aboutsummaryrefslogtreecommitdiff
path: root/src/core/cpu/kernels/CpuDirectConvolutionKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/cpu/kernels/CpuDirectConvolutionKernel.cpp')
-rw-r--r--src/core/cpu/kernels/CpuDirectConvolutionKernel.cpp1385
1 files changed, 1385 insertions, 0 deletions
diff --git a/src/core/cpu/kernels/CpuDirectConvolutionKernel.cpp b/src/core/cpu/kernels/CpuDirectConvolutionKernel.cpp
new file mode 100644
index 0000000000..4f46eb2bf6
--- /dev/null
+++ b/src/core/cpu/kernels/CpuDirectConvolutionKernel.cpp
@@ -0,0 +1,1385 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/cpu/kernels/CpuDirectConvolutionKernel.h"
+
+#include "src/core/NEON/kernels/detail/NEDirectConvolutionDetail.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/IAccessWindow.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "src/core/AccessWindowStatic.h"
+#include "src/core/CPP/Validate.h"
+#include "src/core/NEON/NEFixedPoint.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+
+#include <algorithm>
+
+using namespace arm_compute::detail;
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+template <unsigned int stridex>
+float16x8_t internal_vld1q(const float16_t *in);
+
+template <>
+float16x8_t internal_vld1q<1>(const float16_t *in)
+{
+ return vld1q_f16(in);
+}
+
+template <>
+float16x8_t internal_vld1q<2>(const float16_t *in)
+{
+ const float16x8x2_t tmp = vld2q_f16(in);
+ return tmp.val[0];
+}
+
+template <>
+float16x8_t internal_vld1q<3>(const float16_t *in)
+{
+ const float16x8x3_t tmp = vld3q_f16(in);
+ return tmp.val[0];
+}
+
+inline float16x8_t internal_vdupq_n(float16_t v)
+{
+ return vdupq_n_f16(v);
+}
+
+inline void internal_vst1q(float16_t *p, const float16x8_t &v)
+{
+ vst1q_f16(p, v);
+}
+
+float16x8_t internal_vmull(const float16x8_t &x, const float16x8_t &y)
+{
+ return vmulq_f16(x, y);
+}
+
+inline float16x8_t internal_vmlal(const float16x8_t &x, const float16x8_t &y, const float16x8_t &z)
+{
+ return vaddq_f16(x, vmulq_f16(y, z));
+}
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+
+template <unsigned int stridex>
+float32x4_t internal_vld1q(const float *in);
+
+template <>
+float32x4_t internal_vld1q<1>(const float *in)
+{
+ return vld1q_f32(in);
+}
+
+template <>
+float32x4_t internal_vld1q<2>(const float *in)
+{
+ const float32x4x2_t tmp = vld2q_f32(in);
+ return tmp.val[0];
+}
+
+template <>
+float32x4_t internal_vld1q<3>(const float *in)
+{
+ const float32x4x3_t tmp = vld3q_f32(in);
+ return tmp.val[0];
+}
+
+inline float32x4_t internal_vdupq_n(float v)
+{
+ return vdupq_n_f32(v);
+}
+
+inline void internal_vst1q(float *p, const float32x4_t &v)
+{
+ vst1q_f32(p, v);
+}
+
+float32x4_t internal_vmull(const float32x4_t &x, const float32x4_t &y)
+{
+ return vmulq_f32(x, y);
+}
+
+inline float32x4_t internal_vmlal(const float32x4_t &x, const float32x4_t &y, const float32x4_t &z)
+{
+ return vmlaq_f32(x, y, z);
+}
+
+constexpr int small_tensor_size_optim = 8;
+inline bool run_optim_small_tensor_info(const ITensorInfo *t)
+{
+ return t->dimension(Window::DimX) <= small_tensor_size_optim && t->dimension(Window::DimY) <= small_tensor_size_optim;
+}
+
+inline bool run_optim_small_tensor(const ITensor *t)
+{
+ return run_optim_small_tensor_info(t->info());
+}
+
+// Optimized convolver for 1x1 kernels used only where input width and height are both <= 8
+// For big Z as in Input=7x7x832, this implementation is faster than the general code becuase it doesn't need to
+// store intermidiate results in memory. Temporary results are stored in SIMD registers directly and then written to the output buffer.
+template <unsigned int stridex>
+class convolver_w1x1_i8x8_f32
+{
+public:
+ static void convolve(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info)
+ {
+ ARM_COMPUTE_ERROR_ON(src->info()->dimension(Window::DimX) > small_tensor_size_optim);
+ ARM_COMPUTE_ERROR_ON(src->info()->dimension(Window::DimY) > small_tensor_size_optim);
+
+ const int input_stride_x = src->info()->strides_in_bytes().x();
+ const int input_stride_y = src->info()->strides_in_bytes().y();
+ const int input_stride_z = src->info()->strides_in_bytes().z();
+ const int output_stride_y = dst->info()->strides_in_bytes().y();
+ const int output_stride_z = dst->info()->strides_in_bytes().z();
+ const int kernel_stride_z = weights->info()->strides_in_bytes().z();
+ const int kernel_stride_w = weights->info()->strides_in_bytes()[3];
+ const int output_h = dst->info()->dimension(1);
+ const int range_z = window.z().end() - window.z().start();
+ const int kernel_depth = weights->info()->dimension(Window::DimZ);
+ const unsigned int conv_stride_y = std::get<1>(conv_info.stride());
+ const unsigned int conv_pad_left = conv_info.pad_left();
+ const unsigned int conv_pad_top = conv_info.pad_top();
+
+ // setup output window for the iterator
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, dst->info()->dimension(Window::DimX), dst->info()->dimension(Window::DimX)));
+ window_out.set(Window::DimY, Window::Dimension(0, dst->info()->dimension(Window::DimY), dst->info()->dimension(Window::DimY)));
+ window_out.set(Window::DimZ, Window::Dimension(window.z().start(), window.z().end(), range_z));
+
+ // setup input window for the iterator
+ Window window_in = window;
+ // we just want execute_window_loop to iterate over the higher dimensions (>3), so we set the first 3 dimensions to 0
+ window_in.set(Window::DimX, Window::Dimension(0, 0, 0));
+ window_in.set(Window::DimY, Window::Dimension(0, 0, 0));
+ window_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ Window window_k = calculate_max_window(*weights->info(), Steps(1u));
+ Iterator out(dst, window_out);
+ Iterator in(src, window_in);
+ Iterator k(weights, window_k);
+
+ const uint8_t *k_ptr = k.ptr();
+
+ execute_window_loop(window_out, [&](const Coordinates & id)
+ {
+ const uint8_t *input_ptr = in.ptr() - conv_pad_left * input_stride_x - conv_pad_top * input_stride_y;
+ uint8_t *out_ptr = out.ptr();
+ int ih = 0;
+ int oh = 0;
+ std::array<float32x4_t, 8> accum0 = { vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0) };
+ std::array<float32x4_t, 8> accum1 = { vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0), vdupq_n_f32(0) };
+ for(int oz = 0; oz < range_z; ++oz)
+ {
+ accum0[0] = accum0[1] = accum0[2] = accum0[3] = accum0[4] = accum0[5] = accum0[6] = accum0[7] = vdupq_n_f32(0.f);
+ accum1[0] = accum1[1] = accum1[2] = accum1[3] = accum1[4] = accum1[5] = accum1[6] = accum1[7] = vdupq_n_f32(0.f);
+ auto p_out_base = out_ptr + oz * output_stride_z;
+ for(int p = 0; p < kernel_depth; ++p)
+ {
+ const auto k_val = reinterpret_cast<const float *>(k_ptr + p * kernel_stride_z + (id.z() + oz) * kernel_stride_w);
+ const auto vk0 = internal_vdupq_n(*k_val);
+ for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
+ {
+ const int offset_xy = ih * input_stride_y;
+ auto in_val = reinterpret_cast<const float *>(input_ptr + p * input_stride_z + offset_xy);
+ auto v_in0 = internal_vld1q<stridex>(in_val);
+ auto v_in1 = internal_vld1q<stridex>(in_val + 4);
+ accum0[oh] = vmlaq_f32(accum0[oh], vk0, v_in0);
+ accum1[oh] = vmlaq_f32(accum1[oh], vk0, v_in1);
+ }
+ }
+ for(oh = 0; oh < output_h; ++oh)
+ {
+ auto p_out = reinterpret_cast<float *>(p_out_base + oh * output_stride_y);
+ vst1q_f32(p_out, accum0[oh]);
+ vst1q_f32(p_out + 4, accum1[oh]);
+ }
+ }
+ },
+ in, out);
+ }
+};
+
+template <typename T1, typename T2, unsigned int stridex>
+class convolver_1x1
+{
+public:
+ static void convolve(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
+ const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info)
+ {
+ const int input_stride_x = src->info()->strides_in_bytes().x();
+ const int input_stride_y = src->info()->strides_in_bytes().y();
+ const int input_stride_z = src->info()->strides_in_bytes().z();
+ const int output_stride_y = dst->info()->strides_in_bytes().y();
+ const int output_stride_z = dst->info()->strides_in_bytes().z();
+ const int kernel_stride_z = weights->info()->strides_in_bytes().z();
+ const int kernel_stride_w = weights->info()->strides_in_bytes()[3];
+ const int output_w = dst->info()->dimension(0);
+ const int output_h = dst->info()->dimension(1);
+ const int range_z = window.z().end() - window.z().start();
+ const int kernel_depth = weights->info()->dimension(Window::DimZ);
+ const unsigned int conv_stride_y = std::get<1>(conv_info.stride());
+ const unsigned int conv_pad_left = conv_info.pad_left();
+ const unsigned int conv_pad_top = conv_info.pad_top();
+
+ // setup output window for the iterator
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, dst->info()->dimension(Window::DimX), dst->info()->dimension(Window::DimX)));
+ window_out.set(Window::DimY, Window::Dimension(0, dst->info()->dimension(Window::DimY), dst->info()->dimension(Window::DimY)));
+ window_out.set(Window::DimZ, Window::Dimension(window.z().start(), window.z().end(), range_z));
+
+ // setup input window for the iterator
+ Window window_in = window;
+ // we just want execute_window_loop to iterate over the higher dimensions (>3), so we set the first 3 dimensions to 0
+ window_in.set(Window::DimX, Window::Dimension(0, 0, 0));
+ window_in.set(Window::DimY, Window::Dimension(0, 0, 0));
+ window_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ Window window_k = calculate_max_window(*weights->info(), Steps(1u));
+ Iterator out(dst, window_out);
+ Iterator in(src, window_in);
+ Iterator k(weights, window_k);
+
+ const uint8_t *k_ptr = k.ptr();
+
+ execute_window_loop(window_out, [&](const Coordinates & id)
+ {
+ /*
+ For a detailed explanation on how the algorithm works refer to template <> class convolver_3x3<1>
+ */
+ const uint8_t *input_ptr = in.ptr() - conv_pad_left * input_stride_x - conv_pad_top * input_stride_y;
+ uint8_t *out_ptr = out.ptr();
+ int ih = 0;
+ int oh = 0;
+ for(int oz = 0; oz < range_z; ++oz)
+ {
+ auto p_out_base = out_ptr + oz * output_stride_z;
+ // Step 1
+ {
+ const auto k_val = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + (id.z() + oz) * kernel_stride_w);
+ const auto vk = internal_vdupq_n(*k_val);
+ for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
+ {
+ const int offset_xy = ih * input_stride_y;
+ auto in_val = reinterpret_cast<const T1 *>(input_ptr + (0 * input_stride_z + offset_xy));
+ auto p_out = reinterpret_cast<T2 *>(p_out_base + oh * output_stride_y);
+ for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration, in_val += num_elems_read_per_iteration, p_out += num_elems_written_per_iteration)
+ {
+ internal_vst1q(p_out, internal_vmull(vk, internal_vld1q<stridex>(in_val)));
+ }
+ }
+ }
+
+ // Step 2
+ for(int p = 1; p < kernel_depth; ++p)
+ {
+ const auto k_val = reinterpret_cast<const T1 *>(k_ptr + p * kernel_stride_z + (id.z() + oz) * kernel_stride_w);
+ const auto vk = internal_vdupq_n(*k_val);
+ for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
+ {
+ const int offset_xy = ih * input_stride_y;
+ auto in_val = reinterpret_cast<const T1 *>(input_ptr + p * input_stride_z + offset_xy);
+ auto p_out = reinterpret_cast<T2 *>(p_out_base + oh * output_stride_y);
+ for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration, in_val += num_elems_read_per_iteration, p_out += num_elems_written_per_iteration)
+ {
+ internal_vst1q(p_out, internal_vmlal(internal_vld1q<1>(p_out), vk, internal_vld1q<stridex>(in_val)));
+ }
+ }
+ }
+ }
+ },
+ in, out);
+ }
+};
+
+template <unsigned int stridex>
+float32x4x2_t convolve_5x5(const float *in_0, const float *in_1, const float *in_2, const float *in_3, const float *in_4,
+ const float *m0, const float *m1, const float *m2, const float *m3, const float *m4);
+
+inline float32x4x3_t load_matrix_hi(const float *const m0, const float *const m1, const float *const m2)
+{
+ const float32x4x3_t m00 =
+ {
+ {
+ vld1q_dup_f32(m0),
+ vld1q_dup_f32(m1),
+ vld1q_dup_f32(m2)
+ }
+ };
+ return m00;
+}
+
+inline float32x4x2_t load_matrix_lo(const float *const m3, const float *const m4)
+{
+ const float32x4x2_t m00 =
+ {
+ {
+ vld1q_dup_f32(m3),
+ vld1q_dup_f32(m4)
+ }
+ };
+ return m00;
+}
+
+inline float32x4x3_t load_input(const float *const in)
+{
+ const float32x4x3_t vin =
+ {
+ {
+ vld1q_f32(in),
+ vld1q_f32(in + 4),
+ vld1q_f32(in + 8)
+ }
+ };
+ return vin;
+}
+
+template <>
+inline float32x4x2_t convolve_5x5<1>(const float *in_0, const float *in_1, const float *in_2, const float *in_3, const float *in_4,
+ const float *m0, const float *m1, const float *m2, const float *m3, const float *m4)
+{
+ const float32x4x3_t vin0 = load_input(in_0);
+ const float32x4x3_t vin1 = load_input(in_1);
+ const float32x4x3_t vin2 = load_input(in_2);
+ const float32x4x3_t vin3 = load_input(in_3);
+ const float32x4x3_t vin4 = load_input(in_4);
+ const float32x4x3_t m00 = load_matrix_hi(m0, 1 + m0, 2 + m0);
+ const float32x4x2_t m01 = load_matrix_lo(3 + m0, 4 + m0);
+ const float32x4x3_t m10 = load_matrix_hi(m1, 1 + m1, 2 + m1);
+ const float32x4x2_t m11 = load_matrix_lo(3 + m1, 4 + m1);
+ const float32x4x3_t m20 = load_matrix_hi(m2, 1 + m2, 2 + m2);
+ const float32x4x2_t m21 = load_matrix_lo(3 + m2, 4 + m2);
+ const float32x4x3_t m30 = load_matrix_hi(m3, 1 + m3, 2 + m3);
+ const float32x4x2_t m31 = load_matrix_lo(3 + m3, 4 + m3);
+ const float32x4x3_t m40 = load_matrix_hi(m4, 1 + m4, 2 + m4);
+ const float32x4x2_t m41 = load_matrix_lo(3 + m4, 4 + m4);
+
+ float32x4x2_t out =
+ {
+ {
+ vmulq_f32(vin0.val[0], m00.val[0]),
+ vmulq_f32(vin0.val[1], m00.val[0])
+ }
+ };
+
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin0.val[0], vin0.val[1], 1), m00.val[1]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin0.val[0], vin0.val[1], 2), m00.val[2]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin0.val[0], vin0.val[1], 3), m01.val[0]);
+ out.val[0] = vmlaq_f32(out.val[0], vin0.val[1], m01.val[1]);
+
+ out.val[0] = vmlaq_f32(out.val[0], vin1.val[0], m10.val[0]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin1.val[0], vin1.val[1], 1), m10.val[1]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin1.val[0], vin1.val[1], 2), m10.val[2]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin1.val[0], vin1.val[1], 3), m11.val[0]);
+ out.val[0] = vmlaq_f32(out.val[0], vin1.val[1], m11.val[1]);
+
+ out.val[0] = vmlaq_f32(out.val[0], vin2.val[0], m20.val[0]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin2.val[0], vin2.val[1], 1), m20.val[1]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin2.val[0], vin2.val[1], 2), m20.val[2]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin2.val[0], vin2.val[1], 3), m21.val[0]);
+ out.val[0] = vmlaq_f32(out.val[0], vin2.val[1], m21.val[1]);
+
+ out.val[0] = vmlaq_f32(out.val[0], vin3.val[0], m30.val[0]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin3.val[0], vin3.val[1], 1), m30.val[1]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin3.val[0], vin3.val[1], 2), m30.val[2]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin3.val[0], vin3.val[1], 3), m31.val[0]);
+ out.val[0] = vmlaq_f32(out.val[0], vin3.val[1], m31.val[1]);
+
+ out.val[0] = vmlaq_f32(out.val[0], vin4.val[0], m40.val[0]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin4.val[0], vin4.val[1], 1), m40.val[1]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin4.val[0], vin4.val[1], 2), m40.val[2]);
+ out.val[0] = vmlaq_f32(out.val[0], vextq_f32(vin4.val[0], vin4.val[1], 3), m41.val[0]);
+ out.val[0] = vmlaq_f32(out.val[0], vin4.val[1], m41.val[1]);
+
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin0.val[1], vin0.val[2], 1), m00.val[1]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin0.val[1], vin0.val[2], 2), m00.val[2]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin0.val[1], vin0.val[2], 3), m01.val[0]);
+ out.val[1] = vmlaq_f32(out.val[1], vin0.val[2], m01.val[1]);
+
+ out.val[1] = vmlaq_f32(out.val[1], vin1.val[1], m10.val[0]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin1.val[1], vin1.val[2], 1), m10.val[1]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin1.val[1], vin1.val[2], 2), m10.val[2]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin1.val[1], vin1.val[2], 3), m11.val[0]);
+ out.val[1] = vmlaq_f32(out.val[1], vin1.val[2], m11.val[1]);
+
+ out.val[1] = vmlaq_f32(out.val[1], vin2.val[1], m20.val[0]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin2.val[1], vin2.val[2], 1), m20.val[1]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin2.val[1], vin2.val[2], 2), m20.val[2]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin2.val[1], vin2.val[2], 3), m21.val[0]);
+ out.val[1] = vmlaq_f32(out.val[1], vin2.val[2], m21.val[1]);
+
+ out.val[1] = vmlaq_f32(out.val[1], vin3.val[1], m30.val[0]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin3.val[1], vin3.val[2], 1), m30.val[1]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin3.val[1], vin3.val[2], 2), m30.val[2]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin3.val[1], vin3.val[2], 3), m31.val[0]);
+ out.val[1] = vmlaq_f32(out.val[1], vin3.val[2], m31.val[1]);
+
+ out.val[1] = vmlaq_f32(out.val[1], vin4.val[1], m40.val[0]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin4.val[1], vin4.val[2], 1), m40.val[1]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin4.val[1], vin4.val[2], 2), m40.val[2]);
+ out.val[1] = vmlaq_f32(out.val[1], vextq_f32(vin4.val[1], vin4.val[2], 3), m41.val[0]);
+ out.val[1] = vmlaq_f32(out.val[1], vin4.val[2], m41.val[1]);
+
+ return out;
+}
+
+template <>
+inline float32x4x2_t convolve_5x5<2>(const float *in_0, const float *in_1, const float *in_2, const float *in_3, const float *in_4,
+ const float *m0, const float *m1, const float *m2, const float *m3, const float *m4)
+{
+ float32x4x2_t out = convolve_5x5<1>(in_0, in_1, in_2, in_3, in_4, m0, m1, m2, m3, m4);
+ out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[0], 2), out.val[0], 1);
+ out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[1], 0), out.val[0], 2);
+ out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[1], 2), out.val[0], 3);
+ return out;
+}
+
+template <>
+inline float32x4x2_t convolve_5x5<3>(const float *in_0, const float *in_1, const float *in_2, const float *in_3, const float *in_4,
+ const float *m0, const float *m1, const float *m2, const float *m3, const float *m4)
+{
+ float32x4x2_t out = convolve_5x5<1>(in_0, in_1, in_2, in_3, in_4, m0, m1, m2, m3, m4);
+ out.val[0] = vsetq_lane_f32(vgetq_lane_f32(out.val[0], 3), out.val[0], 1);
+ return out;
+}
+
+template <typename T1, typename T2, unsigned int stridex>
+class convolver_3x3
+{
+public:
+ static void convolve(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
+ const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info)
+ {
+ ARM_COMPUTE_UNUSED(num_elems_read_per_iteration);
+ const int input_stride_x = src->info()->strides_in_bytes().x();
+ const int input_stride_y = src->info()->strides_in_bytes().y();
+ const int input_stride_z = src->info()->strides_in_bytes().z();
+ const int output_stride_y = dst->info()->strides_in_bytes().y();
+ const int output_stride_z = dst->info()->strides_in_bytes().z();
+ const int kernel_stride_x = weights->info()->strides_in_bytes().x();
+ const int kernel_stride_y = weights->info()->strides_in_bytes().y();
+ const int kernel_stride_z = weights->info()->strides_in_bytes().z();
+ const int kernel_stride_w = weights->info()->strides_in_bytes()[3];
+ const int output_w = dst->info()->dimension(0);
+ const int output_h = dst->info()->dimension(1);
+ const int num_planes_z = window.z().end() - window.z().start();
+ const int delta_input = get_input_num_elems_processed(num_elems_written_per_iteration, stridex);
+ const int kernel_depth = weights->info()->dimension(Window::DimZ);
+ const unsigned int conv_stride_y = std::get<1>(conv_info.stride());
+ const unsigned int conv_pad_left = conv_info.pad_left();
+ const unsigned int conv_pad_top = conv_info.pad_top();
+
+ // setup output window for the iterator
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, dst->info()->dimension(Window::DimX), dst->info()->dimension(Window::DimX)));
+ window_out.set(Window::DimY, Window::Dimension(0, dst->info()->dimension(Window::DimY), dst->info()->dimension(Window::DimY)));
+ window_out.set(Window::DimZ, Window::Dimension(window.z().start(), window.z().end(), num_planes_z));
+
+ // setup input window for the iterator
+ Window window_in = window;
+ // we just want execute_window_loop to iterate over the higher dimensions (>3), so we set the first 3 dimensions to 0
+ window_in.set(Window::DimX, Window::Dimension(0, 0, 0));
+ window_in.set(Window::DimY, Window::Dimension(0, 0, 0));
+ window_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ Window window_k = calculate_max_window(*weights->info(), Steps(1u));
+
+ Iterator out(dst, window_out);
+ Iterator in(src, window_in);
+ Iterator k(weights, window_k);
+
+ const uint8_t *k_ptr = k.ptr();
+
+ execute_window_loop(window_out, [&](const Coordinates & id)
+ {
+ const uint8_t *input_ptr = in.ptr() - conv_pad_left * input_stride_x - conv_pad_top * input_stride_y;
+ uint8_t *out_ptr = out.ptr();
+ int ih = 0;
+ int oh = 0;
+ /*
+ Each thread executing this kernel computes one or more output's volume planes.
+
+ Let's say the 3rd dimension of the output volume is 32, the first thread will compute the output for Z = [0,7], the second thread will compute the output for Z = [8,15],
+ the third thread [16,24] and the fourth thread [25,31].
+
+ The algorithm outer loop iterates over Z, P, Y, X where P is the depth/3rd dimension of each kernel. This order is not arbitrary, the main benefit of this
+ is that we setup the neon registers containing the kernel's values only once and then compute each XY using the preloaded registers as opposed as doing this for every XY value.
+
+ The algorithm does not require allocating any additional memory amd computes the results directly in-place in two stages:
+ 1) Convolve plane 0 with kernel 0 and initialize the corresponding output plane with these values.
+ 2) Convolve the remaining planes and accumulate the results in the output's plane which has been initialized in step 1.
+ */
+ for(int oz = 0; oz < num_planes_z; ++oz)
+ {
+ const int zoffset = id.z() + oz;
+ uint8_t *p_out_base = out_ptr + oz * output_stride_z;
+ // Step 1
+ {
+ const auto ptr_k_r0 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 0 * kernel_stride_y + 0 * kernel_stride_x);
+ const auto ptr_k_r1 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 1 * kernel_stride_y + 0 * kernel_stride_x);
+ const auto ptr_k_r2 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 2 * kernel_stride_y + 0 * kernel_stride_x);
+ const auto vk_r0 = load_matrix_row(ptr_k_r0);
+ const auto vk_r1 = load_matrix_row(ptr_k_r1);
+ const auto vk_r2 = load_matrix_row(ptr_k_r2);
+ for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
+ {
+ auto in_top = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 0) * input_stride_y);
+ auto in_mid = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 1) * input_stride_y);
+ auto in_low = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 2) * input_stride_y);
+ auto p_out = reinterpret_cast<T2 *>(p_out_base + oh * output_stride_y);
+ for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration,
+ in_top += delta_input, in_mid += delta_input, in_low += delta_input, p_out += num_elems_written_per_iteration)
+ {
+ convolve_3x3<false>(in_top, in_mid, in_low, p_out, vk_r0, vk_r1, vk_r2, stridex);
+ }
+ }
+ }
+ // Step 2
+ for(int p = 1; p < kernel_depth; ++p)
+ {
+ const uint8_t *ptr_k_base = k_ptr + p * kernel_stride_z + zoffset * kernel_stride_w;
+ const uint8_t *input_base = input_ptr + p * input_stride_z;
+ const auto ptr_k_r0 = reinterpret_cast<const T1 *>(ptr_k_base);
+ const auto ptr_k_r1 = reinterpret_cast<const T1 *>(ptr_k_base + kernel_stride_y);
+ const auto ptr_k_r2 = reinterpret_cast<const T1 *>(ptr_k_base + kernel_stride_y * 2);
+ const auto vk_r0 = load_matrix_row(ptr_k_r0);
+ const auto vk_r1 = load_matrix_row(ptr_k_r1);
+ const auto vk_r2 = load_matrix_row(ptr_k_r2);
+ for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
+ {
+ auto in_top = reinterpret_cast<const T1 *>(input_base + (ih + 0) * input_stride_y);
+ auto in_mid = reinterpret_cast<const T1 *>(input_base + (ih + 1) * input_stride_y);
+ auto in_low = reinterpret_cast<const T1 *>(input_base + (ih + 2) * input_stride_y);
+ auto p_out = reinterpret_cast<T2 *>(p_out_base + oh * output_stride_y);
+ for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration,
+ in_top += delta_input, in_mid += delta_input, in_low += delta_input, p_out += num_elems_written_per_iteration)
+ {
+ convolve_3x3<true>(in_top, in_mid, in_low, p_out, vk_r0, vk_r1, vk_r2, stridex);
+ }
+ }
+ }
+ }
+ },
+ in, out);
+ }
+};
+
+template <typename T1, typename T2, unsigned int stridex>
+class convolver_5x5
+{
+public:
+ static void convolve(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
+ const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info)
+ {
+ ARM_COMPUTE_UNUSED(num_elems_read_per_iteration);
+ const int input_stride_x = src->info()->strides_in_bytes().x();
+ const int input_stride_y = src->info()->strides_in_bytes().y();
+ const int input_stride_z = src->info()->strides_in_bytes().z();
+ const int output_stride_y = dst->info()->strides_in_bytes().y();
+ const int output_stride_z = dst->info()->strides_in_bytes().z();
+ const int kernel_stride_x = weights->info()->strides_in_bytes().x();
+ const int kernel_stride_y = weights->info()->strides_in_bytes().y();
+ const int kernel_stride_z = weights->info()->strides_in_bytes().z();
+ const int kernel_stride_w = weights->info()->strides_in_bytes()[3];
+ const int output_w = dst->info()->dimension(0);
+ const int output_h = dst->info()->dimension(1);
+ const int num_planes_z = window.z().end() - window.z().start();
+ const int delta_input = get_input_num_elems_processed(num_elems_written_per_iteration, stridex);
+ const int kernel_depth = weights->info()->dimension(Window::DimZ);
+ const unsigned int conv_stride_y = std::get<1>(conv_info.stride());
+ const unsigned int conv_pad_left = conv_info.pad_left();
+ const unsigned int conv_pad_top = conv_info.pad_top();
+
+ // setup output window for the iterator
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, dst->info()->dimension(Window::DimX), dst->info()->dimension(Window::DimX)));
+ window_out.set(Window::DimY, Window::Dimension(0, dst->info()->dimension(Window::DimY), dst->info()->dimension(Window::DimY)));
+ window_out.set(Window::DimZ, Window::Dimension(window.z().start(), window.z().end(), num_planes_z));
+
+ // setup input window for the iterator
+ Window window_in = window;
+ // we just want execute_window_loop to iterate over the higher dimensions (>3), so we set the first 3 dimensions to 0
+ window_in.set(Window::DimX, Window::Dimension(0, 0, 0));
+ window_in.set(Window::DimY, Window::Dimension(0, 0, 0));
+ window_in.set(Window::DimZ, Window::Dimension(0, 0, 0));
+
+ Window window_k = calculate_max_window(*weights->info(), Steps(1u));
+
+ Iterator out(dst, window_out);
+ Iterator in(src, window_in);
+ Iterator k(weights, window_k);
+
+ const uint8_t *k_ptr = k.ptr();
+
+ execute_window_loop(window_out, [&](const Coordinates & id)
+ {
+ const uint8_t *input_ptr = in.ptr() - conv_pad_left * input_stride_x - conv_pad_top * input_stride_y;
+ uint8_t *out_ptr = out.ptr();
+ int ih = 0;
+ int oh = 0;
+ for(int oz = 0; oz < num_planes_z; ++oz)
+ {
+ const int zoffset = id.z() + oz;
+ uint8_t *p_out_base = out_ptr + oz * output_stride_z;
+ // Step 1
+ {
+ const auto ptr_k_r0 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 0 * kernel_stride_y + 0 * kernel_stride_x);
+ const auto ptr_k_r1 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 1 * kernel_stride_y + 0 * kernel_stride_x);
+ const auto ptr_k_r2 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 2 * kernel_stride_y + 0 * kernel_stride_x);
+ const auto ptr_k_r3 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 3 * kernel_stride_y + 0 * kernel_stride_x);
+ const auto ptr_k_r4 = reinterpret_cast<const T1 *>(k_ptr + 0 * kernel_stride_z + zoffset * kernel_stride_w + 4 * kernel_stride_y + 0 * kernel_stride_x);
+ for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
+ {
+ auto in_0 = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 0) * input_stride_y);
+ auto in_1 = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 1) * input_stride_y);
+ auto in_2 = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 2) * input_stride_y);
+ auto in_3 = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 3) * input_stride_y);
+ auto in_4 = reinterpret_cast<const T1 *>(input_ptr + 0 * input_stride_z + (ih + 4) * input_stride_y);
+ auto p_out = reinterpret_cast<T2 *>(p_out_base + oh * output_stride_y);
+ for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration,
+ in_0 += delta_input, in_1 += delta_input, in_2 += delta_input, in_3 += delta_input, in_4 += delta_input, p_out += num_elems_written_per_iteration)
+ {
+ auto vres = convolve_5x5<stridex>(in_0, in_1, in_2, in_3, in_4, ptr_k_r0, ptr_k_r1, ptr_k_r2, ptr_k_r3, ptr_k_r4);
+ store_results<stridex>(p_out, vres);
+ }
+ }
+ }
+ // Step 2
+ for(int p = 1; p < kernel_depth; ++p)
+ {
+ const auto ptr_k_r0 = reinterpret_cast<const T1 *>(k_ptr + p * kernel_stride_z + zoffset * kernel_stride_w + 0 * kernel_stride_y + 0 * kernel_stride_x);
+ const auto ptr_k_r1 = reinterpret_cast<const T1 *>(k_ptr + p * kernel_stride_z + zoffset * kernel_stride_w + 1 * kernel_stride_y + 0 * kernel_stride_x);
+ const auto ptr_k_r2 = reinterpret_cast<const T1 *>(k_ptr + p * kernel_stride_z + zoffset * kernel_stride_w + 2 * kernel_stride_y + 0 * kernel_stride_x);
+ const auto ptr_k_r3 = reinterpret_cast<const T1 *>(k_ptr + p * kernel_stride_z + zoffset * kernel_stride_w + 3 * kernel_stride_y + 0 * kernel_stride_x);
+ const auto ptr_k_r4 = reinterpret_cast<const T1 *>(k_ptr + p * kernel_stride_z + zoffset * kernel_stride_w + 4 * kernel_stride_y + 0 * kernel_stride_x);
+
+ for(ih = 0, oh = 0; oh < output_h; ++oh, ih += conv_stride_y)
+ {
+ auto in_0 = reinterpret_cast<const T1 *>(input_ptr + p * input_stride_z + (ih + 0) * input_stride_y);
+ auto in_1 = reinterpret_cast<const T1 *>(input_ptr + p * input_stride_z + (ih + 1) * input_stride_y);
+ auto in_2 = reinterpret_cast<const T1 *>(input_ptr + p * input_stride_z + (ih + 2) * input_stride_y);
+ auto in_3 = reinterpret_cast<const T1 *>(input_ptr + p * input_stride_z + (ih + 3) * input_stride_y);
+ auto in_4 = reinterpret_cast<const T1 *>(input_ptr + p * input_stride_z + (ih + 4) * input_stride_y);
+ auto p_out = reinterpret_cast<T2 *>(p_out_base + oh * output_stride_y);
+ for(int ow = 0; ow < output_w; ow += num_elems_written_per_iteration,
+ in_0 += delta_input, in_1 += delta_input, in_2 += delta_input, in_3 += delta_input, in_4 += delta_input, p_out += num_elems_written_per_iteration)
+ {
+ auto vres = convolve_5x5<stridex>(in_0, in_1, in_2, in_3, in_4, ptr_k_r0, ptr_k_r1, ptr_k_r2, ptr_k_r3, ptr_k_r4);
+ accumulate_results<stridex>(p_out, vres);
+ }
+ }
+ }
+ }
+ },
+ in, out);
+ }
+};
+
+float vreduce(const float32x4_t &v)
+{
+ auto v0 = wrapper::vgethigh(v);
+ auto v1 = wrapper::vgetlow(v);
+ auto v_out = wrapper::vadd(v0, v1);
+
+ float a = wrapper::vgetlane(v_out, 0);
+ float b = wrapper::vgetlane(v_out, 1);
+ return a + b;
+}
+
+template <typename T1, typename T2>
+inline void convolve_1x1(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
+ const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info)
+{
+ const unsigned int conv_stride_x = std::get<0>(conv_info.stride());
+ switch(conv_stride_x)
+ {
+ case 1:
+ convolver_1x1<T1, T2, 1>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, src, weights, dst, conv_info);
+ break;
+ case 2:
+ convolver_1x1<T1, T2, 2>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, src, weights, dst, conv_info);
+ break;
+ case 3:
+ convolver_1x1<T1, T2, 3>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, src, weights, dst, conv_info);
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Not implemented");
+ }
+}
+
+template <>
+inline void convolve_1x1<float, float>(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
+ const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info)
+{
+ const unsigned int conv_stride_x = std::get<0>(conv_info.stride());
+ if(run_optim_small_tensor(src))
+ {
+ switch(conv_stride_x)
+ {
+ case 1:
+ convolver_w1x1_i8x8_f32<1>::convolve(window, src, weights, dst, conv_info);
+ break;
+ case 2:
+ convolver_w1x1_i8x8_f32<2>::convolve(window, src, weights, dst, conv_info);
+ break;
+ case 3:
+ convolver_w1x1_i8x8_f32<3>::convolve(window, src, weights, dst, conv_info);
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Not implemented");
+ }
+ }
+ else
+ {
+ switch(conv_stride_x)
+ {
+ case 1:
+ convolver_1x1<float, float, 1>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, src, weights, dst, conv_info);
+ break;
+ case 2:
+ convolver_1x1<float, float, 2>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, src, weights, dst, conv_info);
+ break;
+ case 3:
+ convolver_1x1<float, float, 3>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, src, weights, dst, conv_info);
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Not implemented");
+ }
+ }
+}
+
+template <typename T1, typename T2>
+inline void convolve_3x3(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
+ const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info)
+{
+ const unsigned int conv_stride_x = std::get<0>(conv_info.stride());
+ switch(conv_stride_x)
+ {
+ case 1:
+ convolver_3x3<T1, T2, 1>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, src, weights, dst, conv_info);
+ break;
+ case 2:
+ convolver_3x3<T1, T2, 2>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, src, weights, dst, conv_info);
+ break;
+ case 3:
+ convolver_3x3<T1, T2, 3>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, src, weights, dst, conv_info);
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Not implemented");
+ }
+}
+
+template <typename T1, typename T2>
+inline void convolve_5x5(const Window &window, unsigned int num_elems_read_per_iteration, unsigned int num_elems_written_per_iteration,
+ const ITensor *src, const ITensor *weights, ITensor *dst, const PadStrideInfo &conv_info)
+{
+ const unsigned int conv_stride_x = std::get<0>(conv_info.stride());
+ switch(conv_stride_x)
+ {
+ case 1:
+ convolver_5x5<T1, T2, 1>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, src, weights, dst, conv_info);
+ break;
+ case 2:
+ convolver_5x5<T1, T2, 2>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, src, weights, dst, conv_info);
+ break;
+ case 3:
+ convolver_5x5<T1, T2, 3>::convolve(window, num_elems_read_per_iteration, num_elems_written_per_iteration, src, weights, dst, conv_info);
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Not implemented");
+ }
+}
+
+Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const PadStrideInfo &conv_info)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON(src->data_layout() == DataLayout::UNKNOWN);
+ ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::F16, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights);
+
+ const DataLayout data_layout = src->data_layout();
+ const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+ const int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
+ const int channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(std::get<0>(conv_info.stride()) > 3, "Strides larger than 3 not supported.");
+ ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(channel_idx) != src->dimension(channel_idx));
+ ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) != weights->dimension(height_idx));
+ ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
+ ARM_COMPUTE_RETURN_ERROR_ON(data_layout == DataLayout::NHWC && src->data_type() != DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON((weights->dimension(width_idx) > 3) && (src->data_type() == DataType::F16));
+
+ // Checks performed when output is configured
+ if(dst->total_size() != 0)
+ {
+ TensorShape output_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *weights, conv_info);
+
+ DataType data_type = src->data_type();
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), output_shape);
+ ARM_COMPUTE_RETURN_ERROR_ON(dst->data_type() != data_type);
+ }
+
+ return Status{};
+}
+
+std::pair<Status, Window> validate_and_configure_window(ITensorInfo *src, ITensorInfo *weights, ITensorInfo *dst, const PadStrideInfo &conv_info, unsigned int &num_weight_elems_read_per_row,
+ unsigned int &num_elems_read_per_iteration, unsigned int &num_elems_written_per_iteration, BorderSize &border_size)
+{
+ ARM_COMPUTE_ERROR_ON(src->data_layout() == DataLayout::UNKNOWN);
+
+ const DataLayout data_layout = src->data_layout();
+ const int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+
+ // Calculate right and bottom border
+ unsigned int kernel_size = weights->dimension(width_idx);
+ const int conv_stride_x = std::get<0>(conv_info.stride());
+ const int conv_stride_y = std::get<1>(conv_info.stride());
+ const int input_width = src->dimension(width_idx);
+
+ Window win{};
+ bool window_changed = false;
+
+ if(data_layout == DataLayout::NCHW)
+ {
+ switch(kernel_size)
+ {
+ case 1:
+ {
+ switch(src->data_type())
+ {
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ case DataType::F16:
+ num_elems_written_per_iteration = 8;
+ break;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+ case DataType::F32:
+ if(run_optim_small_tensor_info(src))
+ {
+ num_elems_written_per_iteration = 8;
+ }
+ else
+ {
+ num_elems_written_per_iteration = 4;
+ }
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Data type not supported.");
+ break;
+ }
+ num_weight_elems_read_per_row = kernel_size;
+ num_elems_read_per_iteration = conv_stride_x * num_elems_written_per_iteration;
+ break;
+ }
+ case 3:
+ switch(src->data_type())
+ {
+ case DataType::F32:
+ num_weight_elems_read_per_row = 4 + kernel_size - 1;
+ num_elems_read_per_iteration = 12;
+ num_elems_written_per_iteration = 16 >> conv_stride_x;
+ break;
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ case DataType::F16:
+ num_weight_elems_read_per_row = 8 + kernel_size - 1;
+ num_elems_read_per_iteration = 24;
+ num_elems_written_per_iteration = 32 >> conv_stride_x;
+ break;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+ default:
+ ARM_COMPUTE_ERROR("Data type not supported.");
+ break;
+ }
+ break;
+ case 5:
+ {
+ switch(src->data_type())
+ {
+ case DataType::F32:
+ num_weight_elems_read_per_row = 4 + kernel_size - 1;
+ num_elems_read_per_iteration = 12;
+ num_elems_written_per_iteration = 16 >> conv_stride_x;
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Data type not supported.");
+ break;
+ }
+ }
+ break;
+ default:
+ {
+ ARM_COMPUTE_ERROR("Not implemented");
+ break;
+ }
+ }
+
+ // Calculate right pad
+ int start_x = kernel_size / 2 - static_cast<int>(conv_info.pad_left());
+ int end_x = ceil_to_multiple(static_cast<int>(dst->dimension(0)), num_elems_written_per_iteration) * conv_stride_x;
+ int upper_bound_w = ceil_to_multiple(start_x + end_x, num_elems_read_per_iteration) - input_width;
+
+ // Calculate border
+ const unsigned int conv_pad_left = conv_info.pad_left();
+ const unsigned int conv_pad_top = conv_info.pad_top();
+ const unsigned int conv_pad_right = std::max(upper_bound_w, 0);
+ const unsigned int conv_pad_bottom = conv_info.pad_bottom();
+
+ border_size.left = conv_pad_left;
+ border_size.top = conv_pad_top;
+ border_size.right = conv_pad_right;
+ border_size.bottom = conv_pad_bottom;
+
+ // Configure window
+ win = calculate_max_window(*dst, Steps(num_elems_written_per_iteration));
+
+ AccessWindowRectangle input_access(src, -conv_pad_left, -conv_pad_top,
+ num_elems_read_per_iteration, kernel_size,
+ conv_stride_x, conv_stride_y);
+ AccessWindowStatic weights_access(weights, 0, 0, num_weight_elems_read_per_row, kernel_size);
+ AccessWindowHorizontal output_access(dst, 0, num_elems_written_per_iteration);
+ window_changed = update_window_and_padding(win, input_access, weights_access, output_access);
+ output_access.set_valid_region(win, ValidRegion(Coordinates(), dst->tensor_shape()));
+ }
+ else
+ {
+ // Configure window NHWC without any padding
+ win = calculate_max_window(*dst, Steps());
+ }
+
+ Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
+ return std::make_pair(err, win);
+}
+
+bool have_zero_x_internal_padding(ITensorInfo *src, ITensorInfo *weights)
+{
+ return (src->padding().left == 0 && weights->padding().left == 0 && src->padding().right == 0 && weights->padding().right == 0);
+}
+
+} // namespace
+
+template <typename T>
+void CpuDirectConvolutionKernel::convolve_nhwc_optimized(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst)
+{
+ // This function assumes that input and weights have not padding in channel
+
+ // Declare useful types
+ using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
+ using vector_type = typename vtype::type;
+ using tag_type = typename vtype::tag_type;
+
+ // Scalar quantities
+ const int element_size = src->info()->element_size();
+ const int input_stride_w = src->info()->strides_in_bytes().y() / element_size;
+ const int input_stride_h = src->info()->strides_in_bytes().z() / element_size;
+ const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size;
+ const int input_dim_w = src->info()->dimension(1);
+ const int input_dim_h = src->info()->dimension(2);
+
+ const int output_stride_c = dst->info()->strides_in_bytes().x();
+
+ const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().y() / element_size;
+ const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().z() / element_size;
+ const int kernel_dim_w = weights->info()->dimension(1);
+ const int kernel_dim_h = weights->info()->dimension(2);
+
+ const int conv_pad_top = _conv_info.pad_top();
+ const int conv_pad_left = _conv_info.pad_left();
+ const int conv_stride_w = std::get<0>(_conv_info.stride());
+ const int conv_stride_h = std::get<1>(_conv_info.stride());
+
+ // Setup input window for the output iterator
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ // Setup input window for the weights iterator
+ Window window_w = calculate_max_window(*weights->info(), Steps());
+ window_w.set(Window::DimX, Window::Dimension(0, 1, 1));
+ window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
+ window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
+
+ Iterator out(dst, window_out);
+ Iterator wei(weights, window_w);
+
+ constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
+ /*
+ * This implementation parallelize the full WC plane of input and weights by
+ * treating them as series of elements. So for example, a 3x3 weights and
+ * floating point vector operations of 4 elements per time, the first 3
+ * channel elements of the first row would be taken and additionally the first
+ * element of the second row. The 9 elements in each single WC weight plane
+ * would require 2 4-element vector operations and a last single element operation.
+ *
+ * This works since when we create the input vector to multiply with the weights,
+ * the exact required elements are loaded in the same order. Therefore the
+ * multiplication works on the correct input/weight elements.
+ */
+ execute_window_loop(window_out, [&](const Coordinates & id)
+ {
+ /*
+ * In here we create theoretical indexes which then we validate for both
+ * inputs and weights.
+ * As a reminder, this loop take each output point in NHW, C is treated
+ * in the weights loop.
+ */
+ // We are computing the theoretical starting input starting points
+ const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
+ const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
+ const int in_w_end_t = in_w_start_t + kernel_dim_w;
+ const int in_h_end_t = in_h_start_t + kernel_dim_h;
+
+ // We are computing the valid initial and ending input points by checking the borders
+ const int in_w_start = std::max(in_w_start_t, 0);
+ const int in_h_start = std::max(in_h_start_t, 0);
+ const int in_w_end = std::min(in_w_end_t, input_dim_w);
+ const int in_h_end = std::min(in_h_end_t, input_dim_h);
+
+ // We use the input points to select the valid weight points to use
+ const int index_wc_start = (in_w_start - in_w_start_t) * kernel_stride_w;
+ const int index_h_start = in_h_start - in_h_start_t;
+ const int index_wc_end = (kernel_dim_w - (in_w_end_t - in_w_end)) * kernel_stride_w;
+ const int index_h_end = kernel_dim_h - (in_h_end_t - in_h_end);
+
+ execute_window_loop(window_w, [&](const Coordinates & id_w)
+ {
+ /*
+ * This is the loop in the weights, and it goes along N (the batches)
+ * As a reminder, the batches of the weights are translated into the
+ * channels of the output
+ */
+ const T *in_ptr_row = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes())
+ + id[3] * input_stride_n + in_w_start * input_stride_w + in_h_start * input_stride_h;
+ const T *weights_ptr_row = reinterpret_cast<const T *>(wei.ptr()) + index_h_start * kernel_stride_h;
+ uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c;
+
+ T out_temp = static_cast<T>(0);
+ for(int index_h = index_h_start; index_h < index_h_end; ++index_h, in_ptr_row += input_stride_h, weights_ptr_row += kernel_stride_h)
+ {
+ const T *in_ptr_mover = in_ptr_row;
+ int index_wc = index_wc_start;
+ vector_type out_temp_vec = wrapper::vdup_n(static_cast<T>(0), tag_type());
+ for(; index_wc <= index_wc_end - num_elems_read_per_iteration; index_wc += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration)
+ {
+ const auto src_vec = wrapper::vloadq(in_ptr_mover);
+ const auto w_vec = wrapper::vloadq(weights_ptr_row + index_wc);
+ out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec);
+ }
+ out_temp += vreduce(out_temp_vec);
+ for(; index_wc < index_wc_end; ++index_wc, ++in_ptr_mover)
+ {
+ const auto src_val = *(in_ptr_mover);
+ const auto w_val = *(weights_ptr_row + index_wc);
+ out_temp += src_val * w_val;
+ }
+ }
+ *(reinterpret_cast<T *>(out_ptr)) = out_temp;
+ },
+ wei);
+ },
+ out);
+}
+
+template <typename T>
+void CpuDirectConvolutionKernel::convolve_nhwc(const Window &window, const ITensor *src, const ITensor *weights, ITensor *dst)
+{
+ // Declare useful types
+ using vtype = wrapper::traits::neon_bitvector<T, wrapper::traits::BitWidth::W128>;
+ using vector_type = typename vtype::type;
+ using tag_type = typename vtype::tag_type;
+
+ // Scalar quantities
+ const int element_size = src->info()->element_size();
+ const int input_stride_w = src->info()->strides_in_bytes().y() / element_size;
+ const int input_stride_h = src->info()->strides_in_bytes().z() / element_size;
+ const int input_stride_n = src->info()->strides_in_bytes()[3] / element_size;
+ const int input_dim_w = src->info()->dimension(1);
+ const int input_dim_h = src->info()->dimension(2);
+
+ const int output_stride_c = dst->info()->strides_in_bytes().x();
+
+ const unsigned int kernel_stride_w = weights->info()->strides_in_bytes().y() / element_size;
+ const unsigned int kernel_stride_h = weights->info()->strides_in_bytes().z() / element_size;
+ const int kernel_dim_w = weights->info()->dimension(1);
+ const int kernel_dim_h = weights->info()->dimension(2);
+
+ const int conv_pad_top = _conv_info.pad_top();
+ const int conv_pad_left = _conv_info.pad_left();
+ const int conv_stride_w = std::get<0>(_conv_info.stride());
+ const int conv_stride_h = std::get<1>(_conv_info.stride());
+
+ // Setup input window for the output iterator
+ Window window_out = window;
+ window_out.set(Window::DimX, Window::Dimension(0, 1, 1));
+
+ // Setup input window for the weights iterator
+ Window window_w = calculate_max_window(*weights->info(), Steps());
+ window_w.set(Window::DimX, Window::Dimension(0, 1, 1));
+ window_w.set(Window::DimY, Window::Dimension(0, 1, 1));
+ window_w.set(Window::DimZ, Window::Dimension(0, 1, 1));
+
+ Iterator out(dst, window_out);
+ Iterator wei(weights, window_w);
+
+ constexpr int num_elems_read_per_iteration = 16 / sizeof(T);
+
+ execute_window_loop(window_out, [&](const Coordinates & id)
+ {
+ // We are computing the theoretical starting input starting points
+ const int in_w_start_t = static_cast<int>(id.y()) * conv_stride_w - conv_pad_left;
+ const int in_h_start_t = static_cast<int>(id.z()) * conv_stride_h - conv_pad_top;
+ const int in_w_end_t = in_w_start_t + kernel_dim_w;
+ const int in_h_end_t = in_h_start_t + kernel_dim_h;
+
+ // We are computing the valid initial and ending input points by checking the borders
+ const int in_w_start = std::max(in_w_start_t, 0);
+ const int in_h_start = std::max(in_h_start_t, 0);
+ const int in_w_end = std::min(in_w_end_t, input_dim_w);
+ const int in_h_end = std::min(in_h_end_t, input_dim_h);
+
+ // We use the input points to select the valid weight points to use
+ const int wei_w_start = in_w_start - in_w_start_t;
+ const int wei_h_start = in_h_start - in_h_start_t;
+ const int wei_w_end = kernel_dim_w - (in_w_end_t - in_w_end);
+ const int wei_h_end = kernel_dim_h - (in_h_end_t - in_h_end);
+
+ const int index_c_end = weights->info()->dimension(0);
+ const T *const in_ptr_start = reinterpret_cast<const T *>(src->buffer() + src->info()->offset_first_element_in_bytes()) + id[3] * input_stride_n;
+
+ execute_window_loop(window_w, [&](const Coordinates & id_w)
+ {
+ const T *const weights_ptr_start = reinterpret_cast<const T *>(wei.ptr());
+ uint8_t *out_ptr = out.ptr() + id_w[3] * output_stride_c;
+
+ T out_temp = static_cast<T>(0);
+ for(int index_wei_h = wei_h_start, index_in_h = in_h_start; index_wei_h < wei_h_end; ++index_wei_h, ++index_in_h)
+ {
+ const T *const in_ptr_row = in_ptr_start + index_in_h * input_stride_h;
+ const T *const weights_ptr_row = weights_ptr_start + index_wei_h * kernel_stride_h;
+ for(int index_wei_w = wei_w_start, index_in_w = in_w_start; index_wei_w < wei_w_end; ++index_wei_w, ++index_in_w)
+ {
+ const T *in_ptr_mover = in_ptr_row + index_in_w * input_stride_w;
+ const T *weights_ptr_mover = weights_ptr_row + index_wei_w * kernel_stride_w;
+ int index_c = 0;
+ vector_type out_temp_vec = wrapper::vdup_n(static_cast<T>(0), tag_type());
+ for(; index_c <= index_c_end - num_elems_read_per_iteration; index_c += num_elems_read_per_iteration, in_ptr_mover += num_elems_read_per_iteration, weights_ptr_mover += num_elems_read_per_iteration)
+ {
+ const auto src_vec = wrapper::vloadq(in_ptr_mover);
+ const auto w_vec = wrapper::vloadq(weights_ptr_mover);
+ out_temp_vec = wrapper::vmla(out_temp_vec, w_vec, src_vec);
+ }
+ out_temp += vreduce(out_temp_vec);
+ for(; index_c < index_c_end; ++index_c, ++in_ptr_mover, ++weights_ptr_mover)
+ {
+ const auto src_val = *(in_ptr_mover);
+ const auto w_val = *(weights_ptr_mover);
+ out_temp += src_val * w_val;
+ }
+ }
+ }
+ *(reinterpret_cast<T *>(out_ptr)) = out_temp;
+ },
+ wei);
+ },
+ out);
+}
+
+BorderSize CpuDirectConvolutionKernel::border_size() const
+{
+ return _border_size;
+}
+
+void CpuDirectConvolutionKernel::configure(ITensorInfo *src, ITensorInfo *weights, ITensorInfo *dst, const PadStrideInfo &conv_info)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
+
+ _conv_info = conv_info;
+ _data_layout = src->data_layout();
+ _kernel_size = weights->dimension(get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH));
+
+ const unsigned int conv_pad_left = conv_info.pad_left();
+ const unsigned int conv_pad_top = conv_info.pad_top();
+ const unsigned int conv_pad_right = conv_info.pad_right();
+ const unsigned int conv_pad_bottom = conv_info.pad_bottom();
+ if(_data_layout == DataLayout::NCHW)
+ {
+ _border_size = BorderSize(conv_pad_top, conv_pad_right, conv_pad_bottom, conv_pad_left);
+ }
+ else
+ {
+ _border_size = BorderSize(0);
+ }
+
+ // Get convolved dimensions
+ TensorShape output_shape = misc::shape_calculator::compute_deep_convolution_shape(*src, *weights, conv_info);
+
+ DataType data_type = src->data_type();
+
+ // Output auto inizialitation if not yet initialized
+ auto_init_if_empty(*dst, output_shape, 1, data_type);
+
+ // Perform validation step
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, weights, dst, conv_info));
+
+ // Configure kernel window
+ auto win_config = validate_and_configure_window(src, weights, dst, conv_info, _num_weight_elems_read_per_row,
+ _num_elems_read_per_iteration, _num_elems_written_per_iteration, _border_size);
+ ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
+ ICpuKernel::configure(win_config.second);
+}
+
+Status CpuDirectConvolutionKernel::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *dst, const PadStrideInfo &conv_info)
+{
+ unsigned int num_weight_elems_read_per_row = 0;
+ unsigned int num_elems_read_per_iteration = 0;
+ unsigned int num_elems_written_per_iteration = 0;
+ BorderSize border_size = {};
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, dst, conv_info));
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(src->clone().get(),
+ weights->clone().get(),
+ dst->clone().get(),
+ conv_info,
+ num_weight_elems_read_per_row,
+ num_elems_read_per_iteration,
+ num_elems_written_per_iteration,
+ border_size)
+ .first);
+
+ return Status{};
+}
+
+void CpuDirectConvolutionKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+ auto src = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+ auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+ auto dst = tensors.get_tensor(TensorType::ACL_DST);
+ const int kernel_size = weights->info()->dimension(get_data_layout_dimension_index(_data_layout, DataLayoutDimension::WIDTH));
+
+ if(_data_layout == DataLayout::NCHW)
+ {
+ switch(kernel_size)
+ {
+ case 1:
+ {
+ switch(src->info()->data_type())
+ {
+ case DataType::F32:
+ convolve_1x1<float, float>(window, _num_elems_read_per_iteration, _num_elems_written_per_iteration, src, weights, dst, _conv_info);
+ break;
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ case DataType::F16:
+ convolve_1x1<float16_t, float16_t>(window, _num_elems_read_per_iteration, _num_elems_written_per_iteration, src, weights, dst, _conv_info);
+ break;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+ default:
+ ARM_COMPUTE_ERROR("Data type not supported");
+ break;
+ }
+ break;
+ }
+ case 3:
+ {
+ switch(src->info()->data_type())
+ {
+ case DataType::F32:
+ convolve_3x3<float, float>(window, _num_elems_read_per_iteration, _num_elems_written_per_iteration, src, weights, dst, _conv_info);
+ break;
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ case DataType::F16:
+ convolve_3x3<float16_t, float16_t>(window, _num_elems_read_per_iteration, _num_elems_written_per_iteration, src, weights, dst, _conv_info);
+ break;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+ default:
+ ARM_COMPUTE_ERROR("Data type not supported");
+ break;
+ }
+ break;
+ }
+ case 5:
+ {
+ switch(src->info()->data_type())
+ {
+ case DataType::F32:
+ convolve_5x5<float, float>(window, _num_elems_read_per_iteration, _num_elems_written_per_iteration, src, weights, dst, _conv_info);
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Data type not supported");
+ break;
+ }
+ break;
+ }
+ default:
+ {
+ ARM_COMPUTE_ERROR("Only kernel sizes 1x1, 3x3 and 5x5 are supported.");
+ break;
+ }
+ }
+ }
+ else
+ {
+ switch(src->info()->data_type())
+ {
+ case DataType::F32:
+ {
+ if(have_zero_x_internal_padding(src->info(), weights->info()))
+ {
+ convolve_nhwc_optimized<float>(window, src, weights, dst);
+ }
+ else
+ {
+ convolve_nhwc<float>(window, src, weights, dst);
+ }
+ break;
+ }
+ default:
+ ARM_COMPUTE_ERROR("Data type not supported");
+ break;
+ }
+ }
+}
+const char *CpuDirectConvolutionKernel::name() const
+{
+ return "CpuDirectConvolutionLayerKernel";
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute