aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp')
-rw-r--r--src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp1027
1 files changed, 0 insertions, 1027 deletions
diff --git a/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp b/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp
deleted file mode 100644
index ca59e66293..0000000000
--- a/src/core/NEON/kernels/NEPixelWiseMultiplicationKernel.cpp
+++ /dev/null
@@ -1,1027 +0,0 @@
-/*
- * Copyright (c) 2016-2020 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "arm_compute/core/NEON/kernels/NEPixelWiseMultiplicationKernel.h"
-
-#include "arm_compute/core/CPP/Validate.h"
-#include "arm_compute/core/NEON/NEAsymm.h"
-#include "arm_compute/core/NEON/NESymm.h"
-#include "arm_compute/core/NEON/wrapper/wrapper.h"
-#include "arm_compute/core/TensorInfo.h"
-
-#include <arm_neon.h>
-
-#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
-#include <arm_fp16.h> // needed for float16_t
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-
-namespace arm_compute
-{
-namespace
-{
-const float scale255_constant = 1.f / 255.f;
-const float32x4_t scale255_constant_f32q = vdupq_n_f32(scale255_constant);
-const float32x4_t positive_round_f32q = vdupq_n_f32(0.5f);
-
-constexpr unsigned int num_elems_processed_per_iteration = 16;
-
-inline Status validate_arguments(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
-{
- ARM_COMPUTE_UNUSED(overflow_policy);
- ARM_COMPUTE_UNUSED(rounding_policy);
-
- ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input1);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S16, DataType::QSYMM16, DataType::F16, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED,
- DataType::S16, DataType::QSYMM16,
- DataType::S32, DataType::F16, DataType::F32);
- if(is_data_type_quantized(input1->data_type()) || is_data_type_quantized(input2->data_type()))
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2);
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(overflow_policy == ConvertPolicy::WRAP, "ConvertPolicy cannot be WRAP if datatype is quantized");
- }
-
- if(output->total_size() > 0)
- {
- if(is_data_type_quantized(output->data_type()))
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2, output);
- }
-
- const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
-
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::U8 && (input1->data_type() != DataType::U8 || input2->data_type() != DataType::U8),
- "Output can only be U8 if both inputs are U8");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::S32 && (input1->data_type() != DataType::QSYMM16 || input2->data_type() != DataType::QSYMM16),
- "Output can only be S32 if both inputs are QSYMM16");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->data_type() == DataType::S32 && scale != 1.f, "Unsupported scale for QSYMM16 inputs and S32 output");
- }
-
- if(std::abs(scale - scale255_constant) < 0.00001f)
- {
- ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_NEAREST_UP && rounding_policy != RoundingPolicy::TO_NEAREST_EVEN);
- }
- else
- {
- ARM_COMPUTE_RETURN_ERROR_ON(rounding_policy != RoundingPolicy::TO_ZERO);
-
- int exponent = 0;
- const float normalized_mantissa = std::frexp(scale, &exponent);
-
- // Use int scaling if factor is equal to 1/2^n for 0 <= n <= 15
- // frexp returns 0.5 as mantissa which means that the exponent will be in the range of -1 <= e <= 14
- // Moreover, it will be negative as we deal with 1/2^n
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(!((normalized_mantissa == 0.5f) && (-14 <= exponent) && (exponent <= 1)), "Scale value not supported (Should be 1/(2^n) or 1/255");
- }
-
- return Status{};
-}
-
-inline std::pair<Status, Window> validate_and_configure_window(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
-{
- const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
- const ValidRegion &valid_region = broadcast_pair.second;
-
- // Auto initialize output if not initialized
- {
- ARM_COMPUTE_UNUSED(set_shape_if_empty(*output, input1->tensor_shape()));
-
- if(input1->data_type() == DataType::S16 || input2->data_type() == DataType::S16)
- {
- set_format_if_unknown(*output, Format::S16);
- }
- else if(input1->data_type() == DataType::F32 || input2->data_type() == DataType::F32)
- {
- set_format_if_unknown(*output, Format::F32);
- }
- else if(input1->data_type() == DataType::F16 || input2->data_type() == DataType::F16)
- {
- set_format_if_unknown(*output, Format::F16);
- }
- else if(input1->data_type() == DataType::QASYMM8 || input2->data_type() == DataType::QASYMM8)
- {
- set_data_type_if_unknown(*output, DataType::QASYMM8);
- }
- else if(input1->data_type() == DataType::QASYMM8_SIGNED || input2->data_type() == DataType::QASYMM8_SIGNED)
- {
- set_data_type_if_unknown(*output, DataType::QASYMM8_SIGNED);
- }
- else if(input1->data_type() == DataType::QSYMM16 || input2->data_type() == DataType::QSYMM16)
- {
- set_data_type_if_unknown(*output, DataType::QSYMM16);
- }
- }
-
- // Configure kernel window
- Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration));
- Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
- Window win_input2 = win.broadcast_if_dimension_le_one(*input2);
-
- AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration);
- AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration);
- AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration);
-
- bool window_changed = update_window_and_padding(win_input1, input1_access)
- || update_window_and_padding(win_input2, input2_access)
- || update_window_and_padding(win, output_access);
-
- output_access.set_valid_region(win, valid_region);
-
- Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
- return std::make_pair(err, win);
-}
-
-/* Scales a given vector by 1/255.
- *
- * @note This does not work for all cases. e.g. for float of 0.49999999999999994 and large floats.
- *
- * @param in Input vector to scale.
- * @return Scaled output rounded to nearest (round half up).
- */
-inline int32x4_t scale255_S32_S32(int32x4_t in)
-{
- // Scale
- const float32x4_t tmp = vmulq_f32(vcvtq_f32_s32(in), scale255_constant_f32q);
- // Round to nearest (round half up)
- // Add +0.5 for all values
- // Afterwards vcvt rounds toward zero
- return vcvtq_s32_f32(vaddq_f32(tmp, positive_round_f32q));
-}
-
-inline uint16x8_t scale255_U16_U16(uint16x8_t in)
-{
- const int32x4_t tmp_s1 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(in))));
- const int32x4_t tmp_s2 = scale255_S32_S32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(in))));
- return vreinterpretq_u16_s16(vcombine_s16(vmovn_s32(tmp_s2), vmovn_s32(tmp_s1)));
-}
-
-inline void mul_saturate_QASYMM8_QASYMM8_QASYMM8_n_opt(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr,
- float32x4_t input1_vscale, int32x4_t input1_voffset, float32x4_t input2_vscale, int32x4_t input2_voffset, float32x4_t output_voffset, float32x4_t vinvscale)
-{
- const auto input1 = static_cast<const qasymm8_t *__restrict>(input1_ptr);
- const auto input2 = static_cast<const qasymm8_t *__restrict>(input2_ptr);
- const auto output = static_cast<qasymm8_t *__restrict>(output_ptr);
-
- const qasymm8x16_t input1_q = vld1q_u8(input1);
- const qasymm8x16_t input2_q = vld1q_u8(input2);
-
- // Dequantitize inputs
- float32x4x4_t in1_f32x4x4;
- float32x4x4_t in2_f32x4x4;
- in1_f32x4x4.val[0] = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(input1_q))))), input1_voffset)), input1_vscale);
- in1_f32x4x4.val[1] = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(input1_q))))), input1_voffset)), input1_vscale);
- in1_f32x4x4.val[2] = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(input1_q))))), input1_voffset)), input1_vscale);
- in1_f32x4x4.val[3] = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(input1_q))))), input1_voffset)), input1_vscale);
-
- in2_f32x4x4.val[0] = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_low_u8(input2_q))))), input2_voffset)), input2_vscale);
- in2_f32x4x4.val[1] = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_low_u8(input2_q))))), input2_voffset)), input2_vscale);
- in2_f32x4x4.val[2] = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(vmovl_u8(vget_high_u8(input2_q))))), input2_voffset)), input2_vscale);
- in2_f32x4x4.val[3] = vmulq_f32(vcvtq_f32_s32(vsubq_s32(vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(vmovl_u8(vget_high_u8(input2_q))))), input2_voffset)), input2_vscale);
-
- float32x4x4_t out_f32x4x4;
- out_f32x4x4.val[0] = vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]);
- out_f32x4x4.val[1] = vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]);
- out_f32x4x4.val[2] = vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]);
- out_f32x4x4.val[3] = vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]);
-
- int32x4x4_t rf;
-#ifdef __aarch64__
- rf.val[0] = vcvtnq_s32_f32(vmlaq_f32(output_voffset, out_f32x4x4.val[0], vinvscale));
- rf.val[1] = vcvtnq_s32_f32(vmlaq_f32(output_voffset, out_f32x4x4.val[1], vinvscale));
- rf.val[2] = vcvtnq_s32_f32(vmlaq_f32(output_voffset, out_f32x4x4.val[2], vinvscale));
- rf.val[3] = vcvtnq_s32_f32(vmlaq_f32(output_voffset, out_f32x4x4.val[3], vinvscale));
-#else //__aarch64__
- rf.val[0] = vcvtq_s32_f32(vmlaq_f32(output_voffset, out_f32x4x4.val[0], vinvscale));
- rf.val[1] = vcvtq_s32_f32(vmlaq_f32(output_voffset, out_f32x4x4.val[1], vinvscale));
- rf.val[2] = vcvtq_s32_f32(vmlaq_f32(output_voffset, out_f32x4x4.val[2], vinvscale));
- rf.val[3] = vcvtq_s32_f32(vmlaq_f32(output_voffset, out_f32x4x4.val[3], vinvscale));
-#endif //__aarch64__
- const uint8x8_t pa = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
- const uint8x8_t pb = vqmovun_s16(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
-
- vst1q_u8(output, vcombine_u8(pa, pb));
-}
-
-inline void mul_saturate_QASYMM8_SIGNED_QASYMM8_SIGNED_QASYMM8_SIGNED_n(
- const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr,
- float scale, const UniformQuantizationInfo &input1_qua_info, const UniformQuantizationInfo &input2_qua_info,
- const UniformQuantizationInfo &output_qua_info)
-
-{
- const auto input1 = static_cast<const qasymm8_signed_t *__restrict>(input1_ptr);
- const auto input2 = static_cast<const qasymm8_signed_t *__restrict>(input2_ptr);
- const auto output = static_cast<qasymm8_signed_t *__restrict>(output_ptr);
- const qasymm8x16_signed_t input1_q = vld1q_s8(input1);
- const qasymm8x16_signed_t input2_q = vld1q_s8(input2);
- // Dequantitize inputs
- const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info);
- const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info);
- const UniformQuantizationInfo tmp_qua_info = { output_qua_info.scale / scale, output_qua_info.offset };
- const float32x4x4_t out_f32x4x4 =
- {
- vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
- vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
- vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
- vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]),
- };
- const int8x16_t result = vquantize_signed(out_f32x4x4, tmp_qua_info);
- vst1q_s8(output, result);
-}
-
-void mul_saturate_QSYMM16_QSYMM16_QSYMM16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, float scale,
- const UniformQuantizationInfo &input1_qua_info, const UniformQuantizationInfo &input2_qua_info, const UniformQuantizationInfo &output_qua_info)
-{
- const auto input1 = static_cast<const qsymm16_t *__restrict>(input1_ptr);
- const auto input2 = static_cast<const qsymm16_t *__restrict>(input2_ptr);
- const auto output = static_cast<qsymm16_t *__restrict>(output_ptr);
-
- const qsymm16x8x2_t input1_q =
- {
- {
- vld1q_s16(input1),
- vld1q_s16(input1 + 8),
- }
- };
- const qsymm16x8x2_t input2_q =
- {
- {
- vld1q_s16(input2),
- vld1q_s16(input2 + 8),
- }
- };
-
- // Dequantitize inputs
- const float32x4x4_t in1_f32x4x4 = vdequantize(input1_q, input1_qua_info);
- const float32x4x4_t in2_f32x4x4 = vdequantize(input2_q, input2_qua_info);
-
- const UniformQuantizationInfo tmp_qua_info = { output_qua_info.scale / scale, output_qua_info.offset };
-
- const float32x4x4_t out_f32x4x4 =
- {
- vmulq_f32(in1_f32x4x4.val[0], in2_f32x4x4.val[0]),
- vmulq_f32(in1_f32x4x4.val[1], in2_f32x4x4.val[1]),
- vmulq_f32(in1_f32x4x4.val[2], in2_f32x4x4.val[2]),
- vmulq_f32(in1_f32x4x4.val[3], in2_f32x4x4.val[3]),
- };
-
- const qsymm16x8x2_t result = vquantize_qsymm16(out_f32x4x4, tmp_qua_info);
- vst1q_s16(output, result.val[0]);
- vst1q_s16(output + 8, result.val[1]);
-}
-
-void mul_QSYMM16_QSYMM16_S32_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int scale)
-{
- ARM_COMPUTE_UNUSED(scale);
- const auto input1 = static_cast<const qsymm16_t *__restrict>(input1_ptr);
- const auto input2 = static_cast<const qsymm16_t *__restrict>(input2_ptr);
- const auto output = static_cast<int32_t *__restrict>(output_ptr);
-
- const qsymm16x8x2_t input1_q =
- {
- {
- vld1q_s16(input1),
- vld1q_s16(input1 + 8),
- }
- };
- const qsymm16x8x2_t input2_q =
- {
- {
- vld1q_s16(input2),
- vld1q_s16(input2 + 8),
- }
- };
-
- const int32x4x4_t in1_s32 =
- {
- {
- vmovl_s16(vget_low_s16(input1_q.val[0])),
- vmovl_s16(vget_high_s16(input1_q.val[0])),
- vmovl_s16(vget_low_s16(input1_q.val[1])),
- vmovl_s16(vget_high_s16(input1_q.val[1])),
- }
- };
- const int32x4x4_t in2_s32 =
- {
- {
- vmovl_s16(vget_low_s16(input2_q.val[0])),
- vmovl_s16(vget_high_s16(input2_q.val[0])),
- vmovl_s16(vget_low_s16(input2_q.val[1])),
- vmovl_s16(vget_high_s16(input2_q.val[1])),
- }
- };
-
- const int32x4x4_t result =
- {
- {
- vmulq_s32(in1_s32.val[0], in2_s32.val[0]),
- vmulq_s32(in1_s32.val[1], in2_s32.val[1]),
- vmulq_s32(in1_s32.val[2], in2_s32.val[2]),
- vmulq_s32(in1_s32.val[3], in2_s32.val[3]),
- }
- };
-
- vst1q_s32(output, result.val[0]);
- vst1q_s32(output + 4, result.val[1]);
- vst1q_s32(output + 8, result.val[2]);
- vst1q_s32(output + 12, result.val[3]);
-}
-
-template <bool is_scale255, bool is_sat>
-void mul_U8_U8_U8_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
-{
- const auto input1 = static_cast<const uint8_t *__restrict>(input1_ptr);
- const auto input2 = static_cast<const uint8_t *__restrict>(input2_ptr);
- const auto output = static_cast<uint8_t *__restrict>(output_ptr);
-
- const uint8x16_t ta1 = vld1q_u8(input1);
- const uint8x16_t ta2 = vld1q_u8(input2);
-
- uint16x8_t tmp1_high = vmovl_u8(vget_high_u8(ta1));
- const uint16x8_t tmp2_high = vmovl_u8(vget_high_u8(ta2));
- uint16x8_t tmp1_low = vmovl_u8(vget_low_u8(ta1));
- const uint16x8_t tmp2_low = vmovl_u8(vget_low_u8(ta2));
-
- tmp1_high = vmulq_u16(tmp1_high, tmp2_high);
- tmp1_low = vmulq_u16(tmp1_low, tmp2_low);
-
- if(is_scale255)
- {
- tmp1_high = scale255_U16_U16(tmp1_high);
- tmp1_low = scale255_U16_U16(tmp1_low);
- }
- else
- {
- const int16x8_t vn = vdupq_n_s16(-n);
-
- if(is_sat)
- {
- tmp1_high = vqshlq_u16(tmp1_high, vn);
- tmp1_low = vqshlq_u16(tmp1_low, vn);
- }
- else
- {
- tmp1_high = vshlq_u16(tmp1_high, vn);
- tmp1_low = vshlq_u16(tmp1_low, vn);
- }
- }
-
- if(is_sat)
- {
- vst1q_u8(output, vcombine_u8(vqmovn_u16(tmp1_low), vqmovn_u16(tmp1_high)));
- }
- else
- {
- vst1q_u8(output, vcombine_u8(vmovn_u16(tmp1_low), vmovn_u16(tmp1_high)));
- }
-}
-
-template <bool is_scale255, bool is_sat>
-inline int16x8_t mul_S16_S16_S16_n_loop(const int16x8_t &input1, const int16x8_t &input2, int n)
-{
- int32x4_t tmp1_high = vmovl_s16(vget_high_s16(input1));
- const int32x4_t tmp2_high = vmovl_s16(vget_high_s16(input2));
- int32x4_t tmp1_low = vmovl_s16(vget_low_s16(input1));
- const int32x4_t tmp2_low = vmovl_s16(vget_low_s16(input2));
-
- tmp1_high = vmulq_s32(tmp1_high, tmp2_high);
- tmp1_low = vmulq_s32(tmp1_low, tmp2_low);
-
- if(is_scale255)
- {
- tmp1_high = scale255_S32_S32(tmp1_high);
- tmp1_low = scale255_S32_S32(tmp1_low);
- }
- else
- {
- // Right shift amount
- const int32x4_t vn = vdupq_n_s32(-n);
- // Left shift amount
- const int32x4_t vnl = vdupq_n_s32(n);
- // Calculate conversion bit
- const uint32x4_t tmp1_high_u = vreinterpretq_u32_s32(tmp1_high);
- const uint32x4_t tmp1_low_u = vreinterpretq_u32_s32(tmp1_low);
- const uint32x4_t sign_high = vshrq_n_u32(tmp1_high_u, 31);
- const uint32x4_t sign_low = vshrq_n_u32(tmp1_low_u, 31);
- const int32x4_t sign_high_s = vreinterpretq_s32_u32(sign_high);
- const int32x4_t sign_low_s = vreinterpretq_s32_u32(sign_low);
- const int32x4_t convert_high = vsubq_s32(vshlq_s32(sign_high_s, vnl), sign_high_s);
- const int32x4_t convert_low = vsubq_s32(vshlq_s32(sign_low_s, vnl), sign_low_s);
- if(is_sat)
- {
- tmp1_high = vqshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
- tmp1_low = vqshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
- }
- else
- {
- tmp1_high = vshlq_s32(vaddq_s32(tmp1_high, convert_high), vn);
- tmp1_low = vshlq_s32(vaddq_s32(tmp1_low, convert_low), vn);
- }
- }
-
- if(is_sat)
- {
- return vcombine_s16(vqmovn_s32(tmp1_low), vqmovn_s32(tmp1_high));
- }
- else
- {
- return vcombine_s16(vmovn_s32(tmp1_low), vmovn_s32(tmp1_high));
- }
-}
-
-template <bool is_scale255, bool is_sat>
-inline int16x8x2_t mul_S16_S16_S16_n_k(const int16x8x2_t &input1, const int16x8x2_t &input2, int n)
-{
- const int16x8x2_t result =
- {
- {
- // First 8 elements
- mul_S16_S16_S16_n_loop<is_scale255, is_sat>(input1.val[0], input2.val[0], n),
- // Second 8 elements
- mul_S16_S16_S16_n_loop<is_scale255, is_sat>(input1.val[1], input2.val[1], n)
- }
- };
-
- return result;
-}
-
-template <bool is_scale255, bool is_sat>
-void mul_S16_S16_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
-{
- const auto input1 = static_cast<const int16_t *__restrict>(input1_ptr);
- const auto input2 = static_cast<const int16_t *__restrict>(input2_ptr);
- const auto output = static_cast<int16_t *__restrict>(output_ptr);
-
- const int16x8x2_t ta1 =
- {
- {
- vld1q_s16(input1),
- vld1q_s16(input1 + 8),
- }
- };
- const int16x8x2_t ta2 =
- {
- {
- vld1q_s16(input2),
- vld1q_s16(input2 + 8),
- }
- };
- const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);
-
- vst1q_s16(output, result.val[0]);
- vst1q_s16(output + 8, result.val[1]);
-}
-
-void mul_F32_F32_F32_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, float scale)
-{
- const auto input1 = static_cast<const float *__restrict>(input1_ptr);
- const auto input2 = static_cast<const float *__restrict>(input2_ptr);
- const auto output = static_cast<float *__restrict>(output_ptr);
-
- const float32x4x4_t ta1 = vld4q_f32(input1);
- const float32x4x4_t ta2 = vld4q_f32(input2);
- const float32x4_t scale_vec = vdupq_n_f32(scale);
- const float32x4x4_t result =
- {
- {
- vmulq_f32(vmulq_f32(ta1.val[0], ta2.val[0]), scale_vec),
- vmulq_f32(vmulq_f32(ta1.val[1], ta2.val[1]), scale_vec),
- vmulq_f32(vmulq_f32(ta1.val[2], ta2.val[2]), scale_vec),
- vmulq_f32(vmulq_f32(ta1.val[3], ta2.val[3]), scale_vec)
- }
- };
- vst4q_f32(output, result);
-}
-
-void c_mul_F32_F32_F32_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr)
-{
- const auto input1 = static_cast<const float *__restrict>(input1_ptr);
- const auto input2 = static_cast<const float *__restrict>(input2_ptr);
- const auto output = static_cast<float *__restrict>(output_ptr);
-
- const float32x4_t a = wrapper::vloadq(input1);
- float32x4_t b = wrapper::vloadq(input2);
-
- using ExactTagType = typename wrapper::traits::neon_vector<float, 2>::tag_type;
-
- const float32x4_t mask = { -1.0f, 1.0f, -1.0f, 1.0f };
- const float32x2_t tmp00 = wrapper::vdup_n(wrapper::vgetlane(a, 0), ExactTagType{});
- const float32x2_t tmp01 = wrapper::vdup_n(wrapper::vgetlane(a, 1), ExactTagType{});
- const float32x2_t tmp10 = wrapper::vdup_n(wrapper::vgetlane(a, 2), ExactTagType{});
- const float32x2_t tmp11 = wrapper::vdup_n(wrapper::vgetlane(a, 3), ExactTagType{});
-
- const float32x4_t tmp0 = wrapper::vcombine(tmp00, tmp10);
- const float32x4_t tmp1 = wrapper::vcombine(tmp01, tmp11);
-
- float32x4_t res = wrapper::vmul(tmp0, b);
-
- b = wrapper::vrev64(b);
- b = wrapper::vmul(b, mask);
-
- res = wrapper::vmla(res, tmp1, b);
- wrapper::vstore(output, res);
-}
-
-void mul_F16_F16_F16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, float scale)
-{
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- const auto input1 = static_cast<const float16_t *__restrict>(input1_ptr);
- const auto input2 = static_cast<const float16_t *__restrict>(input2_ptr);
- const auto output = static_cast<float16_t *__restrict>(output_ptr);
- const float16x8x2_t ta1 =
- {
- {
- vld1q_f16(input1),
- vld1q_f16(input1 + 8),
- }
- };
- const float16x8x2_t ta2 =
- {
- {
- vld1q_f16(input2),
- vld1q_f16(input2 + 8),
- }
- };
- const float16x8_t scale_vec = vdupq_n_f16(scale);
- const float16x8x2_t result =
- {
- {
- vmulq_f16(vmulq_f16(ta1.val[0], ta2.val[0]), scale_vec),
- vmulq_f16(vmulq_f16(ta1.val[1], ta2.val[1]), scale_vec),
- }
- };
- vst1q_f16(output, result.val[0]);
- vst1q_f16(output + 8, result.val[1]);
-#else /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- ARM_COMPUTE_UNUSED(input1_ptr);
- ARM_COMPUTE_UNUSED(input2_ptr);
- ARM_COMPUTE_UNUSED(output_ptr);
- ARM_COMPUTE_UNUSED(scale);
- ARM_COMPUTE_ERROR("Not supported. Recompile the library with arch=arm64-v8.2-a.");
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
-}
-
-template <bool is_scale255, bool is_sat>
-void mul_U8_U8_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
-{
- const auto input1 = static_cast<const uint8_t *__restrict>(input1_ptr);
- const auto input2 = static_cast<const uint8_t *__restrict>(input2_ptr);
- const auto output = static_cast<int16_t *__restrict>(output_ptr);
-
- const uint8x16_t bv = vld1q_u8(input2);
- const uint8x16_t av = vld1q_u8(input1);
-
- uint16x8_t tmp_low = vmovl_u8(vget_low_u8(av));
- uint16x8_t tmp_high = vmovl_u8(vget_high_u8(av));
- tmp_low = vmulq_u16(tmp_low, vmovl_u8(vget_low_u8(bv)));
- tmp_high = vmulq_u16(tmp_high, vmovl_u8(vget_high_u8(bv)));
-
- if(is_scale255)
- {
- tmp_low = scale255_U16_U16(tmp_low);
- tmp_high = scale255_U16_U16(tmp_high);
- }
- else
- {
- const int16x8_t vn = vdupq_n_s16(-n);
-
- if(is_sat)
- {
- tmp_low = vqshlq_u16(tmp_low, vn);
- tmp_high = vqshlq_u16(tmp_high, vn);
- }
- else
- {
- tmp_low = vshlq_u16(tmp_low, vn);
- tmp_high = vshlq_u16(tmp_high, vn);
- }
- }
-
- if(is_sat)
- {
- static const uint16x8_t max = vdupq_n_u16(SHRT_MAX);
-
- tmp_low = vminq_u16(tmp_low, max);
- tmp_high = vminq_u16(tmp_high, max);
- }
-
- vst1q_s16(output, vreinterpretq_s16_u16(tmp_low));
- vst1q_s16(output + 8, vreinterpretq_s16_u16(tmp_high));
-}
-
-template <bool is_scale255, bool is_sat>
-void mul_S16_U8_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
-{
- const auto input1 = static_cast<const int16_t *__restrict>(input1_ptr);
- const auto input2 = static_cast<const uint8_t *__restrict>(input2_ptr);
- const auto output = static_cast<int16_t *__restrict>(output_ptr);
-
- const int16x8x2_t ta1 =
- {
- {
- vld1q_s16(input1),
- vld1q_s16(input1 + 8),
- }
- };
- const uint8x8x2_t ta2u =
- {
- {
- vld1_u8(input2),
- vld1_u8(input2 + 8),
- }
- };
- const int16x8x2_t ta2 =
- {
- {
- vreinterpretq_s16_u16(vmovl_u8(ta2u.val[0])),
- vreinterpretq_s16_u16(vmovl_u8(ta2u.val[1]))
- }
- };
-
- const int16x8x2_t result = mul_S16_S16_S16_n_k<is_scale255, is_sat>(ta1, ta2, n);
-
- vst1q_s16(output, result.val[0]);
- vst1q_s16(output + 8, result.val[1]);
-}
-
-template <bool is_scale255, bool is_sat>
-void mul_U8_S16_S16_n(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int n)
-{
- // Simply swap the two input buffers
- mul_S16_U8_S16_n<is_scale255, is_sat>(input2_ptr, input1_ptr, output_ptr, n);
-}
-} // namespace
-
-NEPixelWiseMultiplicationKernel::NEPixelWiseMultiplicationKernel()
- : _func_float(nullptr), _func_int(nullptr), _func_quantized(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _scale{ 0 }, _scale_exponent{ 0 }, _run_optimized_qasymm8(false)
-{
-}
-
-void NEPixelWiseMultiplicationKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output, float scale, ConvertPolicy overflow_policy, RoundingPolicy rounding_policy)
-{
- ARM_COMPUTE_UNUSED(rounding_policy);
- ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
-
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input1->info(), input2->info(), output->info(), scale, overflow_policy, rounding_policy));
-
- // Configure kernel window
- auto win_config = validate_and_configure_window(input1->info(), input2->info(), output->info());
- ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
-
- _input1 = input1;
- _input2 = input2;
- _output = output;
- _scale = scale;
- _scale_exponent = 0;
- _func_quantized = nullptr;
- _func_int = nullptr;
- _func_float = nullptr;
- _run_optimized_qasymm8 = false;
-
- bool is_scale_255 = false;
- // Check and validate scaling factor
- if(std::abs(scale - scale255_constant) < 0.00001f)
- {
- is_scale_255 = true;
- }
- else
- {
- int exponent = 0;
-
- std::frexp(scale, &exponent);
-
- // Store the positive exponent. We know that we compute 1/2^n
- // Additionally we need to subtract 1 to compensate that frexp used a mantissa of 0.5
- _scale_exponent = std::abs(exponent - 1);
- }
-
- const DataType dt_input1 = input1->info()->data_type();
- const DataType dt_input2 = input2->info()->data_type();
- const DataType dt_output = output->info()->data_type();
- const bool is_sat = (overflow_policy == ConvertPolicy::SATURATE);
-
- if(dt_input1 == DataType::QASYMM8 && dt_input2 == DataType::QASYMM8)
- {
- _run_optimized_qasymm8 = true;
- }
- else if(dt_input1 == DataType::QASYMM8_SIGNED && dt_input2 == DataType::QASYMM8_SIGNED)
- {
- _func_quantized = &mul_saturate_QASYMM8_SIGNED_QASYMM8_SIGNED_QASYMM8_SIGNED_n;
- }
- else if(dt_input1 == DataType::QSYMM16 && dt_input2 == DataType::QSYMM16 && dt_output == DataType::QSYMM16)
- {
- _func_quantized = &mul_saturate_QSYMM16_QSYMM16_QSYMM16_n;
- }
- else if(dt_input1 == DataType::QSYMM16 && dt_input2 == DataType::QSYMM16 && dt_output == DataType::S32)
- {
- _func_int = &mul_QSYMM16_QSYMM16_S32_n;
- }
- else if(DataType::U8 == dt_input1 && DataType::U8 == dt_input2 && DataType::U8 == dt_output)
- {
- if(is_scale_255)
- {
- _func_int = is_sat ? &mul_U8_U8_U8_n<true, true> : &mul_U8_U8_U8_n<true, false>;
- }
- else
- {
- _func_int = is_sat ? &mul_U8_U8_U8_n<false, true> : &mul_U8_U8_U8_n<false, false>;
- }
- }
- else if(DataType::S16 == dt_input1 && DataType::S16 == dt_input2 && DataType::S16 == dt_output)
- {
- if(is_scale_255)
- {
- _func_int = is_sat ? &mul_S16_S16_S16_n<true, true> : &mul_S16_S16_S16_n<true, false>;
- }
- else
- {
- _func_int = is_sat ? &mul_S16_S16_S16_n<false, true> : &mul_S16_S16_S16_n<false, false>;
- }
- }
- else if(DataType::S16 == dt_input1 && DataType::U8 == dt_input2 && DataType::S16 == dt_output)
- {
- if(is_scale_255)
- {
- _func_int = is_sat ? &mul_S16_U8_S16_n<true, true> : &mul_S16_U8_S16_n<true, false>;
- }
- else
- {
- _func_int = is_sat ? &mul_S16_U8_S16_n<false, true> : &mul_S16_U8_S16_n<false, false>;
- }
- }
- else if(DataType::U8 == dt_input1 && DataType::S16 == dt_input2 && DataType::S16 == dt_output)
- {
- if(is_scale_255)
- {
- _func_int = is_sat ? &mul_U8_S16_S16_n<true, true> : &mul_U8_S16_S16_n<true, false>;
- }
- else
- {
- _func_int = is_sat ? &mul_U8_S16_S16_n<false, true> : &mul_U8_S16_S16_n<false, false>;
- }
- }
- else if(DataType::U8 == dt_input1 && DataType::U8 == dt_input2 && DataType::S16 == dt_output)
- {
- if(is_scale_255)
- {
- _func_int = is_sat ? &mul_U8_U8_S16_n<true, true> : &mul_U8_U8_S16_n<true, false>;
- }
- else
- {
- _func_int = is_sat ? &mul_U8_U8_S16_n<false, true> : &mul_U8_U8_S16_n<false, false>;
- }
- }
- else if(DataType::F16 == dt_input1 && DataType::F16 == dt_input2 && DataType::F16 == dt_output)
- {
- _func_float = &mul_F16_F16_F16_n;
- _func_int = nullptr;
- }
- else if(DataType::F32 == dt_input1 && DataType::F32 == dt_input2 && DataType::F32 == dt_output)
- {
- _func_float = &mul_F32_F32_F32_n;
- _func_int = nullptr;
- }
- else
- {
- ARM_COMPUTE_ERROR("You called with the wrong img formats");
- }
-
- INEKernel::configure(win_config.second);
-}
-
-Status NEPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, float scale, ConvertPolicy overflow_policy,
- RoundingPolicy rounding_policy)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input1, input2, output, scale, overflow_policy, rounding_policy));
- ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
-
- return Status{};
-}
-
-void NEPixelWiseMultiplicationKernel::run(const Window &window, const ThreadInfo &info)
-{
- ARM_COMPUTE_UNUSED(info);
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
-
- const TensorShape &in_shape1 = _input1->info()->tensor_shape();
- const TensorShape &in_shape2 = _input2->info()->tensor_shape();
- const TensorShape &out_shape = _output->info()->tensor_shape();
-
- bool can_collapse = true;
- if(std::min(in_shape1.total_size(), in_shape2.total_size()) > 1)
- {
- can_collapse = (std::min(in_shape1.num_dimensions(), in_shape2.num_dimensions()) > Window::DimZ);
- for(size_t d = Window::DimZ; can_collapse && (d < out_shape.num_dimensions()); ++d)
- {
- can_collapse = (in_shape1[d] == in_shape2[d]);
- }
- }
-
- bool has_collapsed = false;
- Window collapsed = can_collapse ? window.collapse_if_possible(INEKernel::window(), Window::DimZ, &has_collapsed) : window;
-
- const TensorShape &in_shape1_collapsed = has_collapsed ? in_shape1.collapsed_from(Window::DimZ) : in_shape1;
- const TensorShape &in_shape2_collapsed = has_collapsed ? in_shape2.collapsed_from(Window::DimZ) : in_shape2;
-
- Window slice = collapsed.first_slice_window_3D();
- Window slice_input1 = slice.broadcast_if_dimension_le_one(in_shape1_collapsed);
- Window slice_input2 = slice.broadcast_if_dimension_le_one(in_shape2_collapsed);
-
- Iterator input1(_input1, slice_input1);
- Iterator input2(_input2, slice_input2);
- Iterator output(_output, slice);
-
- if((_run_optimized_qasymm8) || (_func_quantized != nullptr))
- {
- if(_run_optimized_qasymm8)
- {
- const int32x4_t input1_voffset = vdupq_n_s32(_input1->info()->quantization_info().uniform().offset);
- const float32x4_t input1_vscale = vdupq_n_f32(_input1->info()->quantization_info().uniform().scale);
- const int32x4_t input2_voffset = vdupq_n_s32(_input2->info()->quantization_info().uniform().offset);
- const float32x4_t input2_vscale = vdupq_n_f32(_input2->info()->quantization_info().uniform().scale);
- const float32x4_t output_voffset = vdupq_n_f32(static_cast<float>(_output->info()->quantization_info().uniform().offset));
- const float output_scale = _output->info()->quantization_info().uniform().scale;
- const float32x4_t vinvscale = vdupq_n_f32(1.f / (output_scale / _scale));
-
- execute_window_loop(collapsed, [&](const Coordinates &)
- {
- mul_saturate_QASYMM8_QASYMM8_QASYMM8_n_opt(input1.ptr(), input2.ptr(), output.ptr(),
- input1_vscale, input1_voffset, input2_vscale, input2_voffset, output_voffset, vinvscale);
- ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1));
- ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2));
- },
- input1, input2, output);
- }
- else
- {
- execute_window_loop(collapsed, [&](const Coordinates &)
- {
- (*_func_quantized)(input1.ptr(), input2.ptr(), output.ptr(), _scale,
- _input1->info()->quantization_info().uniform(), _input2->info()->quantization_info().uniform(), _output->info()->quantization_info().uniform());
- ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1));
- ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2));
- },
- input1, input2, output);
- }
- }
- else if(_func_int != nullptr)
- {
- execute_window_loop(collapsed, [&](const Coordinates &)
- {
- (*_func_int)(input1.ptr(), input2.ptr(), output.ptr(), _scale_exponent);
- ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1));
- ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2));
- },
- input1, input2, output);
- }
- else
- {
- ARM_COMPUTE_ERROR_ON(_func_float == nullptr);
- execute_window_loop(collapsed, [&](const Coordinates &)
- {
- (*_func_float)(input1.ptr(), input2.ptr(), output.ptr(), _scale);
- ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input1));
- ARM_COMPUTE_UNUSED(collapsed.slide_window_slice_3D(slice_input2));
- },
- input1, input2, output);
- }
-}
-
-BorderSize NEPixelWiseMultiplicationKernel::border_size() const
-{
- const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
- const unsigned int border = std::min<unsigned int>(num_elems_processed_per_iteration - 1U, replicateSize);
- return BorderSize{ 0, border, 0, 0 };
-}
-
-namespace
-{
-constexpr unsigned int num_elems_processed_per_iteration_complex = 2;
-
-Status validate_arguments_complex(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
-{
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 2, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 2, DataType::F32);
-
- const TensorShape &out_shape = TensorShape::broadcast_shape(input1->tensor_shape(), input2->tensor_shape());
-
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
-
- // Validate in case of configured output
- if(output->total_size() > 0)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 2, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output->tensor_shape(), 0), "Wrong shape for output");
- }
-
- return Status{};
-}
-
-std::pair<Status, Window> validate_and_configure_window_complex(ITensorInfo *input1, ITensorInfo *input2, ITensorInfo *output)
-{
- const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1, *input2);
- const TensorShape &out_shape = broadcast_pair.first;
- const ValidRegion &valid_region = broadcast_pair.second;
-
- // Auto initialize output if not initialized
- const TensorInfo out_info(out_shape, input1->num_channels(), input1->data_type());
- auto_init_if_empty(*output, out_info);
-
- Window win = calculate_max_window(valid_region, Steps(num_elems_processed_per_iteration_complex));
- Window win_input1 = win.broadcast_if_dimension_le_one(*input1);
- Window win_input2 = win.broadcast_if_dimension_le_one(*input2);
-
- AccessWindowHorizontal input1_access(input1, 0, num_elems_processed_per_iteration_complex);
- AccessWindowHorizontal input2_access(input2, 0, num_elems_processed_per_iteration_complex);
- AccessWindowHorizontal output_access(output, 0, num_elems_processed_per_iteration_complex);
-
- bool window_changed = update_window_and_padding(win_input1, input1_access)
- || update_window_and_padding(win_input2, input2_access)
- || update_window_and_padding(win, output_access);
-
- output_access.set_valid_region(win, valid_region);
-
- Status err = (window_changed) ? ARM_COMPUTE_CREATE_ERROR(ErrorCode::RUNTIME_ERROR, "Insufficient Padding!") : Status{};
- return std::make_pair(err, win);
-}
-} // namespace
-
-NEComplexPixelWiseMultiplicationKernel::NEComplexPixelWiseMultiplicationKernel()
- : _input1(nullptr), _input2(nullptr), _output(nullptr)
-{
-}
-
-void NEComplexPixelWiseMultiplicationKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments_complex(input1->info(), input2->info(), output->info()));
-
- // Configure kernel window
- auto win_config = validate_and_configure_window_complex(input1->info(), input2->info(), output->info());
- ARM_COMPUTE_ERROR_THROW_ON(win_config.first);
-
- _input1 = input1;
- _input2 = input2;
- _output = output;
-
- // Create kernel
- INEKernel::configure(win_config.second);
-}
-
-Status NEComplexPixelWiseMultiplicationKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments_complex(input1, input2, output));
- ARM_COMPUTE_RETURN_ON_ERROR(validate_and_configure_window_complex(input1->clone().get(), input2->clone().get(), output->clone().get()).first);
-
- return Status{};
-}
-
-void NEComplexPixelWiseMultiplicationKernel::run(const Window &window, const ThreadInfo &info)
-{
- ARM_COMPUTE_UNUSED(info);
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
-
- Iterator input1(_input1, window.broadcast_if_dimension_le_one(_input1->info()->tensor_shape()));
- Iterator input2(_input2, window.broadcast_if_dimension_le_one(_input2->info()->tensor_shape()));
- Iterator output(_output, window);
-
- execute_window_loop(window, [&](const Coordinates &)
- {
- c_mul_F32_F32_F32_n(input1.ptr(), input2.ptr(), output.ptr());
- },
- input1, input2, output);
-}
-
-BorderSize NEComplexPixelWiseMultiplicationKernel::border_size() const
-{
- const unsigned int replicateSize = _output->info()->dimension(0) - std::min(_input1->info()->dimension(0), _input2->info()->dimension(0));
- const unsigned int border = std::min<unsigned int>(num_elems_processed_per_iteration_complex - 1U, replicateSize);
- return { 0, border, 0, 0 };
-}
-} // namespace arm_compute