aboutsummaryrefslogtreecommitdiff
path: root/src/core/cpu/kernels/CpuDepthwiseConv2dNativeKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/cpu/kernels/CpuDepthwiseConv2dNativeKernel.cpp')
-rw-r--r--src/core/cpu/kernels/CpuDepthwiseConv2dNativeKernel.cpp919
1 files changed, 919 insertions, 0 deletions
diff --git a/src/core/cpu/kernels/CpuDepthwiseConv2dNativeKernel.cpp b/src/core/cpu/kernels/CpuDepthwiseConv2dNativeKernel.cpp
new file mode 100644
index 0000000000..4ddb35f2d5
--- /dev/null
+++ b/src/core/cpu/kernels/CpuDepthwiseConv2dNativeKernel.cpp
@@ -0,0 +1,919 @@
+/*
+ * Copyright (c) 2019-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "src/core/cpu/kernels/CpuDepthwiseConv2dNativeKernel.h"
+
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/core/ITensorInfo.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "src/core/CPP/Validate.h"
+#include "src/core/NEON/kernels/convolution/depthwise/impl_qa8_qa8.hpp"
+#include "src/core/NEON/wrapper/traits.h"
+#include "src/core/NEON/wrapper/wrapper.h"
+#include "src/core/helpers/AutoConfiguration.h"
+#include "src/core/helpers/WindowHelpers.h"
+#include "support/ToolchainSupport.h"
+
+namespace arm_compute
+{
+namespace cpu
+{
+namespace kernels
+{
+namespace
+{
+constexpr auto data_layout = DataLayout::NHWC;
+const size_t width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+const size_t height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
+const size_t channel_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
+
+constexpr auto dim_manual_loop = Window::Dimension(0, 0, 0);
+constexpr auto dim_single_unit_step = Window::Dimension(0, 1, 1);
+constexpr size_t vector_size = 8;
+
+struct DepthwiseConvolutionRunInfo
+{
+ const size_t num_read_elements_per_iteration;
+ const uint32_t x_start;
+ const uint32_t x_end;
+ const uint32_t x_step;
+ const uint32_t x_leftover_start;
+ const size_t input_stride_y;
+ const size_t input_stride_z;
+ const size_t input_max_offset;
+ const size_t weights_width;
+ const size_t weights_height;
+ const size_t weights_stride_y;
+ const size_t weights_stride_z;
+ const size_t conv_stride_x;
+ const size_t conv_stride_y;
+ const size_t conv_pad_left;
+ const size_t conv_pad_top;
+ const size_t input_height;
+ const size_t input_width;
+ const size_t input_depth;
+
+ DepthwiseConvolutionRunInfo(const ITensorInfo &input, const ITensorInfo &weights, const PadStrideInfo &conv_info, const Window &w, uint32_t depth_multiplier = 1) // NOLINT
+ : num_read_elements_per_iteration((depth_multiplier == 1 ? (vector_size / element_size_from_data_type(input.data_type())) : 1)),
+ x_start(w.x().start()),
+ x_end(w.x().end()),
+ x_step(static_cast<uint32_t>(num_read_elements_per_iteration * depth_multiplier)),
+ x_leftover_start(std::max(static_cast<int32_t>(w.x().end()) - static_cast<int32_t>(x_step) + 1, int32_t(0))),
+ input_stride_y(input.strides_in_bytes().y()),
+ input_stride_z(input.strides_in_bytes().z()),
+ input_max_offset(input.strides_in_bytes().z() * input.dimension(height_idx) - (input.padding().bottom + input.padding().top) * input.strides_in_bytes().y()),
+ weights_width(weights.dimension(width_idx)),
+ weights_height(weights.dimension(height_idx)),
+ weights_stride_y(weights.strides_in_bytes().y()),
+ weights_stride_z(weights.strides_in_bytes().z()),
+ conv_stride_x(conv_info.stride().first),
+ conv_stride_y(conv_info.stride().second),
+ conv_pad_left(conv_info.pad_left()),
+ conv_pad_top(conv_info.pad_top()),
+ input_height(input.dimension(height_idx)),
+ input_width(input.dimension(width_idx)),
+ input_depth(input.dimension(channel_idx))
+ {
+ }
+};
+
+inline bool is_valid_input_region(int32_t base_w, uint32_t base_h, uint32_t w, uint32_t h, const DepthwiseConvolutionRunInfo &run_info, const Size2D &dilation)
+{
+ const int32_t current_h = base_h + h * dilation.y();
+ const bool is_valid_h = current_h >= 0 && current_h < static_cast<int32_t>(run_info.input_height);
+
+ const int32_t current_w = base_w + w * dilation.x();
+ const bool is_valid_w = current_w >= 0 && current_w < static_cast<int32_t>(run_info.input_width);
+
+ return is_valid_h && is_valid_w;
+}
+
+template <typename T>
+void depthwise_loop_multiplier1_fp(const ITensor *src, const ITensor *weights, const ITensor *biases, ITensor *dst, const PadStrideInfo &conv_info,
+ const Size2D &dilation, const Window &window, bool has_biases)
+{
+ constexpr auto element_per_vector = vector_size / sizeof(T);
+ using VectorType = typename wrapper::traits::neon_vector<T, element_per_vector>::type;
+ using TagType = typename wrapper::traits::neon_vector<T, element_per_vector>::tag_type;
+
+ const auto run_info = DepthwiseConvolutionRunInfo(*src->info(), *weights->info(), conv_info, window);
+
+ const VectorType zero_vector = wrapper::vdup_n(static_cast<T>(0), TagType{});
+
+ Window execution_window = window;
+ execution_window.set(Window::DimX, dim_single_unit_step);
+
+ Window win_input = window;
+ win_input.set(Window::DimX, dim_manual_loop);
+ win_input.set(Window::DimY, dim_manual_loop);
+ win_input.set(Window::DimZ, dim_manual_loop);
+
+ Window win_weights = win_input;
+ win_weights.set(Window::DimW, dim_manual_loop);
+
+ Window win_output = window;
+ win_output.set(Window::DimX, dim_manual_loop);
+
+ Iterator input_it(src, win_input);
+ Iterator weights_it(weights, win_weights);
+ Iterator output_it(dst, win_output);
+ Iterator biases_it{};
+
+ if(has_biases)
+ {
+ biases_it = Iterator(biases, win_weights);
+ }
+
+ execute_window_loop(execution_window, [&](const Coordinates & id)
+ {
+ const int32_t input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left;
+ const int32_t input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top;
+ const int64_t base_input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z;
+
+ auto const base_weights_ptr = weights_it.ptr();
+ uint32_t x = run_info.x_start;
+
+ for(; x < run_info.x_leftover_start; x += run_info.x_step)
+ {
+ VectorType acc = zero_vector;
+ auto weights_ptr = base_weights_ptr;
+ int64_t input_offset = base_input_offset;
+
+ for(uint32_t h = 0; h < run_info.weights_height; ++h)
+ {
+ int64_t offs = input_offset + x * sizeof(T);
+ for(uint32_t w = 0; w < run_info.weights_width; ++w)
+ {
+ const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
+ const auto input_vals = is_valid_region ?
+ wrapper::vload(reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset))) :
+ zero_vector;
+ const auto weights_vals = wrapper::vload(reinterpret_cast<T *>(weights_ptr + w * run_info.weights_stride_y) + x);
+ acc = wrapper::vmla(acc, weights_vals, input_vals);
+
+ offs += dilation.x() * run_info.input_stride_y;
+ }
+
+ weights_ptr += run_info.weights_stride_z;
+ input_offset += dilation.y() * run_info.input_stride_z;
+ }
+
+ if(has_biases)
+ {
+ const auto biases_vals = wrapper::vload(reinterpret_cast<T *>(biases_it.ptr()) + x);
+ acc = wrapper::vadd(acc, biases_vals);
+ }
+
+ wrapper::vstore(reinterpret_cast<T *>(output_it.ptr()) + x, acc);
+ }
+
+ for(; x < run_info.x_end; ++x)
+ {
+ auto acc_scalar = T{ 0 };
+ auto weights_ptr = base_weights_ptr;
+ int64_t input_offset = base_input_offset;
+
+ for(size_t h = 0; h < run_info.weights_height; ++h)
+ {
+ int64_t offs = input_offset + x * sizeof(T);
+ for(size_t w = 0; w < run_info.weights_width; ++w)
+ {
+ const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
+ const auto input_vals = is_valid_region ? *reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset)) : 0;
+ const auto weights_vals = *(reinterpret_cast<T *>(weights_ptr + w * run_info.weights_stride_y) + x);
+
+ acc_scalar += (input_vals * weights_vals);
+
+ offs += dilation.x() * run_info.input_stride_y;
+ }
+
+ weights_ptr += run_info.weights_stride_z;
+ input_offset += dilation.y() * run_info.input_stride_z;
+ }
+
+ if(has_biases)
+ {
+ const auto biases_vals = *(reinterpret_cast<T *>(biases_it.ptr()) + x);
+ acc_scalar += biases_vals;
+ }
+ *(reinterpret_cast<T *>(output_it.ptr()) + x) = acc_scalar;
+ }
+ },
+ input_it, weights_it, biases_it, output_it);
+}
+
+template <typename T>
+void depthwise_loop_generic_fp(const ITensor *src, const ITensor *weights, const ITensor *biases, ITensor *dst, const PadStrideInfo &conv_info,
+ const Size2D &dilation, unsigned int depth_multiplier, const Window &window, bool has_biases)
+{
+ const auto run_info = DepthwiseConvolutionRunInfo(*src->info(), *weights->info(), conv_info, window, depth_multiplier);
+
+ Window execution_window = window;
+ execution_window.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1));
+
+ Window win_input = execution_window;
+ win_input.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1));
+ win_input.set(Window::DimY, dim_manual_loop);
+ win_input.set(Window::DimZ, dim_manual_loop);
+
+ Window win_weights = window;
+ win_weights.set_dimension_step(Window::DimX, run_info.x_step);
+ win_weights.set(Window::DimY, dim_manual_loop);
+ win_weights.set(Window::DimZ, dim_manual_loop);
+ win_weights.set(Window::DimW, dim_manual_loop);
+
+ Window win_output = window;
+ win_output.set_dimension_step(Window::DimX, run_info.x_step);
+
+ Iterator input_it(src, win_input);
+ Iterator weights_it(weights, win_weights);
+ Iterator output_it(dst, win_output);
+ Iterator biases_it{};
+
+ if(has_biases)
+ {
+ biases_it = Iterator(biases, win_weights);
+ }
+
+ execute_window_loop(execution_window, [&](const Coordinates & id)
+ {
+ std::vector<T> acc(depth_multiplier, static_cast<T>(0));
+
+ const int input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left;
+ const int input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top;
+ int input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z;
+
+ auto weights_ptr = weights_it.ptr();
+ for(size_t h = 0; h < run_info.weights_height; ++h)
+ {
+ int offs = input_offset;
+ for(size_t w = 0; w < run_info.weights_width; ++w)
+ {
+ const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
+ const auto input_val = is_valid_region ? *(reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset))) : T(0);
+
+ for(size_t m = 0; m < depth_multiplier; ++m)
+ {
+ const auto weights_val = *(reinterpret_cast<T *>(weights_ptr + m * sizeof(T) + w * run_info.weights_stride_y));
+ acc.at(m) = support::cpp11::fma(weights_val, input_val, acc.at(m));
+ }
+
+ offs += dilation.x() * run_info.input_stride_y;
+ }
+
+ weights_ptr += run_info.weights_stride_z;
+ input_offset += dilation.y() * run_info.input_stride_z;
+ }
+
+ if(has_biases)
+ {
+ for(size_t m = 0; m < depth_multiplier; ++m)
+ {
+ const auto biases_val = *(reinterpret_cast<T *>(biases_it.ptr() + m * sizeof(T)));
+ *(reinterpret_cast<T *>(output_it.ptr() + m * sizeof(T))) = acc.at(m) + biases_val;
+ }
+ }
+ else
+ {
+ for(size_t m = 0; m < depth_multiplier; ++m)
+ {
+ *(reinterpret_cast<T *>(output_it.ptr() + m * sizeof(T))) = acc.at(m);
+ }
+ }
+ },
+ input_it, weights_it, biases_it, output_it);
+}
+
+template <typename T, typename TW>
+void depthwise_loop_multiplier1_quantized(const ITensor *src, const ITensor *weights, const ITensor *biases, ITensor *dst, const PadStrideInfo &conv_info,
+ const Size2D &dilation, std::vector<int> output_multiplier, std::vector<int> output_shift, const Window &window, bool has_biases) // NOLINT
+{
+ ARM_COMPUTE_UNUSED(output_multiplier, output_shift);
+ constexpr auto element_per_vector = vector_size / sizeof(T);
+ using VectorType = typename wrapper::traits::neon_vector<T, element_per_vector>::type;
+ using TagType = typename wrapper::traits::neon_vector<T, element_per_vector>::tag_type;
+ using AccType = int32_t;
+ using AccArrayType = std::array<AccType, element_per_vector>;
+
+ const auto out_of_bound_value = PixelValue(static_cast<uint64_t>(0), src->info()->data_type(), src->info()->quantization_info()).get<T>();
+ const auto out_of_bound_vector = wrapper::vdup_n(static_cast<T>(out_of_bound_value), TagType{});
+
+ const auto run_info = DepthwiseConvolutionRunInfo(*src->info(), *weights->info(), conv_info, window);
+
+ const int32_t input_qoffset = src->info()->quantization_info().uniform().offset;
+ const int32_t weights_qoffset = weights->info()->quantization_info().uniform().offset;
+ const int32_t output_qoffset = dst->info()->quantization_info().uniform().offset;
+ const int32_t k_offset = run_info.weights_width * run_info.weights_height * input_qoffset * weights_qoffset;
+
+ Window execution_window = window;
+ execution_window.set(Window::DimX, dim_single_unit_step);
+
+ Window win_input = window;
+ win_input.set(Window::DimX, dim_manual_loop);
+ win_input.set(Window::DimY, dim_manual_loop);
+ win_input.set(Window::DimZ, dim_manual_loop);
+
+ Window win_weights = win_input;
+ win_weights.set(Window::DimW, dim_manual_loop);
+
+ Window win_output = window;
+ win_output.set(Window::DimX, dim_manual_loop);
+
+ Iterator input_it(src, win_input);
+ Iterator weights_it(weights, win_weights);
+ Iterator output_it(dst, win_output);
+ Iterator biases_it{};
+
+ if(has_biases)
+ {
+ biases_it = Iterator(biases, win_weights);
+ }
+
+ execute_window_loop(execution_window, [&](const Coordinates & id)
+ {
+ const int32_t input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left;
+ const int32_t input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top;
+ const int64_t base_input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z;
+ auto const base_weights_ptr = weights_it.ptr();
+ size_t x = run_info.x_start;
+
+ for(; x < run_info.x_leftover_start; x += run_info.x_step)
+ {
+ AccArrayType acc{};
+ AccArrayType in_sum{};
+ AccArrayType we_sum{};
+
+ auto weights_ptr = base_weights_ptr;
+ auto input_offset = base_input_offset;
+
+ for(size_t h = 0; h < run_info.weights_height; ++h)
+ {
+ int64_t offs = input_offset + x * sizeof(T);
+ for(size_t w = 0; w < run_info.weights_width; ++w)
+ {
+ const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
+ const auto input_vals = is_valid_region ?
+ wrapper::vload(reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset))) :
+ out_of_bound_vector;
+ const auto weights_vals = wrapper::vload(reinterpret_cast<TW *>(weights_ptr + w * run_info.weights_stride_y) + x);
+
+ for(size_t i = 0; i < element_per_vector; ++i)
+ {
+ acc.at(i) += input_vals[i] * weights_vals[i];
+ in_sum.at(i) += input_vals[i];
+ we_sum.at(i) += weights_vals[i];
+ }
+
+ offs += dilation.x() * run_info.input_stride_y;
+ }
+
+ weights_ptr += run_info.weights_stride_z;
+ input_offset += dilation.y() * run_info.input_stride_z;
+ }
+
+ VectorType out_vals = wrapper::vdup_n(static_cast<T>(0), TagType{});
+ for(size_t i = 0; i < element_per_vector; ++i)
+ {
+ acc.at(i) -= in_sum.at(i) * weights_qoffset;
+ acc.at(i) -= we_sum.at(i) * input_qoffset;
+ acc.at(i) += k_offset;
+
+ if(has_biases)
+ {
+ acc.at(i) += *(reinterpret_cast<int32_t *>(biases_it.ptr() + i * sizeof(int32_t)) + x);
+ }
+
+ const int32_t out_mul = output_multiplier.at(x + i);
+ const int32_t out_shift = output_shift.at(x + i);
+ if(out_shift < 0)
+ {
+ acc.at(i) = saturating_doubling_high_mul(acc.at(i) * (1 << (-out_shift)), out_mul) + output_qoffset;
+ }
+ else
+ {
+ acc.at(i) = rounding_divide_by_exp2(saturating_doubling_high_mul(acc.at(i), out_mul), out_shift) + output_qoffset;
+ }
+ out_vals[i] = static_cast<T>(utility::clamp<AccType, T>(acc.at(i)));
+ }
+
+ wrapper::vstore(reinterpret_cast<T *>(output_it.ptr()) + x, out_vals);
+ }
+
+ // left-over
+ for(; x < run_info.x_end; ++x)
+ {
+ AccType acc = 0;
+ AccType in_sum = 0;
+ AccType we_sum = 0;
+
+ auto weights_ptr = base_weights_ptr;
+ auto input_offset = base_input_offset;
+
+ for(size_t h = 0; h < run_info.weights_height; ++h)
+ {
+ int64_t offs = input_offset + x * sizeof(T);
+ for(size_t w = 0; w < run_info.weights_width; ++w)
+ {
+ const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
+ const auto input_val = is_valid_region ?
+ *reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset)) :
+ out_of_bound_value;
+ const auto weights_val = *(reinterpret_cast<TW *>(weights_ptr + w * run_info.weights_stride_y) + x);
+
+ acc += input_val * weights_val;
+ in_sum += input_val;
+ we_sum += weights_val;
+
+ offs += dilation.x() * run_info.input_stride_y;
+ }
+
+ weights_ptr += run_info.weights_stride_z;
+ input_offset += dilation.y() * run_info.input_stride_z;
+ }
+
+ T out_vals{ 0 };
+
+ acc -= in_sum * weights_qoffset;
+ acc -= we_sum * input_qoffset;
+ acc += k_offset;
+
+ if(has_biases)
+ {
+ acc += *(reinterpret_cast<int32_t *>(biases_it.ptr()) + x);
+ }
+
+ const int32_t out_mul = output_multiplier.at(x);
+ const int32_t out_shift = output_shift.at(x);
+
+ if(out_shift < 0)
+ {
+ acc = saturating_doubling_high_mul(acc * (1 << (-out_shift)), out_mul) + output_qoffset;
+ }
+ else
+ {
+ acc = rounding_divide_by_exp2(saturating_doubling_high_mul(acc, out_mul), out_shift) + output_qoffset;
+ }
+
+ out_vals = static_cast<T>(utility::clamp<AccType, T>(acc));
+ *(reinterpret_cast<T *>(output_it.ptr()) + x) = out_vals;
+ }
+ },
+ input_it, weights_it, biases_it, output_it);
+}
+
+template <typename T, typename TW>
+void depthwise_loop_generic_quantized(const ITensor *src, const ITensor *weights, const ITensor *biases, ITensor *dst, const PadStrideInfo &conv_info,
+ const Size2D &dilation, unsigned int depth_multiplier, std::vector<int> output_multiplier, std::vector<int> output_shift, const Window &window, bool has_biases) // NOLINT
+{
+ using AccType = int32_t;
+
+ const auto run_info = DepthwiseConvolutionRunInfo(*src->info(), *weights->info(), conv_info, window, depth_multiplier);
+
+ const auto out_of_bound_value = PixelValue(static_cast<uint64_t>(0), src->info()->data_type(), src->info()->quantization_info()).get<T>();
+
+ const int32_t input_qoffset = src->info()->quantization_info().uniform().offset;
+ const int32_t weights_qoffset = weights->info()->quantization_info().uniform().offset;
+ const int32_t output_qoffset = dst->info()->quantization_info().uniform().offset;
+ const int32_t k_offset = run_info.weights_width * run_info.weights_height * input_qoffset * weights_qoffset;
+
+ Window execution_window = window;
+ execution_window.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1));
+
+ Window win_input = execution_window;
+ win_input.set(Window::DimY, dim_manual_loop);
+ win_input.set(Window::DimZ, dim_manual_loop);
+
+ Window win_weights = window;
+ win_weights.set_dimension_step(Window::DimX, run_info.x_step);
+ win_weights.set(Window::DimY, dim_manual_loop);
+ win_weights.set(Window::DimZ, dim_manual_loop);
+ win_weights.set(Window::DimW, dim_manual_loop);
+
+ Window win_output = window;
+ win_output.set_dimension_step(Window::DimX, run_info.x_step);
+
+ Iterator input_it(src, win_input);
+ Iterator weights_it(weights, win_weights);
+ Iterator output_it(dst, win_output);
+ Iterator biases_it{};
+
+ if(has_biases)
+ {
+ biases_it = Iterator(biases, win_weights);
+ }
+
+ execute_window_loop(execution_window, [&](const Coordinates & id)
+ {
+ std::vector<AccType> acc(depth_multiplier, 0);
+ std::vector<AccType> we_sum(depth_multiplier, 0);
+ AccType in_sum = 0;
+
+ const int32_t input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left;
+ const int32_t input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top;
+ int64_t input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z;
+
+ auto weights_ptr = weights_it.ptr();
+ for(size_t h = 0; h < run_info.weights_height; ++h)
+ {
+ int offs = input_offset;
+ for(size_t w = 0; w < run_info.weights_width; ++w)
+ {
+ const bool is_valid_region = is_valid_input_region(input_y, input_z, w, h, run_info, dilation);
+ const auto input_val = is_valid_region ? *(reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset))) : out_of_bound_value;
+
+ for(size_t m = 0; m < depth_multiplier; ++m)
+ {
+ const auto weights_val = *(reinterpret_cast<TW *>(weights_ptr + m * sizeof(T) + w * run_info.weights_stride_y));
+ acc.at(m) += input_val * weights_val;
+
+ we_sum.at(m) += weights_val;
+ }
+
+ offs += dilation.x() * run_info.input_stride_y;
+ in_sum += input_val;
+ }
+
+ weights_ptr += run_info.weights_stride_z;
+ input_offset += dilation.y() * run_info.input_stride_z;
+ }
+
+ for(size_t m = 0; m < depth_multiplier; ++m)
+ {
+ acc.at(m) -= in_sum * weights_qoffset;
+ acc.at(m) -= we_sum.at(m) * input_qoffset;
+ acc.at(m) += k_offset;
+
+ if(has_biases)
+ {
+ acc.at(m) += *(reinterpret_cast<int32_t *>(biases_it.ptr() + m * sizeof(int32_t)));
+ }
+
+ const int32_t out_mul = output_multiplier.at(id.x() * depth_multiplier + m);
+ const int32_t out_shift = output_shift.at(id.x() * depth_multiplier + m);
+ if(out_shift < 0)
+ {
+ acc.at(m) = saturating_doubling_high_mul(acc.at(m) * (1 << (-out_shift)), out_mul) + output_qoffset;
+ }
+ else
+ {
+ acc.at(m) = rounding_divide_by_exp2(saturating_doubling_high_mul(acc.at(m), out_mul), out_shift) + output_qoffset;
+ }
+ *(reinterpret_cast<T *>(output_it.ptr() + m * sizeof(T))) = static_cast<T>(utility::clamp<AccType, T>(acc.at(m)));
+ }
+ },
+ input_it, weights_it, biases_it, output_it);
+}
+
+template <typename T, typename TW>
+void depthwise_loop_pow2_quantized_per_tensor(const ITensor *src, const ITensor *weights, const ITensor *biases, ITensor *dst, const PadStrideInfo &conv_info,
+ const Size2D &dilation, unsigned int depth_multiplier, std::vector<int> output_multiplier, std::vector<int> output_shift, const Window &window, bool has_biases) // NOLINT
+{
+ constexpr int half_vec = vector_size / 2;
+
+ using AccType = int32_t;
+ using AccVectorType = typename wrapper::traits::neon_vector<AccType, half_vec>::type;
+ using AccVectorTagType = typename wrapper::traits::neon_vector<AccType, half_vec>::tag_type;
+ using TagType = typename wrapper::traits::neon_vector<T, vector_size>::tag_type;
+
+ const auto run_info = DepthwiseConvolutionRunInfo(*src->info(), *weights->info(), conv_info, window, depth_multiplier);
+
+ const auto input_qoffset_vec = wrapper::vreinterpret(wrapper::vmovl(wrapper::vdup_n(static_cast<T>(src->info()->quantization_info().uniform().offset), TagType{})));
+ const auto weights_qoffset_vec = wrapper::vreinterpret(wrapper::vmovl(wrapper::vdup_n(static_cast<TW>(weights->info()->quantization_info().uniform().offset), TagType{})));
+ const auto output_qoffset_vec = wrapper::vdup_n(dst->info()->quantization_info().uniform().offset, arm_compute::wrapper::traits::vector_128_tag{});
+
+ const auto lower = wrapper::vdup_n(static_cast<AccType>(std::numeric_limits<T>::lowest()), AccVectorTagType{});
+ const auto upper = wrapper::vdup_n(static_cast<AccType>(std::numeric_limits<T>::max()), AccVectorTagType{});
+ const auto zero = wrapper::vdup_n(static_cast<AccType>(0), AccVectorTagType{});
+
+ const auto out_mul = output_multiplier.at(0);
+ const auto out_shift = output_shift.at(0);
+
+ Window execution_window = window;
+ execution_window.set(Window::DimX, Window::Dimension(0, run_info.input_depth, 1));
+
+ Window win_input = execution_window;
+ win_input.set(Window::DimY, dim_manual_loop);
+ win_input.set(Window::DimZ, dim_manual_loop);
+
+ Window win_weights = window;
+ win_weights.set_dimension_step(Window::DimX, run_info.x_step);
+ win_weights.set(Window::DimY, dim_manual_loop);
+ win_weights.set(Window::DimZ, dim_manual_loop);
+ win_weights.set(Window::DimW, dim_manual_loop);
+
+ Window win_output = window;
+ win_output.set_dimension_step(Window::DimX, run_info.x_step);
+
+ Iterator input_it(src, win_input);
+ Iterator weights_it(weights, win_weights);
+ Iterator output_it(dst, win_output);
+ Iterator biases_it{};
+
+ if(has_biases)
+ {
+ biases_it = Iterator(biases, win_weights);
+ }
+
+ std::vector<AccVectorType> acc0(depth_multiplier / vector_size);
+ std::vector<AccVectorType> acc1(depth_multiplier / vector_size);
+
+ execute_window_loop(execution_window, [&](const Coordinates & id)
+ {
+ std::fill(begin(acc0), end(acc0), zero);
+ std::fill(begin(acc1), end(acc1), zero);
+
+ const int32_t input_y = id.y() * run_info.conv_stride_x - run_info.conv_pad_left;
+ const int32_t input_z = id.z() * run_info.conv_stride_y - run_info.conv_pad_top;
+ int64_t input_offset = input_y * run_info.input_stride_y + input_z * run_info.input_stride_z;
+
+ auto weights_ptr = weights_it.ptr();
+ for(size_t h = 0; h < run_info.weights_height; ++h)
+ {
+ const int32_t current_h = input_z + h * dilation.y();
+ if(current_h >= 0 && current_h < static_cast<int32_t>(run_info.input_height))
+ {
+ int offs = input_offset;
+ for(size_t w = 0; w < run_info.weights_width; ++w)
+ {
+ const int32_t current_w = input_y + w * dilation.x();
+ if(current_w >= 0 && current_w < static_cast<int32_t>(run_info.input_width))
+ {
+ const auto input_8x8 = wrapper::vdup_n(*(reinterpret_cast<T *>(input_it.ptr() + std::min(static_cast<size_t>(offs), run_info.input_max_offset))), TagType{});
+ const auto input_s16x8 = wrapper::vreinterpret(wrapper::vmovl(input_8x8));
+ const auto input_no_offs = wrapper::vsub(input_s16x8, input_qoffset_vec);
+
+ for(size_t m = 0, i = 0; m < depth_multiplier; m += vector_size, ++i)
+ {
+ const auto weights_8x8 = wrapper::vload(reinterpret_cast<TW *>(weights_ptr + m * sizeof(T) + w * run_info.weights_stride_y));
+ const auto weights_s16x8 = wrapper::vreinterpret(wrapper::vmovl(weights_8x8));
+ const auto weights_no_offs = wrapper::vsub(weights_s16x8, weights_qoffset_vec);
+
+ acc0.at(i) = wrapper::vmlal(acc0.at(i), wrapper::vgetlow(input_no_offs), wrapper::vgetlow(weights_no_offs));
+ acc1.at(i) = wrapper::vmlal(acc1.at(i), wrapper::vgethigh(input_no_offs), wrapper::vgethigh(weights_no_offs));
+ }
+ }
+
+ offs += dilation.x() * run_info.input_stride_y;
+ }
+ }
+
+ weights_ptr += run_info.weights_stride_z;
+ input_offset += dilation.y() * run_info.input_stride_z;
+ }
+
+ for(size_t m = 0, i = 0; m < depth_multiplier; m += vector_size, ++i)
+ {
+ if(has_biases)
+ {
+ const auto bias_val0 = wrapper::vloadq(reinterpret_cast<int32_t *>(biases_it.ptr() + m * sizeof(int32_t)));
+ const auto bias_val1 = wrapper::vloadq(reinterpret_cast<int32_t *>(biases_it.ptr() + (m + half_vec) * sizeof(int32_t)));
+
+ acc0.at(i) = wrapper::vadd(acc0.at(i), bias_val0);
+ acc1.at(i) = wrapper::vadd(acc1.at(i), bias_val1);
+ }
+
+ if(out_shift < 0)
+ {
+ acc0.at(i) = wrapper::vadd(saturating_doubling_high_mul(acc0.at(i) * (1 << (-out_shift)), out_mul), output_qoffset_vec);
+ acc1.at(i) = wrapper::vadd(saturating_doubling_high_mul(acc1.at(i) * (1 << (-out_shift)), out_mul), output_qoffset_vec);
+ }
+ else
+ {
+ acc0.at(i) = wrapper::vadd(rounding_divide_by_exp2(saturating_doubling_high_mul(acc0.at(i), out_mul), out_shift), output_qoffset_vec);
+ acc1.at(i) = wrapper::vadd(rounding_divide_by_exp2(saturating_doubling_high_mul(acc1.at(i), out_mul), out_shift), output_qoffset_vec);
+ }
+
+ acc0.at(i) = wrapper::vmin(wrapper::vmax(acc0.at(i), lower), upper);
+ acc1.at(i) = wrapper::vmin(wrapper::vmax(acc1.at(i), lower), upper);
+
+ const auto out_val = wrapper::vcombine(wrapper::vmovn(acc0.at(i)),
+ wrapper::vmovn(acc1.at(i)));
+
+ if(std::is_same<T, uint8_t>::value)
+ {
+ wrapper::vstore(reinterpret_cast<uint8_t *>(output_it.ptr() + m * sizeof(uint8_t)), wrapper::vqmovn(vreinterpretq_u16_s16(out_val)));
+ }
+ else
+ {
+ wrapper::vstore(reinterpret_cast<int8_t *>(output_it.ptr() + m * sizeof(int8_t)), wrapper::vqmovn(out_val));
+ }
+ }
+ },
+ input_it, weights_it, biases_it, output_it);
+}
+
+Status validate_arguments(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const ConvolutionInfo &info)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
+ ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
+ ARM_COMPUTE_RETURN_ERROR_ON(src->data_layout() == DataLayout::UNKNOWN);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON(info.depth_multiplier == 0);
+ ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(1) + (weights->dimension(1) - 1) * (info.dilation.x() - 1) > src->dimension(1) + info.pad_stride_info.pad_left() + info.pad_stride_info.pad_right());
+ ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) + (weights->dimension(2) - 1) * (info.dilation.y() - 1) > src->dimension(2) + info.pad_stride_info.pad_top() + info.pad_stride_info.pad_bottom());
+ ARM_COMPUTE_RETURN_ERROR_ON((src->dimension(0) * info.depth_multiplier) != weights->dimension(0));
+ ARM_COMPUTE_RETURN_ERROR_ON((info.dilation.x() < 1) || (info.dilation.y() < 1));
+ ARM_COMPUTE_RETURN_ERROR_ON((info.pad_stride_info.stride().first < 1) || (info.pad_stride_info.stride().second < 1));
+
+ if(is_data_type_quantized_per_channel(weights->data_type()))
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL);
+ ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != weights->quantization_info().scale().size());
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights);
+ }
+
+ if(biases != nullptr)
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
+ ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(0));
+
+ if(is_data_type_quantized_asymmetric(src->data_type()))
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
+ }
+ else
+ {
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
+ }
+ }
+
+ if(dst->total_size() != 0)
+ {
+ const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*src, *weights, info);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), output_shape);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
+ }
+
+ return Status{};
+}
+} // namespace
+
+CpuDepthwiseConv2dNativeKernel::CpuDepthwiseConv2dNativeKernel()
+ : _func(), _conv_info(), _depth_multiplier(1), _dilation(), _output_multiplier(), _output_shift(), _has_biases()
+{
+}
+
+void CpuDepthwiseConv2dNativeKernel::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ConvolutionInfo &info)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
+ ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(src, weights, (biases != nullptr) ? biases : nullptr, dst, info));
+
+ _conv_info = info.pad_stride_info;
+ _depth_multiplier = info.depth_multiplier;
+ _dilation = info.dilation;
+ _has_biases = (biases != nullptr);
+
+ if(is_data_type_quantized(src->data_type()))
+ {
+ const auto input_scale = src->quantization_info().uniform().scale;
+ const auto output_scale = dst->quantization_info().uniform().scale;
+
+ auto weights_scale = weights->quantization_info().scale();
+ if(!is_data_type_quantized_per_channel(weights->data_type()))
+ {
+ for(size_t i = 1; i < weights->dimension(channel_idx); ++i)
+ {
+ weights_scale.push_back(weights_scale.front());
+ }
+ }
+
+ for(const auto &s : weights_scale)
+ {
+ int32_t out_mult = 0;
+ int32_t out_shift = 0;
+ const float multiplier = input_scale * s / output_scale;
+ arm_compute::quantization::calculate_quantized_multiplier(multiplier, &out_mult, &out_shift);
+
+ _output_multiplier.push_back(out_mult);
+ _output_shift.push_back(out_shift);
+ }
+ }
+
+ switch(weights->data_type())
+ {
+ case DataType::QASYMM8:
+ _func = &CpuDepthwiseConv2dNativeKernel::run_depthwise<uint8_t, uint8_t>;
+ break;
+ case DataType::QASYMM8_SIGNED:
+ _func = &CpuDepthwiseConv2dNativeKernel::run_depthwise<int8_t, int8_t>;
+ break;
+ case DataType::QSYMM8_PER_CHANNEL:
+ if(src->data_type() == DataType::QASYMM8)
+ {
+ _func = &CpuDepthwiseConv2dNativeKernel::run_depthwise<uint8_t, int8_t>;
+ }
+ else
+ {
+ _func = &CpuDepthwiseConv2dNativeKernel::run_depthwise<int8_t, int8_t>;
+ }
+ break;
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ case DataType::F16:
+ _func = &CpuDepthwiseConv2dNativeKernel::run_depthwise<float16_t, float16_t>;
+ break;
+#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+ case DataType::F32:
+ _func = &CpuDepthwiseConv2dNativeKernel::run_depthwise<float, float>;
+ break;
+ default:
+ ARM_COMPUTE_ERROR("Data type not supported");
+ break;
+ }
+
+ const TensorShape output_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*src, *weights, info);
+ auto_init_if_empty(*dst, src->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_quantization_info(dst->quantization_info()));
+
+ Window win = calculate_max_window(*dst, Steps());
+ ICpuKernel::configure(win);
+}
+
+Status CpuDepthwiseConv2dNativeKernel::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const ConvolutionInfo &info)
+{
+ ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(src, weights, biases, dst, info));
+ return Status{};
+}
+
+template <typename T, typename TW, CpuDepthwiseConv2dNativeKernel::FloatEnalber<T>>
+void CpuDepthwiseConv2dNativeKernel::run_depthwise(const ITensor *src, const ITensor *weights, const ITensor *biases,
+ ITensor *dst, const Window &window, bool has_biases)
+{
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+ if(_depth_multiplier == 1)
+ {
+ depthwise_loop_multiplier1_fp<T>(src, weights, biases, dst, _conv_info, _dilation, window, has_biases);
+ }
+ else
+ {
+ depthwise_loop_generic_fp<T>(src, weights, biases, dst, _conv_info, _dilation, _depth_multiplier, window, has_biases);
+ }
+}
+
+template <typename T, typename TW, CpuDepthwiseConv2dNativeKernel::Quantized8bitEnalber<T>>
+void CpuDepthwiseConv2dNativeKernel::run_depthwise(const ITensor *src, const ITensor *weights, const ITensor *biases,
+ ITensor *dst, const Window &window, bool has_biases)
+{
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+
+ if(_depth_multiplier == 1)
+ {
+ depthwise_loop_multiplier1_quantized<T, TW>(src, weights, biases, dst, _conv_info, _dilation, _output_multiplier, _output_shift, window, has_biases);
+ }
+ else
+ {
+ const bool is_pow2 = ((_depth_multiplier & (_depth_multiplier - 1)) == 0);
+ const bool is_quantized_per_tensor = !(is_data_type_quantized_per_channel(weights->info()->data_type()));
+
+ if(is_pow2 && is_quantized_per_tensor && _depth_multiplier >= 8)
+ {
+ depthwise_loop_pow2_quantized_per_tensor<T, TW>(src, weights, biases, dst, _conv_info, _dilation, _depth_multiplier, _output_multiplier, _output_shift, window, has_biases);
+ }
+ else
+ {
+ depthwise_loop_generic_quantized<T, TW>(src, weights, biases, dst, _conv_info, _dilation, _depth_multiplier, _output_multiplier, _output_shift, window, has_biases);
+ }
+ }
+}
+
+void CpuDepthwiseConv2dNativeKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
+{
+ ARM_COMPUTE_UNUSED(info);
+ ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
+ ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(ICpuKernel::window(), window);
+ ARM_COMPUTE_ERROR_ON(_func == nullptr);
+
+ const auto src = tensors.get_const_tensor(TensorType::ACL_SRC_0);
+ const auto weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
+ const auto biases = tensors.get_const_tensor(TensorType::ACL_SRC_2);
+ auto dst = tensors.get_tensor(TensorType::ACL_DST);
+ (this->*_func)(src, weights, biases, dst, window, _has_biases);
+}
+} // namespace kernels
+} // namespace cpu
+} // namespace arm_compute