aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/arm_gemm/gemv_pretransposed.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/NEON/kernels/arm_gemm/gemv_pretransposed.hpp')
-rw-r--r--src/core/NEON/kernels/arm_gemm/gemv_pretransposed.hpp208
1 files changed, 137 insertions, 71 deletions
diff --git a/src/core/NEON/kernels/arm_gemm/gemv_pretransposed.hpp b/src/core/NEON/kernels/arm_gemm/gemv_pretransposed.hpp
index 7f52ac5a14..dbada36052 100644
--- a/src/core/NEON/kernels/arm_gemm/gemv_pretransposed.hpp
+++ b/src/core/NEON/kernels/arm_gemm/gemv_pretransposed.hpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2017-2020 ARM Limited.
+ * Copyright (c) 2017-2022, 2024 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -36,69 +36,121 @@
namespace arm_gemm {
+namespace {
+
+template<typename OutputStage>
+class run_gemv_kernel {
+public:
+ template<typename strategy, typename Tlo, typename Tro, typename Tr>
+ static void run (
+ const strategy &strat,
+ const Tlo *A_ptr, const Tro *B_ptr, Tr *c_ptr,
+ size_t N, size_t K,
+ const Tr *bias, const Activation &act, bool Accumulate,
+ const OutputStage &os, const int32_t *col_bias, unsigned int col_base
+ );
+};
+
+template<>
+template<typename strategy, typename Tlo, typename Tro, typename Tr>
+void run_gemv_kernel<Nothing>::run(
+ const strategy &strat,
+ const Tlo *A_ptr, const Tro *B_ptr, Tr *C_ptr,
+ size_t N, size_t K,
+ const Tr *bias, const Activation &act, bool Accumulate,
+ const Nothing &, const int32_t *, unsigned int
+ ) {
+
+ strat.kernel(A_ptr, B_ptr, C_ptr, N, K, bias, act, Accumulate);
+}
+
+template<>
+template<typename strategy, typename Tlo, typename Tro, typename Tr>
+void run_gemv_kernel<Requantize32>::run(
+ const strategy &strat,
+ const Tlo *A_ptr, const Tro *B_ptr, Tr *C_ptr,
+ size_t N, size_t K,
+ const Tr *, const Activation &, bool,
+ const Requantize32 &qp, const int32_t *col_bias, unsigned int col_base
+ ) {
+
+ strat.kernel(A_ptr, B_ptr, C_ptr, N, K, &qp, col_bias + col_base, col_base);
+}
+
+} // anonymous namespace
+
// Implementation of the GemmCommon abstract class.
//
// This is implementation is for GEMV with pretransposition.
//
// batches are not supported as a batched GEMV makes no sense (can be converted to a GEMM).
-template<typename strategy, typename To, typename Tr>
+template<typename strategy, typename To, typename Tr, typename OutputStage=Nothing>
class GemvPretransposed : public GemmCommon<To, Tr> {
typedef typename strategy::operand_type Toi;
typedef typename strategy::result_type Tri;
- const unsigned int _Nsize;
- const unsigned int _Ksize;
+ const GemmArgs _args;
- const unsigned int _nmultis;
+ const unsigned int _buffer_per_multi;
- const bool _trB;
+ unsigned int k_block=0;
+ unsigned int n_block=0;
- const Activation _act;
+ const Toi *_B_pretransposed = nullptr;
- const CPUInfo * const _ci;
+ OutputStage _os;
- const unsigned int _buffer_per_multi;
-
- unsigned int m_block=0;
- unsigned int n_block=0;
+ // Pointer to the column sums (for quantized cases)
+ int32_t *col_bias = nullptr;
- const Toi *_A_pretransposed = nullptr;
+ // Get size of the column sums
+ unsigned int get_col_sum_size() const {
+ if(std::is_same<OutputStage, Requantize32>::value) {
+ return _args._Nsize * _args._nmulti * sizeof(int32_t);
+ } else {
+ return 0;
+ }
+ }
public:
GemvPretransposed(GemvPretransposed &) = delete;
GemvPretransposed & operator= (GemvPretransposed &) = delete;
- GemvPretransposed(const GemmArgs &args)
- : _Nsize(args._Nsize), _Ksize(args._Ksize), _nmultis(args._nmulti), _trB(args._trB), _act(args._act), _ci(args._ci),
- _buffer_per_multi(_Ksize * iceildiv(_Nsize, strategy::A_interleave()) * strategy::A_interleave()) {
+ GemvPretransposed(const GemmArgs &args, const OutputStage &os = {})
+ : _args(args),
+ _buffer_per_multi(roundup(args._Ksize, strategy::k_unroll()) * roundup(args._Nsize, strategy::out_width())),
+ _os(os) {
/* For now don't do any blocking. TODO: figure out if we should. */
- if (args._cfg && args._cfg->inner_block_size) {
- m_block = args._cfg->inner_block_size;
+ if (strategy::supports_accumulate() && args._cfg && args._cfg->inner_block_size) {
+ k_block = args._cfg->inner_block_size;
} else {
- m_block = _Ksize;
+ k_block = args._Ksize;
}
if (args._cfg && args._cfg->outer_block_size) {
n_block = args._cfg->outer_block_size;
} else {
- n_block = _Nsize;
+ n_block = args._Nsize;
}
}
// Window is number of out_width blocks, times number of multis.
ndrange_t get_window_size() const override {
- return { iceildiv(_Nsize, strategy::out_width()) * _nmultis, 1u, 1u, 1u, 1u, 1u };
+ return { iceildiv(_args._Nsize, strategy::out_width()) * _args._nmulti };
}
// Actually execute the GEMV.
- void execute_1d(unsigned int start, unsigned int end, int) {
+ void execute(const ndcoord_t &work_range, const ndcoord_t &, int) override {
#ifdef CYCLE_PROFILING
profiler prof;
#endif
- strategy strat(_ci);
+ strategy strat(_args._ci);
+
+ const auto start = work_range.get_position(0);
+ const auto end = work_range.get_position_end(0);
/* Break the window values down into multis of interest... */
- const unsigned int window_per_multi = iceildiv(_Nsize, strategy::out_width());
+ const unsigned int window_per_multi = iceildiv(_args._Nsize, strategy::out_width());
const unsigned int multi_0 = start / window_per_multi;
const unsigned int multi_end = end / window_per_multi;
@@ -110,85 +162,99 @@ public:
for (unsigned int multi=multi_0; multi<=multi_end; multi++) {
const unsigned int n_start = (multi==multi_0) ? n_0 : 0;
- const unsigned int n_end = (multi==multi_end) ? n_max : _Nsize;
+ const unsigned int n_end = (multi==multi_end) ? n_max : _args._Nsize;
if (n_end <= n_start)
continue;
- for (unsigned int m0=0; m0<_Ksize; m0+=m_block) {
- unsigned int mmax = std::min(m0 + m_block, _Ksize);
+ for (unsigned int k0=0; k0<_args._Ksize; k0+=k_block) {
+ unsigned int kmax = std::min(k0 + k_block, _args._Ksize);
for (unsigned int n=n_start; n<n_end; n+=n_block) {
unsigned int nmax = std::min(n + n_block, n_end);
#ifdef CYCLE_PROFILING
- auto p = prof.ScopedProfiler(PROFILE_KERNEL, (mmax-m0) * (nmax-n));
+ auto p = prof.ScopedProfiler(PROFILE_KERNEL, (kmax-k0) * (nmax-n));
#endif
- /* This assumes that the underlying call was a GEMM with M=1; for the N=1 case we would have to pick up this->_Bptr below instead */
- strat.kernel(_A_pretransposed + (multi * _buffer_per_multi) + (n * _Ksize) + (m0 * strategy::A_interleave()),
- (_Ksize * strategy::A_interleave()),
- this->_Aptr + (multi * this->_A_multi_stride) + m0,
+ run_gemv_kernel<OutputStage>::run(strat, this->_Aptr + (multi * this->_A_multi_stride) + k0,
+ _B_pretransposed + (multi * _buffer_per_multi) + (n * roundup(_args._Ksize, strategy::k_unroll())) + (k0 * strategy::out_width()),
this->_Cptr + (multi * this->_C_multi_stride) + n,
- static_cast<Tr>(0), (mmax-m0), (nmax-n));
-
- // Handle activation separately for now
- if (this->_bias) {
- activator<true>(this->_Cptr + (multi * this->_C_multi_stride) + n, 0,
- this->_bias + (multi * this->_bias_multi_stride) + n,
- _act, 1, (nmax-n));
- } else {
- activator<false>(this->_Cptr + (multi * this->_C_multi_stride) + n, 0,
- static_cast<const Tr *>(nullptr),
- _act, 1, (nmax-n));
- }
+ (nmax - n), (kmax-k0),
+ this->_bias ? this->_bias + (multi * this->_bias_multi_stride) + n : nullptr,
+ _args._act, (k0 != 0) || _args._accumulate,
+ _os, col_bias, n + (_args._Nsize * multi));
}
}
}
}
- // Execute
- void execute(const ndcoord_t& work_range, const ndcoord_t& thread_locator, int threadid) override {
- UNUSED(thread_locator);
-
- const auto start = work_range.get_position(0);
- const auto size = work_range.get_size(0);
- const auto stop = start + size;
-
- execute_1d(start, stop, threadid);
- }
-
/* Pretransposed interface implementation */
bool B_is_pretransposed() const override {
return true;
}
bool B_pretranspose_required() const override {
- /* Transpose is required if _A_pretransposed is still nullptr */
- return (_A_pretransposed == nullptr);
+ /* Transpose is required if _B_pretransposed is still nullptr */
+ return (_B_pretransposed == nullptr);
}
size_t get_B_pretransposed_array_size() const override {
- return _buffer_per_multi * _nmultis * sizeof(To);
+ return _buffer_per_multi * _args._nmulti * sizeof(To) + get_col_sum_size();
}
- void pretranspose_B_array(void *buffer, const To *B, const int ldb, const int B_multi_stride) override {
- Toi *A_buffer = reinterpret_cast<Toi *>(buffer);
-
- for (unsigned int multi=0; multi<_nmultis; multi++) {
- /* Reverse sense here as we are dealing with B rather than A. So if
- * strategy::A_transpose is false and _trB is false, we still
- * transpose. */
- if (_trB ^ strategy::A_transpose()) {
- Transform<strategy::A_interleave(), strategy::A_block(), false>(A_buffer + (multi * _buffer_per_multi), B + (multi * B_multi_stride), ldb, 0, _Nsize, 0, _Ksize);
- } else {
- Transform<strategy::A_interleave(), strategy::A_block(), true>(A_buffer + (multi * _buffer_per_multi), B + (multi * B_multi_stride), ldb, 0, _Nsize, 0, _Ksize);
+ void requantize_bias(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override {
+ // Column sums go on the front of the pretransposed buffer in requantized cases.
+ // We could optimize here in case we don't actually need to sum the columns, but this code is only run on setup.
+ if (std::is_same<OutputStage, Requantize32>::value) {
+ col_bias = reinterpret_cast<int32_t *>(in_buffer);
+
+ Requantize32 *qp_ptr = reinterpret_cast<Requantize32 *>(&_os);
+
+ for (unsigned int i=0; i<_args._nmulti; i++) {
+ compute_col_sums(*qp_ptr, _args._Nsize, _args._Ksize, B + (i * B_multi_stride), ldb, col_bias + (i * _args._Nsize), _args._Ksize, i, 0);
}
}
+ }
+
+ void set_quantized_bias(const int32_t *bias, size_t bias_multi_stride) override {
+ if (std::is_same<OutputStage, Requantize32>::value) {
+ Requantize32 *qp = reinterpret_cast<Requantize32 *>(&_os);
+
+ qp->bias = bias;
+ qp->bias_multi_stride = bias_multi_stride;
+ }
+ }
+
+ void pretranspose_B_array(void *buffer, const To *B, const int ldb, const int B_multi_stride, bool transposed) override {
+ assert(!transposed);
+
+ requantize_bias(buffer, B, ldb, B_multi_stride);
+
+ // The actual transposed buffer goes after the column sums (if any)
+ uintptr_t buffer_int = reinterpret_cast<uintptr_t>(buffer);
+ Toi *B_buffer = reinterpret_cast<Toi *>(buffer_int + get_col_sum_size());
+
+ strategy strat(_args._ci);
+
+ for (unsigned int multi=0; multi<_args._nmulti; multi++) {
+ strat.transforms.PrepareB(B_buffer + (multi * _buffer_per_multi), B + (multi * B_multi_stride), ldb, 0, _args._Nsize, 0, _args._Ksize, false);
+ }
- _A_pretransposed = A_buffer;
+ _B_pretransposed = B_buffer;
}
void set_pretransposed_B_data(void *buffer) override {
- _A_pretransposed = reinterpret_cast<Toi *>(buffer);
+ _B_pretransposed = reinterpret_cast<Toi *>(buffer);
+ }
+
+ GemmConfig get_config() override {
+ GemmConfig c;
+
+ c.method = GemmMethod::GEMV_PRETRANSPOSED;
+ c.inner_block_size = k_block;
+ c.outer_block_size = n_block;
+ c.filter = get_type_name<strategy>();
+
+ return c;
}
};