aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/arm_conv/depthwise/depthwise_depthfirst_multiplier.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/NEON/kernels/arm_conv/depthwise/depthwise_depthfirst_multiplier.hpp')
-rw-r--r--src/core/NEON/kernels/arm_conv/depthwise/depthwise_depthfirst_multiplier.hpp527
1 files changed, 527 insertions, 0 deletions
diff --git a/src/core/NEON/kernels/arm_conv/depthwise/depthwise_depthfirst_multiplier.hpp b/src/core/NEON/kernels/arm_conv/depthwise/depthwise_depthfirst_multiplier.hpp
new file mode 100644
index 0000000000..7c64e0be61
--- /dev/null
+++ b/src/core/NEON/kernels/arm_conv/depthwise/depthwise_depthfirst_multiplier.hpp
@@ -0,0 +1,527 @@
+/*
+ * Copyright (c) 2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#pragma once
+
+#include "src/core/NEON/kernels/arm_gemm/utils.hpp"
+
+#ifdef CYCLE_PROFILING
+#include "profiler.hpp"
+#endif
+
+namespace arm_conv {
+namespace depthwise {
+
+namespace common
+{
+ template <typename strategy, typename F>
+ void depthwise_multiplier_execute(
+ const F execute_tile,
+ typename strategy::input_type pad_value,
+ const DepthwiseArgs &args,
+ const unsigned int batches,
+ const unsigned int input_height,
+ const unsigned int input_width,
+ const unsigned int input_channels,
+ const PaddingValues &padding,
+ const void *const _input,
+ const size_t ld_input_col,
+ const size_t ld_input_row,
+ const size_t ld_input_batch,
+ const void *const parameters,
+ const size_t param_stride,
+ const unsigned int output_height,
+ const unsigned int output_width,
+ void *const _output,
+ const size_t ld_output_col,
+ const size_t ld_output_row,
+ const size_t ld_output_batch,
+ void *const _working_space,
+ const unsigned int thread_id,
+ const unsigned int n_threads
+ )
+ {
+ using TInput = typename strategy::input_type;
+ using TOutput = typename strategy::return_type;
+
+ // Determine what portion of the work to do.
+ const unsigned int n_rows_per_thread = arm_gemm::iceildiv(output_height, n_threads);
+ const int start_out_height = std::min(thread_id * n_rows_per_thread, output_height);
+ const int end_out_height = std::min(start_out_height + n_rows_per_thread, output_height);
+
+ // Cast input and output pointers into the right types
+ const TInput *const inptr = static_cast<const TInput *>(_input);
+ TOutput *const outptr = static_cast<TOutput *>(_output);
+
+ // To simplify the kernel, we process padded or non-NCHW-ordered input into
+ // a form which can be consumed by the kernel. This data is stored here and
+ // passed into the kernel as an array of N pointers (one per row of the
+ // input).
+ TInput rearranged_input[strategy::input_rows][strategy::input_col_quads*(16 / sizeof(TInput))];
+ const TInput *inptrs[strategy::input_rows];
+
+ // Create an array for the output pointers
+ TOutput * _outptr_array[strategy::output_rows * strategy::output_cols];
+ TOutput **const outptr_array = _outptr_array;
+
+ // Allocate portions of the working space
+ uint8_t *const working_space = static_cast<uint8_t *>(_working_space);
+ TOutput *const output_buffer = reinterpret_cast<TOutput *>(working_space);
+
+ // For each output tile, construct the requisite set of pointers and call
+ // into the kernel.
+ for (unsigned int batch = 0; batch < batches; batch++)
+ {
+ // Get batch pointers
+ const auto inptr_batch = inptr + batch * ld_input_batch;
+ const auto outptr_batch = outptr + batch * ld_output_batch;
+
+ for (int start_out_i = start_out_height;
+ start_out_i < end_out_height;
+ start_out_i += static_cast<int>(strategy::output_rows))
+ {
+ const int end_out_i = start_out_i + strategy::output_rows;
+ const int start_in_i = start_out_i * strategy::stride_rows - padding.top;
+ const int end_in_i = start_in_i + strategy::input_rows;
+
+ // Compute top/bottom padding
+ const auto pad_top = static_cast<unsigned int>(-std::min(start_in_i, 0));
+ const auto pad_bottom = static_cast<unsigned int>(-std::min(static_cast<int>(input_height) - end_in_i, 0));
+ const unsigned int valid_output_rows = std::min(
+ end_out_i - start_out_i,
+ static_cast<int>(output_height) - start_out_i
+ );
+
+ for (int start_out_j = 0; start_out_j < static_cast<int>(output_width);)
+ {
+ const int start_in_j = start_out_j * strategy::stride_cols - args.padding.left;
+ const int pad_left = -std::min(0, start_in_j);
+
+ const int end_out_j = start_out_j + strategy::output_cols;
+ const int end_in_j = start_in_j + strategy::input_cols;
+
+ const auto pad_right = static_cast<unsigned int>(-std::min(static_cast<int>(input_width) - end_in_j, 0));
+ const unsigned int valid_output_cols = std::min(
+ end_out_j - start_out_j,
+ static_cast<int>(output_width) - start_out_j
+ );
+
+ // Construct the output pointer array.
+ TOutput **outptr_pos = outptr_array;
+ for (auto i = 0u; i < valid_output_rows; i++)
+ {
+ unsigned int j = 0u;
+ TOutput *colptr = outptr_batch + (start_out_i + i) * ld_output_row + start_out_j * ld_output_col;
+ for (; j < valid_output_cols; j++)
+ {
+ *(outptr_pos++) = colptr;
+ colptr += ld_output_col;
+ }
+ for (; j < strategy::output_cols; j++)
+ {
+ *(outptr_pos++) = output_buffer;
+ }
+ }
+ for (auto i = valid_output_rows; i < strategy::output_rows; i++)
+ {
+ for (auto j = 0u; j < strategy::output_cols; j++)
+ {
+ *(outptr_pos++) = output_buffer;
+ }
+ }
+
+ start_out_j += strategy::output_cols;
+
+ const uint8_t *params = static_cast<const uint8_t *>(parameters);
+
+ // Loop over the input channels
+ for (unsigned int in_c = 0; in_c < input_channels; in_c++)
+ {
+ // Construct the input array - first fill with padding values and
+ // then fill in correct values.
+ for (unsigned int i = 0; i < strategy::input_rows; i++)
+ {
+ for (unsigned int j = 0;
+ j < (16 / sizeof(TInput)) * strategy::input_col_quads; j++)
+ {
+ rearranged_input[i][j] = pad_value;
+ }
+ inptrs[i] = rearranged_input[i];
+ }
+
+ auto inptr_row = inptr_batch + in_c +
+ (start_in_i + pad_top) * ld_input_row +
+ (start_in_j + pad_left) * ld_input_col;
+ if (ld_input_col == 1 && !pad_left &&
+ start_in_j + (16 / sizeof(TInput)) * strategy::input_col_quads < input_width)
+ {
+ // The input tensor is already in NCHW format, and we're reading
+ // an unpadded section of it - allow the kernel to read it
+ // directly.
+ for (unsigned int i = pad_top; i < strategy::input_rows - pad_bottom; i++)
+ {
+ inptrs[i] = inptr_row;
+ inptr_row += ld_input_row;
+ }
+ }
+ else
+ {
+ // Either the input tensor isn't in NCHW format, or we're reading
+ // a padded section. Copy the relevant portion of the input here
+ // and allow the kernel to read this.
+ for (unsigned int i = pad_top; i < strategy::input_rows - pad_bottom; i++)
+ {
+ auto inptr_col = inptr_row;
+ for (unsigned int j = pad_left; j < strategy::input_cols - pad_right; j++)
+ {
+ rearranged_input[i][j] = *inptr_col;
+ inptr_col += ld_input_col;
+ }
+ inptr_row += ld_input_row;
+ }
+ }
+
+ execute_tile(inptrs, outptr_array, params);
+
+ // Progress the output pointers
+ TOutput **outptr_pos = outptr_array;
+ for (auto i = 0u; i < strategy::output_rows * strategy::output_cols; i++)
+ {
+ outptr_pos[i] += args.channel_multiplier;
+ }
+
+ // Progress the pointer into the parameters
+ params += param_stride;
+ }
+ }
+ }
+ }
+ }
+}
+
+template <class strategy>
+class DepthwiseDepthfirstWithMultiplier :
+ public DepthwiseCommon<typename strategy::input_type,
+ typename strategy::weight_type,
+ typename strategy::return_type>
+{
+ using TInput = typename strategy::input_type;
+ using TWeight = typename strategy::weight_type;
+ using TOutput = typename strategy::return_type;
+ using TAccum = typename strategy::bias_type;
+
+ size_t sizeof_output_buffer(unsigned int n_channels) const
+ {
+ const unsigned int vl = arm_gemm::utils::get_vector_length<TOutput>(strategy::vl_type);
+ const auto rounded_channels = arm_gemm::roundup(n_channels, vl);
+ return sizeof(TOutput) * rounded_channels;
+ }
+
+ public:
+ DepthwiseDepthfirstWithMultiplier(const DepthwiseArgs &args) : DepthwiseCommon<TInput, TWeight, TOutput>(args)
+ {
+ }
+
+ DepthwiseDepthfirstWithMultiplier(DepthwiseDepthfirstWithMultiplier &) = delete;
+ DepthwiseDepthfirstWithMultiplier &operator=(DepthwiseDepthfirstWithMultiplier &) = delete;
+
+ size_t get_storage_size(void) const override
+ {
+ // TODO What if we insert extra padding? Biases are a different size to the inputs, ...
+ const unsigned int vl = arm_gemm::utils::get_vector_length<TInput>(strategy::vl_type);
+ const auto rounded_channels = this->m_args.input_channels * arm_gemm::roundup(this->m_args.channel_multiplier, vl);
+ return (1 + this->m_args.kernel_rows * this->m_args.kernel_cols) * rounded_channels * sizeof(TWeight);
+ }
+
+ void pack_parameters(void *_buffer, const void *_biases, const void *_weights, size_t ld_weight_col, size_t ld_weight_row) override
+ {
+ // TODO What if the kernel needs a different packing function?
+
+ // Cast the pointers
+ float *buffer = static_cast<float *>(_buffer);
+ const float *biases = static_cast<const float *>(_biases);
+ const float *const weights = static_cast<const float *>(_weights);
+
+ const unsigned int vl = arm_gemm::utils::get_vector_length<TInput>(strategy::vl_type);
+ ld_weight_col = (ld_weight_col == 0) ? this->m_args.channel_multiplier * this->m_args.input_channels : ld_weight_col;
+ ld_weight_row = (ld_weight_row == 0) ? this->m_args.kernel_cols * ld_weight_col : ld_weight_row;
+
+ for (unsigned int in_c = 0; in_c < this->m_args.input_channels; in_c++)
+ {
+ for (unsigned int n = 0; n < this->m_args.channel_multiplier; n += vl)
+ {
+ const unsigned int out_c = in_c * this->m_args.channel_multiplier + n;
+ const unsigned int todo = std::min(vl, this->m_args.channel_multiplier - n);
+
+ // Copy across the correct amount of bias (or 0)
+ for (unsigned int i = 0; i < todo; i++)
+ {
+ buffer[i] = (biases == nullptr) ? 0 : biases[out_c + i];
+ }
+ buffer += vl;
+
+ // Copy each of the weights in turn
+ auto weights_row = weights + out_c;
+ for (unsigned int i = 0; i < this->m_args.kernel_rows; i++)
+ {
+ auto weights_col = weights_row;
+
+ for (unsigned int j = 0; j < this->m_args.kernel_cols; j++)
+ {
+ for (unsigned int m = 0; m < todo; m++)
+ {
+ buffer[m] = weights_col[m];
+ }
+ buffer += vl;
+
+ weights_col += ld_weight_col;
+ }
+
+ weights_row += ld_weight_row;
+ }
+ }
+ }
+ }
+
+ size_t get_working_size(const unsigned int n_threads, const unsigned int n_channels) const override
+ {
+ const unsigned int n_output_channels = n_channels * this->m_args.channel_multiplier;
+ return n_threads * sizeof_output_buffer(n_output_channels);
+ }
+
+ using DepthwiseCommon<typename strategy::input_type, typename strategy::weight_type, typename strategy::return_type>::execute;
+ void execute(
+ const unsigned int batches,
+ const unsigned int input_height,
+ const unsigned int input_width,
+ const unsigned int input_channels,
+ const PaddingValues &padding,
+ const void *const _input,
+ const size_t ld_input_col,
+ const size_t ld_input_row,
+ const size_t ld_input_batch,
+ const void *const parameters,
+ const unsigned int output_height,
+ const unsigned int output_width,
+ void *const _output,
+ const size_t ld_output_col,
+ const size_t ld_output_row,
+ const size_t ld_output_batch,
+ void *const _working_space,
+ const unsigned int thread_id,
+ const unsigned int n_threads
+ ) const override
+ {
+ strategy strat(this->m_args.cpu_info);
+#ifdef CYCLE_PROFILING
+ arm_gemm::profiler prof;
+#endif
+
+ // Compute activation values
+ TAccum activation_min = std::numeric_limits<TAccum>::has_infinity ? -std::numeric_limits<TAccum>::infinity() : std::numeric_limits<TAccum>::min();
+ TAccum activation_max = std::numeric_limits<TAccum>::has_infinity ? std::numeric_limits<TAccum>::infinity() : std::numeric_limits<TAccum>::max();
+
+ switch (this->m_args.activation.type)
+ {
+ case arm_gemm::Activation::Type::BoundedReLU:
+ activation_max = static_cast<TAccum>(this->m_args.activation.param1);
+ // Fall through
+ case arm_gemm::Activation::Type::ReLU:
+ activation_min = static_cast<TAccum>(0);
+ break;
+ default:
+ break;
+ }
+
+ // Determine what portion of the work to do.
+ const unsigned int n_rows_per_thread = arm_gemm::iceildiv(output_height, n_threads);
+ const int start_out_height = std::min(thread_id * n_rows_per_thread, output_height);
+ const int end_out_height = std::min(start_out_height + n_rows_per_thread, output_height);
+
+ // Need a stride over blocks of parameters
+ const unsigned int vl = arm_gemm::utils::get_vector_length<TOutput>(strategy::vl_type);
+ const unsigned int param_stride =
+ arm_gemm::roundup(this->m_args.channel_multiplier, vl) *
+ (sizeof(TAccum) + sizeof(TWeight) * strategy::kernel_rows * strategy::kernel_cols);
+
+ // Cast input and output pointers into the right types
+ const TInput *const inptr = static_cast<const TInput *>(_input);
+ TOutput *const outptr = static_cast<TOutput *>(_output);
+
+ // To simplify the kernel, we process padded or non-NCHW-ordered input into
+ // a form which can be consumed by the kernel. This data is stored here and
+ // passed into the kernel as an array of N pointers (one per row of the
+ // input).
+ TInput rearranged_input[strategy::input_rows][strategy::input_col_quads*4];
+ const TInput *inptrs[strategy::input_rows];
+
+ // Create an array for the output pointers
+ TOutput * _outptr_array[strategy::output_rows * strategy::output_cols];
+ TOutput **const outptr_array = _outptr_array;
+
+ // Allocate portions of the working space
+ uint8_t *const working_space = static_cast<uint8_t *>(_working_space) + get_working_size(thread_id, input_channels);
+ TOutput *const output_buffer = reinterpret_cast<TOutput *>(working_space);
+
+ // For each output tile, construct the requisite set of pointers and call
+ // into the kernel.
+ for (unsigned int batch = 0; batch < batches; batch++)
+ {
+ // Get batch pointers
+ const auto inptr_batch = inptr + batch * ld_input_batch;
+ const auto outptr_batch = outptr + batch * ld_output_batch;
+
+ for (int start_out_i = start_out_height;
+ start_out_i < end_out_height;
+ start_out_i += static_cast<int>(strategy::output_rows))
+ {
+ const int end_out_i = start_out_i + strategy::output_rows;
+ const int start_in_i = start_out_i * strategy::stride_rows - padding.top;
+ const int end_in_i = start_in_i + strategy::input_rows;
+
+ // Compute top/bottom padding
+ const auto pad_top = static_cast<unsigned int>(-std::min(start_in_i, 0));
+ const auto pad_bottom = static_cast<unsigned int>(-std::min(static_cast<int>(input_height) - end_in_i, 0));
+ const unsigned int valid_output_rows = std::min(
+ end_out_i - start_out_i,
+ static_cast<int>(output_height) - start_out_i
+ );
+
+ for (int start_out_j = 0; start_out_j < static_cast<int>(output_width);)
+ {
+ const int start_in_j = start_out_j * strategy::stride_cols - this->m_args.padding.left;
+ const int pad_left = -std::min(0, start_in_j);
+
+ const int end_out_j = start_out_j + strategy::output_cols;
+ const int end_in_j = start_in_j + strategy::input_cols;
+
+ const auto pad_right = static_cast<unsigned int>(-std::min(static_cast<int>(input_width) - end_in_j, 0));
+ const unsigned int valid_output_cols = std::min(
+ end_out_j - start_out_j,
+ static_cast<int>(output_width) - start_out_j
+ );
+
+ // Construct the output pointer array.
+ TOutput **outptr_pos = outptr_array;
+ for (auto i = 0u; i < valid_output_rows; i++)
+ {
+ unsigned int j = 0u;
+ TOutput *colptr = outptr_batch + (start_out_i + i) * ld_output_row + start_out_j * ld_output_col;
+ for (; j < valid_output_cols; j++)
+ {
+ *(outptr_pos++) = colptr;
+ colptr += ld_output_col;
+ }
+ for (; j < strategy::output_cols; j++)
+ {
+ *(outptr_pos++) = output_buffer;
+ }
+ }
+ for (auto i = valid_output_rows; i < strategy::output_rows; i++)
+ {
+ for (auto j = 0u; j < strategy::output_cols; j++)
+ {
+ *(outptr_pos++) = output_buffer;
+ }
+ }
+
+ start_out_j += strategy::output_cols;
+
+ const uint8_t *params = static_cast<const uint8_t *>(parameters);
+
+ // Loop over the input channels
+ for (unsigned int in_c = 0; in_c < input_channels; in_c++)
+ {
+ // Construct the input array - first fill with padding values and
+ // then fill in correct values.
+ for (unsigned int i = 0; i < strategy::input_rows; i++)
+ {
+ for (unsigned int j = 0; j < 4 * strategy::input_col_quads; j++)
+ {
+ rearranged_input[i][j] = static_cast<TInput>(0);
+ }
+ inptrs[i] = rearranged_input[i];
+ }
+
+ auto inptr_row = inptr_batch + in_c +
+ (start_in_i + pad_top) * ld_input_row +
+ (start_in_j + pad_left) * ld_input_col;
+ if (ld_input_col == 1 && !pad_left &&
+ start_in_j + 4 * strategy::input_col_quads < input_width)
+ {
+ // The input tensor is already in NCHW format, and we're reading
+ // an unpadded section of it - allow the kernel to read it
+ // directly.
+ for (unsigned int i = pad_top; i < strategy::input_rows - pad_bottom; i++)
+ {
+ inptrs[i] = inptr_row;
+ inptr_row += ld_input_row;
+ }
+ }
+ else
+ {
+ // Either the input tensor isn't in NCHW format, or we're reading
+ // a padded section. Copy the relevant portion of the input here
+ // and allow the kernel to read this.
+ for (unsigned int i = pad_top; i < strategy::input_rows - pad_bottom; i++)
+ {
+ auto inptr_col = inptr_row;
+ for (unsigned int j = pad_left; j < strategy::input_cols - pad_right; j++)
+ {
+ rearranged_input[i][j] = *inptr_col;
+ inptr_col += ld_input_col;
+ }
+ inptr_row += ld_input_row;
+ }
+ }
+
+ {
+#ifdef CYCLE_PROFILING
+ auto p = prof.ScopedProfiler(PROFILE_KERNEL, (unsigned long)(strategy::output_rows * strategy::output_cols * this->m_args.channel_multiplier * strategy::kernel_rows * strategy::kernel_cols));
+#endif
+ strat.kernel(
+ inptrs, outptr_array, params,
+ this->m_args.channel_multiplier,
+ activation_min, activation_max
+ );
+ }
+
+ // Progress the output pointers
+ TOutput **outptr_pos = outptr_array;
+ for (auto i = 0u; i < strategy::output_rows * strategy::output_cols; i++)
+ {
+ outptr_pos[i] += this->m_args.channel_multiplier;
+ }
+
+ // Progress the pointer into the parameters
+ params += param_stride;
+ }
+ }
+ }
+ }
+ }
+};
+
+} // namespace depthwise
+} // namespace arm_conv