq(input1_ptr + x);
+ const auto input2_q = wrapper::vloadq(input2_ptr + x);
+
+ // Dequantize inputs
+ const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info);
+ const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info);
+
+ const float32x4x4_t out_f32x4x4 =
+ {
+ vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
+ vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
+ vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
+ vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]),
+ };
+
+ // Quantize dst
+ const auto result = vquantize<T>(out_f32x4x4, tmp_qua_info);
+ wrapper::vstore(output_ptr + x, result);
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ // Dequantize inputs
+ const T src1 = *(input1_ptr + x);
+ const T src2 = *(input2_ptr + x);
+ const float tmp_in1 = Qasymm8QuantizationHelper<T>::dequantize(src1, input1_qua_info);
+ const float tmp_in2 = Qasymm8QuantizationHelper<T>::dequantize(src2, input2_qua_info);
+ const float tmp_f = tmp_in1 * tmp_in2;
+
+ // Quantize dst
+ const auto tmp_qua = Qasymm8QuantizationHelper<T>::quantize(tmp_f, tmp_qua_info);
+ *(output_ptr + x) = tmp_qua;
+ }
+ },
+ input1, input2, dst);
+ }
+}
+
+void mul_saturate_QSYMM16_QSYMM16_QSYMM16(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, float scale)
+{
+ const UniformQuantizationInfo input1_qua_info = src1->info()->quantization_info().uniform();
+ const UniformQuantizationInfo input2_qua_info = src2->info()->quantization_info().uniform();
+ const UniformQuantizationInfo output_qua_info = out->info()->quantization_info().uniform();
+
+ // Create input windows
+ Window win = window;
+ Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(src1, input1_win);
+ Iterator input2(src2, input2_win);
+ Iterator dst(out, win);
+
+ const int window_step_x = 16;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+
+ const UniformQuantizationInfo tmp_qua_info = { output_qua_info.scale / scale, output_qua_info.offset };
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto input1_ptr = reinterpret_cast<const qsymm16_t *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const qsymm16_t *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<qsymm16_t *>(dst.ptr());
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const qsymm16x8x2_t input1_q =
+ {
+ {
+ vld1q_s16(input1_ptr + x),
+ vld1q_s16(input1_ptr + x + 8),
+ }
+ };
+ const qsymm16x8x2_t input2_q =
+ {
+ {
+ vld1q_s16(input2_ptr + x),
+ vld1q_s16(input2_ptr + x + 8),
+ }
+ };
+
+ // Dequantize inputs
+ const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info);
+ const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info);
+
+ const float32x4x4_t out_f32x4x4 =
+ {
+ vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
+ vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
+ vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
+ vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]),
+ };
+
+ const qsymm16x8x2_t result = vquantize_qsymm16(out_f32x4x4, tmp_qua_info);
+ vst1q_s16(output_ptr + x, result.val[0]);
+ vst1q_s16(output_ptr + x + 8, result.val[1]);
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ // Dequantize inputs
+ float tmp_in1 = static_cast<float>(*(input1_ptr + x)) * input1_qua_info.scale;
+ float tmp_in2 = static_cast<float>(*(input2_ptr + x)) * input2_qua_info.scale;
+ float tmp_f = tmp_in1 * tmp_in2;
+
+ // Quantize dst, lrintf() has same rounding mode as vcombine_s16
+ int32_t tmp = lrintf(tmp_f / tmp_qua_info.scale);
+ qsymm16_t tmp_qua = static_cast<qsymm16_t>(tmp > SHRT_MAX) ? SHRT_MAX : ((tmp < SHRT_MIN) ? SHRT_MIN : tmp);
+ *(output_ptr + x) = tmp_qua;
+ }
+ },
+ input1, input2, dst);
+}
+
+void mul_QSYMM16_QSYMM16_S32(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int scale)
+{
+ ARM_COMPUTE_UNUSED(scale);
+
+ // Create input windows
+ Window win = window;
+ Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(src1, input1_win);
+ Iterator input2(src2, input2_win);
+ Iterator dst(out, win);
+
+ const int window_step_x = 16;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto input1_ptr = reinterpret_cast<const qsymm16_t *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const qsymm16_t *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<int32_t *>(dst.ptr());
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const qsymm16x8x2_t input1_q =
+ {
+ {
+ vld1q_s16(input1_ptr + x),
+ vld1q_s16(input1_ptr + x + 8),
+ }
+ };
+ const qsymm16x8x2_t input2_q =
+ {
+ {
+ vld1q_s16(input2_ptr + x),
+ vld1q_s16(input2_ptr + x + 8),
+ }
+ };
+
+ const int32x4x4_t in1_s32 =
+ {
+ {
+ vmovl_s16(vget_low_s16(input1_q.val[0])),
+ vmovl_s16(vget_high_s16(input1_q.val[0])),
+ vmovl_s16(vget_low_s16(input1_q.val[1])),
+ vmovl_s16(vget_high_s16(input1_q.val[1])),
+ }
+ };
+ const int32x4x4_t in2_s32 =
+ {
+ {
+ vmovl_s16(vget_low_s16(input2_q.val[0])),
+ vmovl_s16(vget_high_s16(input2_q.val[0])),
+ vmovl_s16(vget_low_s16(input2_q.val[1])),
+ vmovl_s16(vget_high_s16(input2_q.val[1])),
+ }
+ };
+
+ const int32x4x4_t result =
+ {
+ {
+ vmulq_s32(in1_s32.val[0], in2_s32.val[0]),
+ vmulq_s32(in1_s32.val[1], in2_s32.val[1]),
+ vmulq_s32(in1_s32.val[2], in2_s32.val[2]),
+ vmulq_s32(in1_s32.val[3], in2_s32.val[3]),
+ }
+ };
+
+ vst1q_s32(output_ptr + x, result.val[0]);
+ vst1q_s32(output_ptr + x + 4, result.val[1]);
+ vst1q_s32(output_ptr + x + 8, result.val[2]);
+ vst1q_s32(output_ptr + x + 12, result.val[3]);
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ int32_t tmp = static_cast<int32_t>(*(input1_ptr + x)) * static_cast<int32_t>(*(input2_ptr + x));
+ *(output_ptr + x) = tmp;
+ }
+ },
+ input1, input2, dst);
+}
+
+template <bool is_scale255, bool is_sat>
+void mul_U8_U8_U8(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int n)
+{
+ // Create input windows
+ Window win = window;
+ Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(src1, input1_win);
+ Iterator input2(src2, input2_win);
+ Iterator dst(out, win);
+
+ const int window_step_x = 16 / sizeof(uint8_t);
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<uint8_t *>(dst.ptr());
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const uint8x16_t ta1 = wrapper::vloadq(input1_ptr + x);
+ const uint8x16_t ta2 = wrapper::vloadq(input2_ptr + x);
+
+ uint16x8_t tmp1_high = vmovl_u8(vget_high_u8(ta1));
+ const uint16x8_t tmp2_high = vmovl_u8(vget_high_u8(ta2));
+ uint16x8_t tmp1_low = vmovl_u8(vget_low_u8(ta1));
+ const uint16x8_t tmp2_low = vmovl_u8(vget_low_u8(ta2));
+
+ tmp1_high = vmulq_u16(tmp1_high, tmp2_high);
+ tmp1_low = vmulq_u16(tmp1_low, tmp2_low);
+
+ if(is_scale255)
+ {
+ tmp1_high = scale255_U16_U16(tmp1_high);
+ tmp1_low = scale255_U16_U16(tmp1_low);
+ }
+ else
+ {
+ const int16x8_t vn = vdupq_n_s16(-n);
+
+ if(is_sat)
+ {
+ tmp1_high = vqshlq_u16(tmp1_high, vn);
+ tmp1_low = vqshlq_u16(tmp1_low, vn);
+ }
+ else
+ {
+ tmp1_high = vshlq_u16(tmp1_high, vn);
+ tmp1_low = vshlq_u16(tmp1_low, vn);
+ }
+ }
+ if(is_sat)
+ {
+ vst1q_u8(output_ptr, vcombine_u8(vqmovn_u16(tmp1_low), vqmovn_u16(tmp1_high)));
+ }
+ else
+ {
+ vst1q_u8(output_ptr, vcombine_u8(vmovn_u16(tmp1_low), vmovn_u16(tmp1_high)));
+ }
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ uint16_t tmp = static_cast<uint16_t>(*(input1_ptr + x)) * static_cast<uint16_t>(*(input2_ptr + x));
+
+ if(is_scale255)
+ {
+ float tmp_f = static_cast<float>(tmp) * scale255_constant;
+ tmp = static_cast<uint16_t>(tmp_f + 0.5f);
+ }
+ else
+ {
+ tmp >>= n;
+ }
+ if(is_sat && tmp > 255)
+ {
+ tmp = 255;
+ }
+ *(output_ptr + x) = static_cast<uint8_t>(tmp);
+ }
+ },
+ input1, input2, dst);
+}
+
+template <bool is_scale255, bool is_sat>
+inline int16x8_t mul_S16_S16_S16_n_loop(const int16x8_t &src1, const int16x8_t &src2, int n)
+{
+ int32x4_t tmp1_high = vmovl_s16(vget_high_s16(src1));
+ const int32x4_t tmp2_high = vmovl_s16(vget_high_s16(src2));
+ int32x4_t tmp1_low = vmovl_s16(vget_low_s16(src1));
+ const int32x4_t tmp2_low = vmovl_s16(vget_low_s16(src2));
+
+ tmp1_high = vmulq_s32(tmp1_high, tmp2_high);
+ tmp1_low = vmulq_s32(tmp1_low, tmp2_low);
+
+ if(is_scale255)
+ {
+ tmp1_high = scale255_S32_S32(tmp1_high);
+ tmp1_low = scale255_S32_S32(tmp1_low);
+ }
+ else
+ {
+ // Right shift amount
+ const int32x4_t vn = vdupq_n_s32(-n);
+ // Left shift amount
+ const int32x4_t vnl = vdupq_n_s32(n);
+ // Calculate conversion bit
+ const uint32x4_t tmp1_high_u = vreinterpretq_u32_s32(tmp1_high);
+ const uint32x4_t tmp1_low_u = vreinterpretq_u32_s32(tmp1_low);
+ const uint32x4_t sign_high = vshrq_n_u32(tmp1_high_u, 31);
+ const uint32x4_t sign_low = vshrq_n_u32(tmp1_low_u, 31);
+ const int32x4_t sign_high_s = vreinterpretq_s32_u32(sign_high);
+ const int32x4_t sign_low_s = vreinterpretq_s32_u32(sign_low);
+ const int32x4_t convert_high = vsubq_s32(vshlq_s32(sign_high_s, vnl), sign_high_s);
+ const int32x4_t convert_low = vsubq_s32(vshlq_s32(sign_low_s, vnl), sign_low_s);
+ if(is_sat)
+ {
+ tmp1_high = vqshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
+ tmp1_low = vqshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
+ }
+ else
+ {
+ tmp1_high = vshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
+ tmp1_low = vshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
+ }
+ }
+
+ if(is_sat)
+ {
+ return vcombine_s16(vqmovn_s32(tmp1_low), vqmovn_s32(tmp1_high));
+ }
+ else
+ {
+ return vcombine_s16(vmovn_s32(tmp1_low), vmovn_s32(tmp1_high));
+ }
+}
+
+template <bool is_scale255, bool is_sat>
+inline int16x8x2_t mul_S16_S16_S16_n_k(const int16x8x2_t &src1, const int16x8x2_t &src2, int n)
+{
+ const int16x8x2_t result =
+ {
+ {
+ // First 8 elements
+ mul_S16_S16_S16_n_loop<is_scale255, is_sat>(src1.val[0], src2.val[0], n),
+ // Second 8 elements
+ mul_S16_S16_S16_n_loop<is_scale255, is_sat>(src1.val[1], src2.val[1], n)
+ }
+ };
+
+ return result;
+}
+
+template <bool is_scale255, bool is_sat>
+void mul_S16_S16_S16(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int n)
+{
+ // Create input windows
+ Window win = window;
+ Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(src1, input1_win);
+ Iterator input2(src2, input2_win);
+ Iterator dst(out, win);
+
+ const int window_step_x = 16;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto input1_ptr = reinterpret_cast<const int16_t *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const int16_t *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<int16_t *>(dst.ptr());
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const int16x8x2_t ta1 =
+ {
+ {
+ vld1q_s16(input1_ptr + x),
+ vld1q_s16(input1_ptr + x + 8),
+ }
+ };
+ const int16x8x2_t ta2 =
+ {
+ {
+ vld1q_s16(input2_ptr + x),
+ vld1q_s16(input2_ptr + x + 8),
+ }
+ };
+ const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);
+
+ vst1q_s16(output_ptr + x, result.val[0]);
+ vst1q_s16(output_ptr + x + 8, result.val[1]);
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ int32_t tmp = static_cast<int32_t>(*(input1_ptr + x)) * static_cast<int32_t>(*(input2_ptr + x));
+
+ if(is_scale255)
+ {
+ float tmp_f = static_cast<float>(tmp) * scale255_constant;
+
+ tmp = static_cast<int32_t>(tmp_f + 0.5f);
+ }
+ else
+ {
+ if(tmp >= 0)
+ {
+ tmp >>= n;
+ }
+ else
+ {
+ uint32_t mask = (1u << n) - 1;
+ tmp = (tmp + static_cast<int32_t>(mask)) >> n;
+ }
+ }
+ if(is_sat)
+ {
+ tmp = (tmp > SHRT_MAX) ? SHRT_MAX : ((tmp < SHRT_MIN) ? SHRT_MIN : tmp);
+ }
+ *(output_ptr + x) = static_cast<int16_t>(tmp);
+ }
+ },
+ input1, input2, dst);
+}
+
+template <bool is_sat>
+inline int32x4_t mul_S32_S32_S32_n_loop(const int32x4_t &src1, const int32x4_t &src2, int n)
+{
+ const int32x2_t input1_1 = vget_low_s32(src1);
+ const int32x2_t input2_1 = vget_low_s32(src2);
+ const int32x2_t input1_2 = vget_high_s32(src1);
+ const int32x2_t input2_2 = vget_high_s32(src2);
+
+ int64x2_t tmp_1 = vmull_s32(input1_1, input2_1);
+ int64x2_t tmp_2 = vmull_s32(input1_2, input2_2);
+
+ // Apply scaling, conversion and rounding (round to zero)
+ // Right shift amount
+ const int64x2_t vn = vdupq_n_s64(-n);
+ // Left shift amount
+ const int64x2_t vnl = vdupq_n_s64(n);
+ // Calculate conversion bit
+ const uint64x2_t tmp_1_u = vreinterpretq_u64_s64(tmp_1);
+ const uint64x2_t sign_1 = vshrq_n_u64(tmp_1_u, 63);
+ const int64x2_t sign_1_s = vreinterpretq_s64_u64(sign_1);
+ const int64x2_t convert_1 = vsubq_s64(vshlq_s64(sign_1_s, vnl), sign_1_s);
+
+ const uint64x2_t tmp_2_u = vreinterpretq_u64_s64(tmp_2);
+ const uint64x2_t sign_2 = vshrq_n_u64(tmp_2_u, 63);
+ const int64x2_t sign_2_s = vreinterpretq_s64_u64(sign_2);
+ const int64x2_t convert_2 = vsubq_s64(vshlq_s64(sign_2_s, vnl), sign_2_s);
+ if(is_sat)
+ {
+ tmp_1 = vqshlq_s64(vaddq_s64(tmp_1, convert_1), vn);
+ tmp_2 = vqshlq_s64(vaddq_s64(tmp_2, convert_2), vn);
+ return vcombine_s32(vqmovn_s64(tmp_1), vqmovn_s64(tmp_2));
+ }
+ else
+ {
+ tmp_1 = vshlq_s64(vaddq_s64(tmp_1, convert_1), vn);
+ tmp_2 = vshlq_s64(vaddq_s64(tmp_2, convert_2), vn);
+ return vcombine_s32(vmovn_s64(tmp_1), vmovn_s64(tmp_2));
+ }
+}
+
+template <bool is_sat>
+inline int32x4x2_t mul_S32_S32_S32_n_k(const int32x4x2_t &src1, const int32x4x2_t &src2, int n)
+{
+ const int32x4x2_t result =
+ {
+ {
+ // First 4 elements
+ mul_S32_S32_S32_n_loop<is_sat>(src1.val[0], src2.val[0], n),
+ // Second 4 elements
+ mul_S32_S32_S32_n_loop<is_sat>(src1.val[1], src2.val[1], n)
+ }
+ };
+
+ return result;
+}
+
+template <bool is_sat>
+void mul_S32_S32_S32(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int n)
+{
+ // Create input windows
+ Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ Window win = window;
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ const int window_step_x = 8;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const bool is_broadcast_across_x = src1->info()->tensor_shape().x() != src2->info()->tensor_shape().x();
+
+ if(is_broadcast_across_x)
+ {
+ const bool is_broadcast_input_2 = input2_win.x().step() == 0;
+ Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
+ Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
+ const ITensor *broadcast_tensor = is_broadcast_input_2 ? src2 : src1;
+ const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src2 : src1;
+
+ // Clear X Dimension on execution window as we handle manually
+ non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator broadcast_input(broadcast_tensor, broadcast_win);
+ Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
+ Iterator dst(out, win);
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto non_broadcast_input_ptr = reinterpret_cast<const int32_t *>(non_broadcast_input.ptr());
+ const auto output_ptr = reinterpret_cast<int32_t *>(dst.ptr());
+
+ const int32_t broadcast_value = *reinterpret_cast<const int32_t *>(broadcast_input.ptr());
+ const auto broadcast_value_vec = vdupq_n_s32(broadcast_value);
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const int32x4x2_t broadcast_v =
+ {
+ {
+ broadcast_value_vec,
+ broadcast_value_vec,
+ }
+ };
+ const int32x4x2_t non_broadcast_v =
+ {
+ {
+ vld1q_s32(non_broadcast_input_ptr + x),
+ vld1q_s32(non_broadcast_input_ptr + x + 4),
+ }
+ };
+ const int32x4x2_t result = mul_S32_S32_S32_n_k<is_sat>(broadcast_v, non_broadcast_v, n);
+
+ vst1q_s32(output_ptr + x, result.val[0]);
+ vst1q_s32(output_ptr + x + 4, result.val[1]);
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ int64_t tmp = static_cast<int64_t>(broadcast_value) * static_cast<int64_t>(*(non_broadcast_input_ptr + x));
+
+ if(tmp >= 0)
+ {
+ tmp >>= n;
+ }
+ else
+ {
+ uint64_t mask = (1u << n) - 1;
+ tmp = (tmp + static_cast<int64_t>(mask)) >> n;
+ }
+ if(is_sat)
+ {
+ tmp = utility::clamp<int64_t, int32_t>(tmp);
+ }
+ *(output_ptr + x) = static_cast<int32_t>(tmp);
+ }
+ },
+ broadcast_input, non_broadcast_input, dst);
+ }
+ else
+ {
+ // Clear X Dimension on execution window as we handle manually
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(src1, input1_win);
+ Iterator input2(src2, input2_win);
+ Iterator dst(out, win);
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto input1_ptr = reinterpret_cast<const int32_t *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const int32_t *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<int32_t *>(dst.ptr());
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const int32x4x2_t ta1 =
+ {
+ {
+ vld1q_s32(input1_ptr + x),
+ vld1q_s32(input1_ptr + x + 4),
+ }
+ };
+ const int32x4x2_t ta2 =
+ {
+ {
+ vld1q_s32(input2_ptr + x),
+ vld1q_s32(input2_ptr + x + 4),
+ }
+ };
+ const int32x4x2_t result = mul_S32_S32_S32_n_k<is_sat>(ta1, ta2, n);
+
+ vst1q_s32(output_ptr + x, result.val[0]);
+ vst1q_s32(output_ptr + x + 4, result.val[1]);
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ int64_t tmp = static_cast<int64_t>(*(input1_ptr + x)) * static_cast<int64_t>(*(input2_ptr + x));
+
+ if(tmp >= 0)
+ {
+ tmp >>= n;
+ }
+ else
+ {
+ uint64_t mask = (1u << n) - 1;
+ tmp = (tmp + static_cast<int64_t>(mask)) >> n;
+ }
+ if(is_sat)
+ {
+ tmp = utility::clamp<int64_t, int32_t>(tmp);
+ }
+ *(output_ptr + x) = static_cast<int32_t>(tmp);
+ }
+ },
+ input1, input2, dst);
+ }
+}
+
+void mul_F32_F32_F32(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, float scale)
+{
+ // Create input windows
+ Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ Window win = window;
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ constexpr int window_step_x = 16 / sizeof(float);
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const bool is_broadcast_across_x = src1->info()->tensor_shape().x() != src2->info()->tensor_shape().x();
+
+ using ExactTagType = typename wrapper::traits::neon_vector<float, window_step_x>::tag_type;
+
+ if(is_broadcast_across_x)
+ {
+ const bool is_broadcast_input_2 = input2_win.x().step() == 0;
+ Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
+ Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
+ const ITensor *broadcast_tensor = is_broadcast_input_2 ? src2 : src1;
+ const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src2 : src1;
+
+ // Clear X Dimension on execution window as we handle manually
+ non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator broadcast_input(broadcast_tensor, broadcast_win);
+ Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
+ Iterator dst(out, win);
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto non_broadcast_input_ptr = reinterpret_cast<const float *>(non_broadcast_input.ptr());
+ const auto output_ptr = reinterpret_cast<float *>(dst.ptr());
+
+ const float broadcast_value = *reinterpret_cast<const float *>(broadcast_input.ptr());
+ const auto broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{});
+ const auto scale_vec = wrapper::vdup_n(scale, ExactTagType{});
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x);
+ auto res = wrapper::vmul(wrapper::vmul(broadcast_value_vec, non_broadcast_v), scale_vec);
+ wrapper::vstore(output_ptr + x, res);
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ const auto non_broadcast_v = *(non_broadcast_input_ptr + x);
+ *(output_ptr + x) = broadcast_value * non_broadcast_v * scale;
+ }
+ },
+ broadcast_input, non_broadcast_input, dst);
+ }
+ else
+ {
+ // Clear X Dimension on execution window as we handle manually
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(src1, input1_win);
+ Iterator input2(src2, input2_win);
+ Iterator dst(out, win);
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto input1_ptr = reinterpret_cast<const float *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const float *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<float *>(dst.ptr());
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const auto ta1 = wrapper::vloadq(input1_ptr + x);
+ const auto ta2 = wrapper::vloadq(input2_ptr + x);
+ const auto scale_vec = wrapper::vdup_n(scale, ExactTagType{});
+ const auto res = wrapper::vmul(wrapper::vmul(ta1, ta2), scale_vec);
+ wrapper::vstore(output_ptr + x, res);
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ const auto ta1 = *(input1_ptr + x);
+ const auto ta2 = *(input2_ptr + x);
+ *(output_ptr + x) = ta1 * ta2 * scale;
+ }
+ },
+ input1, input2, dst);
+ }
+}
+
+void c_mul_F32_F32_F32_n(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window)
+{
+ // Create input windows
+ Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ Window win = window;
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ constexpr int window_step_x = 8 / sizeof(float);
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const bool is_broadcast_across_x = src1->info()->tensor_shape().x() != src2->info()->tensor_shape().x();
+
+ using ExactTagType = typename wrapper::traits::neon_vector<float, 2>::tag_type;
+
+ if(is_broadcast_across_x)
+ {
+ const bool is_broadcast_input_2 = input2_win.x().step() == 0;
+ Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
+ Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
+ const ITensor *broadcast_tensor = is_broadcast_input_2 ? src2 : src1;
+ const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src2 : src1;
+
+ // Clear X Dimension on execution window as we handle manually
+ non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator broadcast_input(broadcast_tensor, broadcast_win);
+ Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
+ Iterator dst(out, win);
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto non_broadcast_input_ptr = reinterpret_cast<const float *>(non_broadcast_input.ptr());
+ const auto output_ptr = reinterpret_cast<float *>(dst.ptr());
+
+ const float broadcast_value = *reinterpret_cast<const float *>(broadcast_input.ptr());
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const auto a = wrapper::vloadq(non_broadcast_input_ptr + 2 * x);
+ float32x4_t b = vdupq_n_f32(broadcast_value);
+
+ const float32x4_t mask = { -1.0f, 1.0f, -1.0f, 1.0f };
+ const float32x2_t tmp00 = wrapper::vdup_n(wrapper::vgetlane(a, 0), ExactTagType{});
+ const float32x2_t tmp01 = wrapper::vdup_n(wrapper::vgetlane(a, 1), ExactTagType{});
+ const float32x2_t tmp10 = wrapper::vdup_n(wrapper::vgetlane(a, 2), ExactTagType{});
+ const float32x2_t tmp11 = wrapper::vdup_n(wrapper::vgetlane(a, 3), ExactTagType{});
+
+ const float32x4_t tmp0 = wrapper::vcombine(tmp00, tmp10);
+ const float32x4_t tmp1 = wrapper::vcombine(tmp01, tmp11);
+
+ float32x4_t res = wrapper::vmul(tmp0, b);
+ b = wrapper::vmul(b, mask);
+
+ res = wrapper::vmla(res, tmp1, b);
+ wrapper::vstore(output_ptr + 2 * x, res);
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ const auto non_broadcast_value0 = *(non_broadcast_input_ptr + 2 * x);
+ const auto non_broadcast_value1 = *(non_broadcast_input_ptr + 2 * x + 1);
+ auto res1 = broadcast_value * (non_broadcast_value0 - non_broadcast_value1);
+ auto res2 = broadcast_value * (non_broadcast_value1 + non_broadcast_value0);
+ *(output_ptr + 2 * x) = res1;
+ *(output_ptr + 2 * x + 1) = res2;
+ }
+ },
+ broadcast_input, non_broadcast_input, dst);
+ }
+ else
+ {
+ // Clear X Dimension on execution window as we handle manually
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(src1, input1_win);
+ Iterator input2(src2, input2_win);
+ Iterator dst(out, win);
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto input1_ptr = reinterpret_cast<const float *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const float *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<float *>(dst.ptr());
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const float32x4_t a = wrapper::vloadq(input1_ptr + 2 * x);
+ float32x4_t b = wrapper::vloadq(input2_ptr + 2 * x);
+
+ const float32x4_t mask = { -1.0f, 1.0f, -1.0f, 1.0f };
+ const float32x2_t tmp00 = wrapper::vdup_n(wrapper::vgetlane(a, 0), ExactTagType{});
+ const float32x2_t tmp01 = wrapper::vdup_n(wrapper::vgetlane(a, 1), ExactTagType{});
+ const float32x2_t tmp10 = wrapper::vdup_n(wrapper::vgetlane(a, 2), ExactTagType{});
+ const float32x2_t tmp11 = wrapper::vdup_n(wrapper::vgetlane(a, 3), ExactTagType{});
+
+ const float32x4_t tmp0 = wrapper::vcombine(tmp00, tmp10);
+ const float32x4_t tmp1 = wrapper::vcombine(tmp01, tmp11);
+
+ float32x4_t res = wrapper::vmul(tmp0, b);
+
+ b = wrapper::vrev64(b);
+ b = wrapper::vmul(b, mask);
+
+ res = wrapper::vmla(res, tmp1, b);
+ wrapper::vstore(output_ptr + 2 * x, res);
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ const auto a0 = *(input1_ptr + 2 * x);
+ const auto a1 = *(input1_ptr + 2 * x + 1);
+ const auto b0 = *(input2_ptr + 2 * x);
+ const auto b1 = *(input2_ptr + 2 * x + 1);
+ auto res1 = a0 * b0 - a1 * b1;
+ auto res2 = a0 * b1 + a1 * b0;
+ *(output_ptr + 2 * x) = res1;
+ *(output_ptr + 2 * x + 1) = res2;
+ }
+ },
+ input1, input2, dst);
+ }
+}
+
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+void mul_F16_F16_F16(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, float scale)
+{
+ // Create input windows
+ Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ Window win = window;
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ constexpr int window_step_x = 16;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+ const bool is_broadcast_across_x = src1->info()->tensor_shape().x() != src2->info()->tensor_shape().x();
+ if(is_broadcast_across_x)
+ {
+ const bool is_broadcast_input_2 = input2_win.x().step() == 0;
+ Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
+ Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
+ const ITensor *broadcast_tensor = is_broadcast_input_2 ? src2 : src1;
+ const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? src2 : src1;
+ // Clear X Dimension on execution window as we handle manually
+ non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ Iterator broadcast_input(broadcast_tensor, broadcast_win);
+ Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
+ Iterator dst(out, win);
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto non_broadcast_input_ptr = reinterpret_cast<const float16_t *>(non_broadcast_input.ptr());
+ const auto output_ptr = reinterpret_cast<float16_t *>(dst.ptr());
+ const auto broadcast_value = *reinterpret_cast<const float16_t *>(broadcast_input.ptr());
+ const float16x8x2_t broadcast_value_vec =
+ {
+ {
+ vdupq_n_f16(broadcast_value),
+ vdupq_n_f16(broadcast_value),
+ }
+ };
+ const auto scale_vec = vdupq_n_f16(scale);
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const float16x8x2_t non_broadcast_v =
+ {
+ {
+ vld1q_f16(non_broadcast_input_ptr + x),
+ vld1q_f16(non_broadcast_input_ptr + x + 8),
+ }
+ };
+ const float16x8x2_t result =
+ {
+ {
+ vmulq_f16(vmulq_f16(broadcast_value_vec.val[0], non_broadcast_v.val[0]), scale_vec),
+ vmulq_f16(vmulq_f16(broadcast_value_vec.val[1], non_broadcast_v.val[1]), scale_vec),
+ }
+ };
+ vst1q_f16(output_ptr + x, result.val[0]);
+ vst1q_f16(output_ptr + x + 8, result.val[1]);
+ }
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ const auto non_broadcast_v = *(non_broadcast_input_ptr + x);
+ *(output_ptr + x) = broadcast_value * non_broadcast_v * scale;
+ }
+ },
+ broadcast_input, non_broadcast_input, dst);
+ }
+ else
+ {
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ Iterator input1(src1, input1_win);
+ Iterator input2(src2, input2_win);
+ Iterator dst(out, win);
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto input1_ptr = reinterpret_cast<const float16_t *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const float16_t *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<float16_t *>(dst.ptr());
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const float16x8x2_t ta1 =
+ {
+ {
+ vld1q_f16(input1_ptr + x),
+ vld1q_f16(input1_ptr + x + 8),
+ }
+ };
+ const float16x8x2_t ta2 =
+ {
+ {
+ vld1q_f16(input2_ptr + x),
+ vld1q_f16(input2_ptr + x + 8),
+ }
+ };
+ const float16x8_t scale_vec = vdupq_n_f16(scale);
+ const float16x8x2_t result =
+ {
+ {
+ vmulq_f16(vmulq_f16(ta1.val[0], ta2.val[0]), scale_vec),
+ vmulq_f16(vmulq_f16(ta1.val[1], ta2.val[1]), scale_vec),
+ }
+ };
+ vst1q_f16(output_ptr + x, result.val[0]);
+ vst1q_f16(output_ptr + x + 8, result.val[1]);
+ }
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ const auto ta1 = *(input1_ptr + x);
+ const auto ta2 = *(input2_ptr + x);
+ *(output_ptr + x) = ta1 * ta2 * scale;
+ }
+ },
+ input1, input2, dst);
+ }
+}
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+
+template <bool is_scale255, bool is_sat>
+void mul_U8_U8_S16(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int n)
+{
+ // Create input windows
+ Window win = window;
+ Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(src1, input1_win);
+ Iterator input2(src2, input2_win);
+ Iterator dst(out, win);
+
+ const int window_step_x = 16 / sizeof(uint8_t);
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<int16_t *>(dst.ptr());
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const uint8x16_t bv = wrapper::vloadq(input2_ptr + x);
+ const uint8x16_t av = wrapper::vloadq(input1_ptr + x);
+
+ uint16x8_t tmp_low = vmovl_u8(vget_low_u8(av));
+ uint16x8_t tmp_high = vmovl_u8(vget_high_u8(av));
+ tmp_low = vmulq_u16(tmp_low, vmovl_u8(vget_low_u8(bv)));
+ tmp_high = vmulq_u16(tmp_high, vmovl_u8(vget_high_u8(bv)));
+
+ if(is_scale255)
+ {
+ tmp_low = scale255_U16_U16(tmp_low);
+ tmp_high = scale255_U16_U16(tmp_high);
+ }
+ else
+ {
+ const int16x8_t vn = vdupq_n_s16(-n);
+
+ if(is_sat)
+ {
+ tmp_low = vqshlq_u16(tmp_low, vn);
+ tmp_high = vqshlq_u16(tmp_high, vn);
+ }
+ else
+ {
+ tmp_low = vshlq_u16(tmp_low, vn);
+ tmp_high = vshlq_u16(tmp_high, vn);
+ }
+ }
+
+ if(is_sat)
+ {
+ static const uint16x8_t max = vdupq_n_u16(SHRT_MAX);
+
+ tmp_low = vminq_u16(tmp_low, max);
+ tmp_high = vminq_u16(tmp_high, max);
+ }
+
+ vst1q_s16(output_ptr + x, vreinterpretq_s16_u16(tmp_low));
+ vst1q_s16(output_ptr + x + 8, vreinterpretq_s16_u16(tmp_high));
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ int32_t tmp = static_cast<int32_t>(*(input1_ptr + x)) * static_cast<int32_t>(*(input2_ptr + x));
+
+ if(is_scale255)
+ {
+ float tmp_f = static_cast<float>(tmp) * scale255_constant;
+ tmp = static_cast<int32_t>(tmp_f + 0.5f);
+ }
+ else
+ {
+ tmp >>= n;
+ }
+
+ if(is_sat)
+ {
+ tmp = (tmp > SHRT_MAX) ? SHRT_MAX : tmp;
+ }
+
+ *(output_ptr + x) = static_cast<int16_t>(tmp);
+ }
+ },
+ input1, input2, dst);
+}
+
+template <bool is_scale255, bool is_sat>
+void mul_S16_U8_S16(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int n)
+{
+ // Create input windows
+ Window win = window;
+ Window input1_win = window.broadcast_if_dimension_le_one(src1->info()->tensor_shape());
+ Window input2_win = window.broadcast_if_dimension_le_one(src2->info()->tensor_shape());
+
+ // Clear X Dimension on execution window as we handle manually
+ win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+ input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ Iterator input1(src1, input1_win);
+ Iterator input2(src2, input2_win);
+ Iterator dst(out, win);
+
+ const int window_step_x = 16;
+ const auto window_start_x = static_cast<int>(window.x().start());
+ const auto window_end_x = static_cast<int>(window.x().end());
+
+ execute_window_loop(win, [&](const Coordinates &)
+ {
+ const auto input1_ptr = reinterpret_cast<const int16_t *>(input1.ptr());
+ const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
+ const auto output_ptr = reinterpret_cast<int16_t *>(dst.ptr());
+
+ // Compute window_step_x elements per iteration
+ int x = window_start_x;
+ for(; x <= (window_end_x - window_step_x); x += window_step_x)
+ {
+ const int16x8x2_t ta1 =
+ {
+ {
+ vld1q_s16(input1_ptr + x),
+ vld1q_s16(input1_ptr + x + 8),
+ }
+ };
+ const uint8x8x2_t ta2u =
+ {
+ {
+ vld1_u8(input2_ptr + x),
+ vld1_u8(input2_ptr + x + 8),
+ }
+ };
+ const int16x8x2_t ta2 =
+ {
+ {
+ vreinterpretq_s16_u16(vmovl_u8(ta2u.val[0])),
+ vreinterpretq_s16_u16(vmovl_u8(ta2u.val[1]))
+ }
+ };
+
+ const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);
+
+ vst1q_s16(output_ptr + x, result.val[0]);
+ vst1q_s16(output_ptr + x + 8, result.val[1]);
+ }
+
+ // Compute left-over elements
+ for(; x < window_end_x; ++x)
+ {
+ int32_t tmp = static_cast<int32_t>(*(input1_ptr + x)) * static_cast<int32_t>(*(input2_ptr + x));
+
+ if(is_scale255)
+ {
+ float tmp_f = static_cast<float>(tmp) * scale255_constant;
+
+ tmp = static_cast<int32_t>(tmp_f + 0.5f);
+ }
+ else
+ {
+ if(tmp >= 0)
+ {
+ tmp >>= n;
+ }
+ else
+ {
+ uint32_t mask = (1u << n) - 1;
+ tmp = (tmp + static_cast<int32_t>(mask)) >> n;
+ }
+ }
+ if(is_sat)
+ {
+ tmp = (tmp > SHRT_MAX) ? SHRT_MAX : ((tmp < SHRT_MIN) ? SHRT_MIN : tmp);
+ }
+ *(output_ptr + x) = static_cast<int16_t>(tmp);
+ }
+ },
+ input1, input2, dst);
+}
+
+template <bool is_scale255, bool is_sat>
+void mul_U8_S16_S16(const ITensor *src1, const ITensor *src2, ITensor *out, const Window &window, int n)
+{
+ // Simply swap the two input buffers
+ mul_S16_U8_S16<is_scale255, is_sat>(src2, src1, out, window, n);
+}
+} // namespace
+
+void CpuMulKernel::configure(ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
+{
+ ARM_COMPUTE_UNUSED(rounding_policy);
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src1, src2, dst);
+
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src1, src2, dst, scale, overflow_policy, rounding_policy));
+
+ const TensorShape &out_shape = TensorShape::broadcast_shape(src1->tensor_shape(), src2->tensor_shape());
+
+ // Auto initialize dst if not initialized
+ set_shape_if_empty(*dst, out_shape);
+
+ _scale = scale;
+ _scale_exponent = 0;
+ _func_quantized = nullptr;
+ _func_int = nullptr;
+ _func_float = nullptr;
+
+ bool is_scale_255 = false;
+ // Check and validate scaling factor
+ if(std::abs(scale - scale255_constant) < 0.00001f)
+ {
+ is_scale_255 = true;
+ }
+ else
+ {
+ int exponent = 0;
+
+ std::frexp(scale, &exponent);
+
+ // Store the positive exponent. We know that we compute 1/2^n
+ // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
+ _scale_exponent = std::abs(exponent - 1);
+ }
+
+ const DataType dt_input1 = src1->data_type();
+ const DataType dt_input2 = src2->data_type();
+ const DataType dt_output = dst->data_type();
+ const bool is_sat = (overflow_policy == ConvertPolicy::SATURATE);
+
+ switch(dt_input1)
+ {
+ case DataType::QASYMM8:
+ if(dt_input2 == DataType::QASYMM8 && dt_output == DataType::QASYMM8)
+ {
+ _func_quantized = &mul_saturate_quantized_8<uint8_t>;
+ }
+ break;
+ case DataType::QASYMM8_SIGNED:
+ if(dt_input2 == DataType::QASYMM8_SIGNED)
+ {
+ _func_quantized = &mul_saturate_quantized_8<int8_t>;
+ ;
+ }
+ break;
+ case DataType::QSYMM16:
+ if(dt_input2 == DataType::QSYMM16 && dt_output == DataType::QSYMM16)
+ {
+ _func_quantized = &mul_saturate_QSYMM16_QSYMM16_QSYMM16;
+ }
+ else if(dt_input2 == DataType::QSYMM16 && dt_output == DataType::S32)
+ {
+ _func_int = &mul_QSYMM16_QSYMM16_S32;
+ }
+ break;
+ case DataType::S16:
+ if(DataType::U8 == dt_input2 && DataType::S16 == dt_output)
+ {
+ if(is_scale_255)
+ {
+ _func_int = is_sat ? &mul_S16_U8_S16<true, true> : &mul_S16_U8_S16<true, false>;
+ }
+ else
+ {
+ _func_int = is_sat ? &mul_S16_U8_S16<false, true> : &mul_S16_U8_S16<false, false>;
+ }
+ }
+ if(DataType::S16 == dt_input2 && DataType::S16 == dt_output)
+ {
+ if(is_scale_255)
+ {
+ _func_int = is_sat ? &mul_S16_S16_S16<true, true> : &mul_S16_S16_S16<true, false>;
+ }
+ else
+ {
+ _func_int = is_sat ? &mul_S16_S16_S16<false, true> : &mul_S16_S16_S16<false, false>;
+ }
+ }
+ break;
+ case DataType::S32:
+ if(DataType::S32 == dt_input2 && DataType::S32 == dt_output)
+ {
+ _func_int = is_sat ? &mul_S32_S32_S32<true> : &mul_S32_S32_S32<false>;
+ }
+ break;
+ case DataType::U8:
+ if(DataType::U8 == dt_input2 && DataType::U8 == dt_output)
+ {
+ if(is_scale_255)
+ {
+ _func_int = is_sat ? &mul_U8_U8_U8<true, true> : &mul_U8_U8_U8<true, false>;
+ }
+ else
+ {
+ _func_int = is_sat ? &mul_U8_U8_U8<false, true> : &mul_U8_U8_U8<false, false>;
+ }
+ }
+ else if(DataType::U8 == dt_input2 && DataType::S16 == dt_output)
+ {
+ if(is_scale_255)
+ {
+ _func_int = is_sat ? &mul_U8_U8_S16<true, true> : &mul_U8_U8_S16<true, false>;
+ }
+ else
+ {
+ _func_int = is_sat ? &mul_U8_U8_S16<false, true> : &mul_U8_U8_S16<false, false>;
+ }
+ }
+ else if(DataType::S16 == dt_input2 && DataType::S16 == dt_output)
+ {
+ if(is_scale_255)
+ {
+ _func_int = is_sat ? &mul_U8_S16_S16<true, true> : &mul_U8_S16_S16<true, false>;
+ }
+ else
+ {
+ _func_int = is_sat ? &mul_U8_S16_S16<false, true> : &mul_U8_S16_S16<false, false>;
+ }
+ }
+ break;
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ case DataType::F16:
+ _func_float = &mul_F16_F16_F16;
+ break;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+ case DataType::F32:
+ _func_float = &mul_F32_F32_F32;
+ break;
+ default:
+ ARM_COMPUTE_ERROR("You called with the wrong img formats");
+ }
+
+ // Configure kernel window
+ Window win = calculate_max_window(out_shape);
+
+ ICpuKernel::configure(win);
+}
+
+Status CpuMulKernel::validate(const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst, float scale, ConvertPolicy overflow_policy,
+ RoundingPolicy rounding_policy)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src1, src2, dst);
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src1, src2, dst, scale, overflow_policy, rounding_policy));
+
+ return Status{};
+}
+
+void CpuMulKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+ auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+ auto src2 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+ auto dst = tensors.get_tensor(TensorType::ACL_DST);
+
+ if(_func_quantized != nullptr)
+ {
+ (*_func_quantized)(src1, src2, dst, window, _scale);
+ }
+ else if(_func_int != nullptr)
+ {
+ (*_func_int)(src1, src2, dst, window, _scale_exponent);
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR_ON(_func_float == nullptr);
+ (*_func_float)(src1, src2, dst, window, _scale);
+ }
+}
+const char *CpuMulKernel::name() const
+{
+ return "CpuMulKernel";
+}
+namespace
+{
+Status validate_arguments_complex(const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src1, 2, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src2, 2, DataType::F32);
+
+ const TensorShape &out_shape = TensorShape::broadcast_shape(src1->tensor_shape(), src2->tensor_shape());
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
+
+ // Validate in case of configured dst
+ if(dst->total_size() > 0)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(dst, 2, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, dst->tensor_shape(), 0), "Wrong shape for dst");
+ }
+
+ return Status{};
+}
+} // namespace
+
+void CpuComplexMulKernel::configure(ITensorInfo *src1, ITensorInfo *src2, ITensorInfo *dst)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src1, src2, dst);
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(src1, src2, dst));
+
+ const TensorShape &out_shape = TensorShape::broadcast_shape(src1->tensor_shape(), src2->tensor_shape());
+
+ // Auto initialize dst if not initialized
+ const TensorInfo out_info(out_shape, src1->num_channels(), src1->data_type());
+ auto_init_if_empty(*dst, out_info);
+
+ // Configure kernel window
+ Window win = calculate_max_window(out_shape);
+
+ ICpuKernel::configure(win);
+}
+
+Status CpuComplexMulKernel::validate(const ITensorInfo *src1, const ITensorInfo *src2, const ITensorInfo *dst)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src1, src2, dst);
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(src1, src2, dst));
+
+ return Status{};
+}
+
+void CpuComplexMulKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+ auto src1 = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+ auto src2 = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+ auto dst = tensors.get_tensor(TensorType::ACL_DST);
+
+ c_mul_F32_F32_F32_n(src1, src2, dst, window);
+}
+
+const char *CpuComplexMulKernel::name() const
+{
+ return "CpuComplexMulKernel";
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute