aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.cpp')
-rw-r--r--src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.cpp1052
1 files changed, 0 insertions, 1052 deletions
diff --git a/src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.cpp b/src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.cpp
deleted file mode 100644
index b95bdd4ca5..0000000000
--- a/src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.cpp
+++ /dev/null
@@ -1,1052 +0,0 @@
-/*
- * Copyright (c) 2017-2021 Arm Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "src/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h"
-
-#include "arm_compute/core/Error.h"
-#include "arm_compute/core/Helpers.h"
-#include "arm_compute/core/ITensor.h"
-#include "arm_compute/core/TensorInfo.h"
-#include "arm_compute/core/Types.h"
-#include "arm_compute/core/Utils.h"
-#include "arm_compute/core/Validate.h"
-#include "arm_compute/core/Window.h"
-#include "src/core/helpers/AutoConfiguration.h"
-#include "src/core/helpers/WindowHelpers.h"
-
-#include <arm_neon.h>
-
-using namespace arm_compute;
-
-namespace arm_compute
-{
-namespace
-{
-void inline vector_matrix_multiply_u8(Iterator &ina, Iterator &inb, Iterator &out, int width_a, int width_b, int width_out, size_t stride_b, const Window &window)
-{
- execute_window_loop(window, [&](const Coordinates & id)
- {
- if(id.x() > width_b)
- {
- return;
- }
-
- // Note: Since the input are all positives, we can use uint32_t
- // Accumulators for the block 0
- uint32x4x4_t c0 =
- {
- {
- vdupq_n_u32(0),
- vdupq_n_u32(0),
- vdupq_n_u32(0),
- vdupq_n_u32(0)
- }
- };
-
- auto vec_a = reinterpret_cast<const uint8_t *>(ina.ptr());
- auto matrix_b = reinterpret_cast<const uint8_t *>(inb.ptr());
- auto vec_a_end_addr = vec_a + width_a;
-
- // This for loop performs 8 accumulations
- for(; vec_a <= (vec_a_end_addr - 8);)
- {
- const uint8x8_t a00_u8 = vld1_u8(vec_a);
- const uint8x16_t b00_u8 = vld1q_u8(matrix_b + 0 * stride_b);
- const uint8x16_t b10_u8 = vld1q_u8(matrix_b + 1 * stride_b);
- const uint8x16_t b20_u8 = vld1q_u8(matrix_b + 2 * stride_b);
- const uint8x16_t b30_u8 = vld1q_u8(matrix_b + 3 * stride_b);
- const uint8x16_t b40_u8 = vld1q_u8(matrix_b + 4 * stride_b);
- const uint8x16_t b50_u8 = vld1q_u8(matrix_b + 5 * stride_b);
- const uint8x16_t b60_u8 = vld1q_u8(matrix_b + 6 * stride_b);
- const uint8x16_t b70_u8 = vld1q_u8(matrix_b + 7 * stride_b);
-
- // Convert a00_u8 to uint16_t and get the lower part
- const uint16x4x2_t a00_u16 =
- {
- {
- vget_low_u16(vmovl_u8(a00_u8)),
- vget_high_u16(vmovl_u8(a00_u8))
- }
- };
-
- const uint16x4x4_t b00_u16 =
- {
- {
- vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))),
- vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
- vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))),
- vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))
- }
- };
-
- const uint16x4x4_t b10_u16 =
- {
- {
- vget_low_u16(vmovl_u8(vget_low_u8(b10_u8))),
- vget_high_u16(vmovl_u8(vget_low_u8(b10_u8))),
- vget_low_u16(vmovl_u8(vget_high_u8(b10_u8))),
- vget_high_u16(vmovl_u8(vget_high_u8(b10_u8)))
- }
- };
-
- const uint16x4x4_t b20_u16 =
- {
- {
- vget_low_u16(vmovl_u8(vget_low_u8(b20_u8))),
- vget_high_u16(vmovl_u8(vget_low_u8(b20_u8))),
- vget_low_u16(vmovl_u8(vget_high_u8(b20_u8))),
- vget_high_u16(vmovl_u8(vget_high_u8(b20_u8)))
- }
- };
-
- const uint16x4x4_t b30_u16 =
- {
- {
- vget_low_u16(vmovl_u8(vget_low_u8(b30_u8))),
- vget_high_u16(vmovl_u8(vget_low_u8(b30_u8))),
- vget_low_u16(vmovl_u8(vget_high_u8(b30_u8))),
- vget_high_u16(vmovl_u8(vget_high_u8(b30_u8)))
- }
- };
-
- const uint16x4x4_t b40_u16 =
- {
- {
- vget_low_u16(vmovl_u8(vget_low_u8(b40_u8))),
- vget_high_u16(vmovl_u8(vget_low_u8(b40_u8))),
- vget_low_u16(vmovl_u8(vget_high_u8(b40_u8))),
- vget_high_u16(vmovl_u8(vget_high_u8(b40_u8)))
- }
- };
-
- const uint16x4x4_t b50_u16 =
- {
- {
- vget_low_u16(vmovl_u8(vget_low_u8(b50_u8))),
- vget_high_u16(vmovl_u8(vget_low_u8(b50_u8))),
- vget_low_u16(vmovl_u8(vget_high_u8(b50_u8))),
- vget_high_u16(vmovl_u8(vget_high_u8(b50_u8)))
- }
- };
-
- const uint16x4x4_t b60_u16 =
- {
- {
- vget_low_u16(vmovl_u8(vget_low_u8(b60_u8))),
- vget_high_u16(vmovl_u8(vget_low_u8(b60_u8))),
- vget_low_u16(vmovl_u8(vget_high_u8(b60_u8))),
- vget_high_u16(vmovl_u8(vget_high_u8(b60_u8)))
- }
- };
-
- const uint16x4x4_t b70_u16 =
- {
- {
- vget_low_u16(vmovl_u8(vget_low_u8(b70_u8))),
- vget_high_u16(vmovl_u8(vget_low_u8(b70_u8))),
- vget_low_u16(vmovl_u8(vget_high_u8(b70_u8))),
- vget_high_u16(vmovl_u8(vget_high_u8(b70_u8)))
- }
- };
-
- // Accumulate 0:
- c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16.val[0], 0);
- c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16.val[0], 0);
- c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16.val[0], 0);
- c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16.val[0], 0);
-
- // Accumulate 1:
- c0.val[0] = vmlal_lane_u16(c0.val[0], b10_u16.val[0], a00_u16.val[0], 1);
- c0.val[1] = vmlal_lane_u16(c0.val[1], b10_u16.val[1], a00_u16.val[0], 1);
- c0.val[2] = vmlal_lane_u16(c0.val[2], b10_u16.val[2], a00_u16.val[0], 1);
- c0.val[3] = vmlal_lane_u16(c0.val[3], b10_u16.val[3], a00_u16.val[0], 1);
-
- // Accumulate 2:
- c0.val[0] = vmlal_lane_u16(c0.val[0], b20_u16.val[0], a00_u16.val[0], 2);
- c0.val[1] = vmlal_lane_u16(c0.val[1], b20_u16.val[1], a00_u16.val[0], 2);
- c0.val[2] = vmlal_lane_u16(c0.val[2], b20_u16.val[2], a00_u16.val[0], 2);
- c0.val[3] = vmlal_lane_u16(c0.val[3], b20_u16.val[3], a00_u16.val[0], 2);
-
- // Accumulate 3:
- c0.val[0] = vmlal_lane_u16(c0.val[0], b30_u16.val[0], a00_u16.val[0], 3);
- c0.val[1] = vmlal_lane_u16(c0.val[1], b30_u16.val[1], a00_u16.val[0], 3);
- c0.val[2] = vmlal_lane_u16(c0.val[2], b30_u16.val[2], a00_u16.val[0], 3);
- c0.val[3] = vmlal_lane_u16(c0.val[3], b30_u16.val[3], a00_u16.val[0], 3);
-
- // Accumulate 4:
- c0.val[0] = vmlal_lane_u16(c0.val[0], b40_u16.val[0], a00_u16.val[1], 0);
- c0.val[1] = vmlal_lane_u16(c0.val[1], b40_u16.val[1], a00_u16.val[1], 0);
- c0.val[2] = vmlal_lane_u16(c0.val[2], b40_u16.val[2], a00_u16.val[1], 0);
- c0.val[3] = vmlal_lane_u16(c0.val[3], b40_u16.val[3], a00_u16.val[1], 0);
-
- // Accumulate 5:
- c0.val[0] = vmlal_lane_u16(c0.val[0], b50_u16.val[0], a00_u16.val[1], 1);
- c0.val[1] = vmlal_lane_u16(c0.val[1], b50_u16.val[1], a00_u16.val[1], 1);
- c0.val[2] = vmlal_lane_u16(c0.val[2], b50_u16.val[2], a00_u16.val[1], 1);
- c0.val[3] = vmlal_lane_u16(c0.val[3], b50_u16.val[3], a00_u16.val[1], 1);
-
- // Accumulate 6:
- c0.val[0] = vmlal_lane_u16(c0.val[0], b60_u16.val[0], a00_u16.val[1], 2);
- c0.val[1] = vmlal_lane_u16(c0.val[1], b60_u16.val[1], a00_u16.val[1], 2);
- c0.val[2] = vmlal_lane_u16(c0.val[2], b60_u16.val[2], a00_u16.val[1], 2);
- c0.val[3] = vmlal_lane_u16(c0.val[3], b60_u16.val[3], a00_u16.val[1], 2);
-
- // Accumulate 7:
- c0.val[0] = vmlal_lane_u16(c0.val[0], b70_u16.val[0], a00_u16.val[1], 3);
- c0.val[1] = vmlal_lane_u16(c0.val[1], b70_u16.val[1], a00_u16.val[1], 3);
- c0.val[2] = vmlal_lane_u16(c0.val[2], b70_u16.val[2], a00_u16.val[1], 3);
- c0.val[3] = vmlal_lane_u16(c0.val[3], b70_u16.val[3], a00_u16.val[1], 3);
-
- vec_a += 8;
- matrix_b += 8 * stride_b;
- }
-
- // This for loop performs the left-over accumulations
- for(; vec_a < vec_a_end_addr;)
- {
- const uint8x8_t a00_u8 = vld1_dup_u8(vec_a);
- const uint8x16_t b00_u8 = vld1q_u8(matrix_b);
-
- const uint16x4x4_t b00_u16 =
- {
- {
- vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))),
- vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
- vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))),
- vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))
- }
- };
-
- // Convert a00_u8 to uint16_t and get the lower part
- const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8));
-
- // Accumulate 0:
- c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0);
- c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0);
- c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0);
- c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0);
-
- vec_a += 1;
- matrix_b += stride_b;
- }
-
- auto vec_out = reinterpret_cast<int32_t *>(out.ptr());
- if(id.x() < (width_out - 16))
- {
- vst1q_s32(vec_out + 0, vreinterpretq_s32_u32(c0.val[0]));
- vst1q_s32(vec_out + 4, vreinterpretq_s32_u32(c0.val[1]));
- vst1q_s32(vec_out + 8, vreinterpretq_s32_u32(c0.val[2]));
- vst1q_s32(vec_out + 12, vreinterpretq_s32_u32(c0.val[3]));
- }
- else
- {
- auto left_over = width_out - id.x();
- for(auto k = 0; k < 4 && left_over; ++k)
- {
- for(auto j = 0; j < 4 && left_over; ++j, --left_over)
- {
- *(vec_out + k * 4 + j) = c0.val[k][j];
- }
- }
- }
- },
- ina, inb, out);
-}
-
-void inline vector_matrix_multiply_s8(Iterator &ina, Iterator &inb, Iterator &out, int width_a, int width_b, int width_out, size_t stride_b, const Window &window)
-{
- execute_window_loop(window, [&](const Coordinates & id)
- {
- if(id.x() > width_b)
- {
- return;
- }
-
- // Accumulators for the block 0
- int32x4x4_t c0 =
- {
- {
- vdupq_n_s32(0),
- vdupq_n_s32(0),
- vdupq_n_s32(0),
- vdupq_n_s32(0)
- }
- };
-
- auto vec_a = reinterpret_cast<const int8_t *>(ina.ptr());
- auto matrix_b = reinterpret_cast<const int8_t *>(inb.ptr());
- auto vec_a_end_addr = vec_a + width_a;
-
- // This for loop performs 8 accumulations
- for(; vec_a <= (vec_a_end_addr - 8);)
- {
- const int8x8_t a00_s8 = vld1_s8(vec_a);
- const int8x16_t b00_s8 = vld1q_s8(matrix_b + 0 * stride_b);
- const int8x16_t b10_s8 = vld1q_s8(matrix_b + 1 * stride_b);
- const int8x16_t b20_s8 = vld1q_s8(matrix_b + 2 * stride_b);
- const int8x16_t b30_s8 = vld1q_s8(matrix_b + 3 * stride_b);
- const int8x16_t b40_s8 = vld1q_s8(matrix_b + 4 * stride_b);
- const int8x16_t b50_s8 = vld1q_s8(matrix_b + 5 * stride_b);
- const int8x16_t b60_s8 = vld1q_s8(matrix_b + 6 * stride_b);
- const int8x16_t b70_s8 = vld1q_s8(matrix_b + 7 * stride_b);
-
- // Convert a00_s8 to int16_t and get the lower part
- const int16x4x2_t a00_s16 =
- {
- {
- vget_low_s16(vmovl_s8(a00_s8)),
- vget_high_s16(vmovl_s8(a00_s8))
- }
- };
-
- const int16x4x4_t b00_s16 =
- {
- {
- vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))),
- vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
- vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))),
- vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))
- }
- };
-
- const int16x4x4_t b10_s16 =
- {
- {
- vget_low_s16(vmovl_s8(vget_low_s8(b10_s8))),
- vget_high_s16(vmovl_s8(vget_low_s8(b10_s8))),
- vget_low_s16(vmovl_s8(vget_high_s8(b10_s8))),
- vget_high_s16(vmovl_s8(vget_high_s8(b10_s8)))
- }
- };
-
- const int16x4x4_t b20_s16 =
- {
- {
- vget_low_s16(vmovl_s8(vget_low_s8(b20_s8))),
- vget_high_s16(vmovl_s8(vget_low_s8(b20_s8))),
- vget_low_s16(vmovl_s8(vget_high_s8(b20_s8))),
- vget_high_s16(vmovl_s8(vget_high_s8(b20_s8)))
- }
- };
-
- const int16x4x4_t b30_s16 =
- {
- {
- vget_low_s16(vmovl_s8(vget_low_s8(b30_s8))),
- vget_high_s16(vmovl_s8(vget_low_s8(b30_s8))),
- vget_low_s16(vmovl_s8(vget_high_s8(b30_s8))),
- vget_high_s16(vmovl_s8(vget_high_s8(b30_s8)))
- }
- };
-
- const int16x4x4_t b40_s16 =
- {
- {
- vget_low_s16(vmovl_s8(vget_low_s8(b40_s8))),
- vget_high_s16(vmovl_s8(vget_low_s8(b40_s8))),
- vget_low_s16(vmovl_s8(vget_high_s8(b40_s8))),
- vget_high_s16(vmovl_s8(vget_high_s8(b40_s8)))
- }
- };
-
- const int16x4x4_t b50_s16 =
- {
- {
- vget_low_s16(vmovl_s8(vget_low_s8(b50_s8))),
- vget_high_s16(vmovl_s8(vget_low_s8(b50_s8))),
- vget_low_s16(vmovl_s8(vget_high_s8(b50_s8))),
- vget_high_s16(vmovl_s8(vget_high_s8(b50_s8)))
- }
- };
-
- const int16x4x4_t b60_s16 =
- {
- {
- vget_low_s16(vmovl_s8(vget_low_s8(b60_s8))),
- vget_high_s16(vmovl_s8(vget_low_s8(b60_s8))),
- vget_low_s16(vmovl_s8(vget_high_s8(b60_s8))),
- vget_high_s16(vmovl_s8(vget_high_s8(b60_s8)))
- }
- };
-
- const int16x4x4_t b70_s16 =
- {
- {
- vget_low_s16(vmovl_s8(vget_low_s8(b70_s8))),
- vget_high_s16(vmovl_s8(vget_low_s8(b70_s8))),
- vget_low_s16(vmovl_s8(vget_high_s8(b70_s8))),
- vget_high_s16(vmovl_s8(vget_high_s8(b70_s8)))
- }
- };
-
- // Accumulate 0:
- c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16.val[0], 0);
- c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16.val[0], 0);
- c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16.val[0], 0);
- c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16.val[0], 0);
-
- // Accumulate 1:
- c0.val[0] = vmlal_lane_s16(c0.val[0], b10_s16.val[0], a00_s16.val[0], 1);
- c0.val[1] = vmlal_lane_s16(c0.val[1], b10_s16.val[1], a00_s16.val[0], 1);
- c0.val[2] = vmlal_lane_s16(c0.val[2], b10_s16.val[2], a00_s16.val[0], 1);
- c0.val[3] = vmlal_lane_s16(c0.val[3], b10_s16.val[3], a00_s16.val[0], 1);
-
- // Accumulate 2:
- c0.val[0] = vmlal_lane_s16(c0.val[0], b20_s16.val[0], a00_s16.val[0], 2);
- c0.val[1] = vmlal_lane_s16(c0.val[1], b20_s16.val[1], a00_s16.val[0], 2);
- c0.val[2] = vmlal_lane_s16(c0.val[2], b20_s16.val[2], a00_s16.val[0], 2);
- c0.val[3] = vmlal_lane_s16(c0.val[3], b20_s16.val[3], a00_s16.val[0], 2);
-
- // Accumulate 3:
- c0.val[0] = vmlal_lane_s16(c0.val[0], b30_s16.val[0], a00_s16.val[0], 3);
- c0.val[1] = vmlal_lane_s16(c0.val[1], b30_s16.val[1], a00_s16.val[0], 3);
- c0.val[2] = vmlal_lane_s16(c0.val[2], b30_s16.val[2], a00_s16.val[0], 3);
- c0.val[3] = vmlal_lane_s16(c0.val[3], b30_s16.val[3], a00_s16.val[0], 3);
-
- // Accumulate 4:
- c0.val[0] = vmlal_lane_s16(c0.val[0], b40_s16.val[0], a00_s16.val[1], 0);
- c0.val[1] = vmlal_lane_s16(c0.val[1], b40_s16.val[1], a00_s16.val[1], 0);
- c0.val[2] = vmlal_lane_s16(c0.val[2], b40_s16.val[2], a00_s16.val[1], 0);
- c0.val[3] = vmlal_lane_s16(c0.val[3], b40_s16.val[3], a00_s16.val[1], 0);
-
- // Accumulate 5:
- c0.val[0] = vmlal_lane_s16(c0.val[0], b50_s16.val[0], a00_s16.val[1], 1);
- c0.val[1] = vmlal_lane_s16(c0.val[1], b50_s16.val[1], a00_s16.val[1], 1);
- c0.val[2] = vmlal_lane_s16(c0.val[2], b50_s16.val[2], a00_s16.val[1], 1);
- c0.val[3] = vmlal_lane_s16(c0.val[3], b50_s16.val[3], a00_s16.val[1], 1);
-
- // Accumulate 6:
- c0.val[0] = vmlal_lane_s16(c0.val[0], b60_s16.val[0], a00_s16.val[1], 2);
- c0.val[1] = vmlal_lane_s16(c0.val[1], b60_s16.val[1], a00_s16.val[1], 2);
- c0.val[2] = vmlal_lane_s16(c0.val[2], b60_s16.val[2], a00_s16.val[1], 2);
- c0.val[3] = vmlal_lane_s16(c0.val[3], b60_s16.val[3], a00_s16.val[1], 2);
-
- // Accumulate 7:
- c0.val[0] = vmlal_lane_s16(c0.val[0], b70_s16.val[0], a00_s16.val[1], 3);
- c0.val[1] = vmlal_lane_s16(c0.val[1], b70_s16.val[1], a00_s16.val[1], 3);
- c0.val[2] = vmlal_lane_s16(c0.val[2], b70_s16.val[2], a00_s16.val[1], 3);
- c0.val[3] = vmlal_lane_s16(c0.val[3], b70_s16.val[3], a00_s16.val[1], 3);
-
- vec_a += 8;
- matrix_b += 8 * stride_b;
- }
-
- // This for loop performs the left-over accumulations
- for(; vec_a < vec_a_end_addr;)
- {
- const int8x8_t a00_s8 = vld1_dup_s8(vec_a);
- const int8x16_t b00_s8 = vld1q_s8(matrix_b);
-
- const int16x4x4_t b00_s16 =
- {
- {
- vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))),
- vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
- vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))),
- vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))
- }
- };
-
- // Convert a00_s8 to uint16_t and get the lower part
- const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8));
-
- // Accumulate 0:
- c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0);
- c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0);
- c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0);
- c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0);
-
- vec_a += 1;
- matrix_b += stride_b;
- }
-
- auto vec_out = reinterpret_cast<int32_t *>(out.ptr());
- if(id.x() < (width_out - 16))
- {
- vst1q_s32(vec_out + 0, c0.val[0]);
- vst1q_s32(vec_out + 4, c0.val[1]);
- vst1q_s32(vec_out + 8, c0.val[2]);
- vst1q_s32(vec_out + 12, c0.val[3]);
- }
- else
- {
- auto left_over = width_out - id.x();
- for(auto k = 0; k < 4 && left_over; ++k)
- {
- for(auto j = 0; j < 4 && left_over; ++j, --left_over)
- {
- *(vec_out + k * 4 + j) = c0.val[k][j];
- }
- }
- }
- },
- ina, inb, out);
-}
-
-void inline matrix_multiply_u8(Iterator &ina, Iterator &inb, Iterator &out, int width_b, const TensorInfo &out_info, const Window &window)
-{
- const auto width_out = static_cast<int>(out_info.dimension(0));
- const auto height_out = static_cast<int>(out_info.dimension(1));
- const size_t out_stride = out_info.strides_in_bytes()[1] / out_info.element_size();
- execute_window_loop(window, [&](const Coordinates & id)
- {
- const uint8_t *mtx_a0 = ina.ptr();
- const uint8_t *mtx_b0 = inb.ptr();
-
- // Note: Since the input are all positives, we can use uint32_t
- // Accumulators for the block 0
- uint32x4x4_t c0 =
- {
- {
- vdupq_n_u32(0),
- vdupq_n_u32(0),
- vdupq_n_u32(0),
- vdupq_n_u32(0)
- }
- };
-
- // Accumulators for the block 1
- uint32x4x4_t c1 =
- {
- {
- vdupq_n_u32(0),
- vdupq_n_u32(0),
- vdupq_n_u32(0),
- vdupq_n_u32(0)
- }
- };
-
- // Accumulators for the block 2
- uint32x4x4_t c2 =
- {
- {
- vdupq_n_u32(0),
- vdupq_n_u32(0),
- vdupq_n_u32(0),
- vdupq_n_u32(0)
- }
- };
-
- // Accumulators for the block 3
- uint32x4x4_t c3 =
- {
- {
- vdupq_n_u32(0),
- vdupq_n_u32(0),
- vdupq_n_u32(0),
- vdupq_n_u32(0)
- }
- };
-
- for(int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16)
- {
- const uint8x8_t a00_u8 = vld1_u8(mtx_a0);
- const uint8x16_t b00_u8 = vld1q_u8(mtx_b0);
-
- // Convert a00_u8 to uint16_t and get the lower part
- const uint16x4_t a00_u16 = vget_low_u16(vmovl_u8(a00_u8));
-
- // Convert b00_s8 to uint16_t
- const uint16x4x4_t b00_u16 =
- {
- {
- vget_low_u16(vmovl_u8(vget_low_u8(b00_u8))),
- vget_high_u16(vmovl_u8(vget_low_u8(b00_u8))),
- vget_low_u16(vmovl_u8(vget_high_u8(b00_u8))),
- vget_high_u16(vmovl_u8(vget_high_u8(b00_u8)))
- }
- };
-
- // 4x4 block 0
- c0.val[0] = vmlal_lane_u16(c0.val[0], b00_u16.val[0], a00_u16, 0);
- c0.val[1] = vmlal_lane_u16(c0.val[1], b00_u16.val[1], a00_u16, 0);
- c0.val[2] = vmlal_lane_u16(c0.val[2], b00_u16.val[2], a00_u16, 0);
- c0.val[3] = vmlal_lane_u16(c0.val[3], b00_u16.val[3], a00_u16, 0);
-
- // 4x4 block 1
- c1.val[0] = vmlal_lane_u16(c1.val[0], b00_u16.val[0], a00_u16, 1);
- c1.val[1] = vmlal_lane_u16(c1.val[1], b00_u16.val[1], a00_u16, 1);
- c1.val[2] = vmlal_lane_u16(c1.val[2], b00_u16.val[2], a00_u16, 1);
- c1.val[3] = vmlal_lane_u16(c1.val[3], b00_u16.val[3], a00_u16, 1);
-
- // 4x4 block 2
- c2.val[0] = vmlal_lane_u16(c2.val[0], b00_u16.val[0], a00_u16, 2);
- c2.val[1] = vmlal_lane_u16(c2.val[1], b00_u16.val[1], a00_u16, 2);
- c2.val[2] = vmlal_lane_u16(c2.val[2], b00_u16.val[2], a00_u16, 2);
- c2.val[3] = vmlal_lane_u16(c2.val[3], b00_u16.val[3], a00_u16, 2);
-
- // 4x4 block 3
- c3.val[0] = vmlal_lane_u16(c3.val[0], b00_u16.val[0], a00_u16, 3);
- c3.val[1] = vmlal_lane_u16(c3.val[1], b00_u16.val[1], a00_u16, 3);
- c3.val[2] = vmlal_lane_u16(c3.val[2], b00_u16.val[2], a00_u16, 3);
- c3.val[3] = vmlal_lane_u16(c3.val[3], b00_u16.val[3], a00_u16, 3);
- }
-
- auto mtx_out = reinterpret_cast<int32_t *>(out.ptr());
-
- if(id.y() < height_out && id.x() < (width_out - 16))
- {
- vst1q_s32(mtx_out + 0 * out_stride + 0, vreinterpretq_s32_u32(c0.val[0]));
- vst1q_s32(mtx_out + 0 * out_stride + 4, vreinterpretq_s32_u32(c0.val[1]));
- vst1q_s32(mtx_out + 0 * out_stride + 8, vreinterpretq_s32_u32(c0.val[2]));
- vst1q_s32(mtx_out + 0 * out_stride + 12, vreinterpretq_s32_u32(c0.val[3]));
- if(id.y() + 1 < height_out)
- {
- vst1q_s32(mtx_out + 1 * out_stride + 0, vreinterpretq_s32_u32(c1.val[0]));
- vst1q_s32(mtx_out + 1 * out_stride + 4, vreinterpretq_s32_u32(c1.val[1]));
- vst1q_s32(mtx_out + 1 * out_stride + 8, vreinterpretq_s32_u32(c1.val[2]));
- vst1q_s32(mtx_out + 1 * out_stride + 12, vreinterpretq_s32_u32(c1.val[3]));
- if(id.y() + 2 < height_out)
- {
- vst1q_s32(mtx_out + 2 * out_stride + 0, vreinterpretq_s32_u32(c2.val[0]));
- vst1q_s32(mtx_out + 2 * out_stride + 4, vreinterpretq_s32_u32(c2.val[1]));
- vst1q_s32(mtx_out + 2 * out_stride + 8, vreinterpretq_s32_u32(c2.val[2]));
- vst1q_s32(mtx_out + 2 * out_stride + 12, vreinterpretq_s32_u32(c2.val[3]));
- if(id.y() + 3 < height_out)
- {
- vst1q_s32(mtx_out + 3 * out_stride + 0, vreinterpretq_s32_u32(c3.val[0]));
- vst1q_s32(mtx_out + 3 * out_stride + 4, vreinterpretq_s32_u32(c3.val[1]));
- vst1q_s32(mtx_out + 3 * out_stride + 8, vreinterpretq_s32_u32(c3.val[2]));
- vst1q_s32(mtx_out + 3 * out_stride + 12, vreinterpretq_s32_u32(c3.val[3]));
- }
- }
- }
- }
- else
- {
- const auto left_over_value = width_out - id.x();
- auto left_over = left_over_value;
- for(auto k = 0; k < 4 && left_over; ++k)
- {
- for(auto j = 0; j < 4 && left_over; ++j, --left_over)
- {
- *(mtx_out + k * 4 + j) = c0.val[k][j];
- }
- }
- if(id.y() + 1 < height_out)
- {
- left_over = left_over_value;
- for(auto k = 0; k < 4 && left_over; ++k)
- {
- for(auto j = 0; j < 4 && left_over; ++j, --left_over)
- {
- *(mtx_out + out_stride + k * 4 + j) = c1.val[k][j];
- }
- }
- if(id.y() + 2 < height_out)
- {
- left_over = left_over_value;
- for(auto k = 0; k < 4 && left_over; ++k)
- {
- for(auto j = 0; j < 4 && left_over; ++j, --left_over)
- {
- *(mtx_out + out_stride * 2 + k * 4 + j) = c2.val[k][j];
- }
- }
- if(id.y() + 3 < height_out)
- {
- left_over = left_over_value;
- for(auto k = 0; k < 4 && left_over; ++k)
- {
- for(auto j = 0; j < 4 && left_over; ++j, --left_over)
- {
- *(mtx_out + out_stride * 3 + k * 4 + j) = c3.val[k][j];
- }
- }
- }
- }
- }
- }
- },
- ina, inb, out);
-}
-
-void inline matrix_multiply_s8(Iterator &ina, Iterator &inb, Iterator &out, int width_b, const TensorInfo &out_info, const Window &window)
-{
- const auto width_out = static_cast<int>(out_info.dimension(0));
- const auto height_out = static_cast<int>(out_info.dimension(1));
- const size_t out_stride = out_info.strides_in_bytes()[1] / out_info.element_size();
- // The implementation assumes that the matrix A and Matrix B have been reshaped respectively with NEGEMMInterleave4x4 and NEGEMMTranspose1xW
- // The reshaping of the matrices helps to have a cache friendly implementation and helps to avoid the data re-arrangements needed for computing 16x4 elements per iteration
- // All the values needed for computing a single 4x4 block will be read from consecutive memory positions
- execute_window_loop(window, [&](const Coordinates & id)
- {
- auto *mtx_a0 = reinterpret_cast<const int8_t *>(ina.ptr());
- auto *mtx_b0 = reinterpret_cast<const int8_t *>(inb.ptr());
-
- // Note: Since the input are all positives, we can use uint32_t
- // Accumulators for the block 0
- int32x4x4_t c0 =
- {
- {
- vdupq_n_s32(0),
- vdupq_n_s32(0),
- vdupq_n_s32(0),
- vdupq_n_s32(0)
- }
- };
-
- // Accumulators for the block 1
- int32x4x4_t c1 =
- {
- {
- vdupq_n_s32(0),
- vdupq_n_s32(0),
- vdupq_n_s32(0),
- vdupq_n_s32(0)
- }
- };
-
- // Accumulators for the block 2
- int32x4x4_t c2 =
- {
- {
- vdupq_n_s32(0),
- vdupq_n_s32(0),
- vdupq_n_s32(0),
- vdupq_n_s32(0)
- }
- };
-
- // Accumulators for the block 3
- int32x4x4_t c3 =
- {
- {
- vdupq_n_s32(0),
- vdupq_n_s32(0),
- vdupq_n_s32(0),
- vdupq_n_s32(0)
- }
- };
-
- for(int k = 0; k < width_b; k += 16, mtx_a0 += 4, mtx_b0 += 16)
- {
- const int8x8_t a00_s8 = vld1_s8(mtx_a0);
- const int8x16_t b00_s8 = vld1q_s8(mtx_b0);
-
- // Convert a00_s8 to uint16_t and get the lower part
- const int16x4_t a00_s16 = vget_low_s16(vmovl_s8(a00_s8));
-
- // Convert b00_s8 to int16_t
- const int16x4x4_t b00_s16 =
- {
- {
- vget_low_s16(vmovl_s8(vget_low_s8(b00_s8))),
- vget_high_s16(vmovl_s8(vget_low_s8(b00_s8))),
- vget_low_s16(vmovl_s8(vget_high_s8(b00_s8))),
- vget_high_s16(vmovl_s8(vget_high_s8(b00_s8)))
- }
- };
-
- // 4x4 block 0
- c0.val[0] = vmlal_lane_s16(c0.val[0], b00_s16.val[0], a00_s16, 0);
- c0.val[1] = vmlal_lane_s16(c0.val[1], b00_s16.val[1], a00_s16, 0);
- c0.val[2] = vmlal_lane_s16(c0.val[2], b00_s16.val[2], a00_s16, 0);
- c0.val[3] = vmlal_lane_s16(c0.val[3], b00_s16.val[3], a00_s16, 0);
-
- // 4x4 block 1
- c1.val[0] = vmlal_lane_s16(c1.val[0], b00_s16.val[0], a00_s16, 1);
- c1.val[1] = vmlal_lane_s16(c1.val[1], b00_s16.val[1], a00_s16, 1);
- c1.val[2] = vmlal_lane_s16(c1.val[2], b00_s16.val[2], a00_s16, 1);
- c1.val[3] = vmlal_lane_s16(c1.val[3], b00_s16.val[3], a00_s16, 1);
-
- // 4x4 block 2
- c2.val[0] = vmlal_lane_s16(c2.val[0], b00_s16.val[0], a00_s16, 2);
- c2.val[1] = vmlal_lane_s16(c2.val[1], b00_s16.val[1], a00_s16, 2);
- c2.val[2] = vmlal_lane_s16(c2.val[2], b00_s16.val[2], a00_s16, 2);
- c2.val[3] = vmlal_lane_s16(c2.val[3], b00_s16.val[3], a00_s16, 2);
-
- // 4x4 block 3
- c3.val[0] = vmlal_lane_s16(c3.val[0], b00_s16.val[0], a00_s16, 3);
- c3.val[1] = vmlal_lane_s16(c3.val[1], b00_s16.val[1], a00_s16, 3);
- c3.val[2] = vmlal_lane_s16(c3.val[2], b00_s16.val[2], a00_s16, 3);
- c3.val[3] = vmlal_lane_s16(c3.val[3], b00_s16.val[3], a00_s16, 3);
- }
- auto mtx_out = reinterpret_cast<int32_t *>(out.ptr());
- if(id.y() < height_out && id.x() < (width_out - 16))
- {
- vst1q_s32(mtx_out + 0 * out_stride + 0, c0.val[0]);
- vst1q_s32(mtx_out + 0 * out_stride + 4, c0.val[1]);
- vst1q_s32(mtx_out + 0 * out_stride + 8, c0.val[2]);
- vst1q_s32(mtx_out + 0 * out_stride + 12, c0.val[3]);
- if(id.y() + 1 < height_out)
- {
- vst1q_s32(mtx_out + 1 * out_stride + 0, c1.val[0]);
- vst1q_s32(mtx_out + 1 * out_stride + 4, c1.val[1]);
- vst1q_s32(mtx_out + 1 * out_stride + 8, c1.val[2]);
- vst1q_s32(mtx_out + 1 * out_stride + 12, c1.val[3]);
- if(id.y() + 2 < height_out)
- {
- vst1q_s32(mtx_out + 2 * out_stride + 0, c2.val[0]);
- vst1q_s32(mtx_out + 2 * out_stride + 4, c2.val[1]);
- vst1q_s32(mtx_out + 2 * out_stride + 8, c2.val[2]);
- vst1q_s32(mtx_out + 2 * out_stride + 12, c2.val[3]);
- if(id.y() + 3 < height_out)
- {
- vst1q_s32(mtx_out + 3 * out_stride + 0, c3.val[0]);
- vst1q_s32(mtx_out + 3 * out_stride + 4, c3.val[1]);
- vst1q_s32(mtx_out + 3 * out_stride + 8, c3.val[2]);
- vst1q_s32(mtx_out + 3 * out_stride + 12, c3.val[3]);
- }
- }
- }
- }
- else if(id.y() < height_out)
- {
- const auto left_over_value = width_out - id.x();
- auto left_over = left_over_value;
- for(auto k = 0; k < 4 && left_over; ++k)
- {
- for(auto j = 0; j < 4 && left_over; ++j, --left_over)
- {
- *(mtx_out + k * 4 + j) = c0.val[k][j];
- }
- }
- if(id.y() + 1 < height_out)
- {
- left_over = left_over_value;
- for(auto k = 0; k < 4 && left_over; ++k)
- {
- for(auto j = 0; j < 4 && left_over; ++j, --left_over)
- {
- *(mtx_out + out_stride + k * 4 + j) = c1.val[k][j];
- }
- }
- if(id.y() + 2 < height_out)
- {
- left_over = left_over_value;
- for(auto k = 0; k < 4 && left_over; ++k)
- {
- for(auto j = 0; j < 4 && left_over; ++j, --left_over)
- {
- *(mtx_out + out_stride * 2 + k * 4 + j) = c2.val[k][j];
- }
- }
- if(id.y() + 3 < height_out)
- {
- left_over = left_over_value;
- for(auto k = 0; k < 4 && left_over; ++k)
- {
- for(auto j = 0; j < 4 && left_over; ++j, --left_over)
- {
- *(mtx_out + out_stride * 3 + k * 4 + j) = c3.val[k][j];
- }
- }
- }
- }
- }
- }
-
- },
- ina, inb, out);
-}
-} // namespace
-
-namespace
-{
-Status validate_arguments(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output)
-{
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input0, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::S8, DataType::U8);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8, DataType::QSYMM8_PER_CHANNEL, DataType::S8, DataType::U8);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32);
-
- TensorShape in0_shape = input0->tensor_shape();
- TensorShape in1_shape = input1->tensor_shape();
- TensorShape out_shape = output->tensor_shape();
-
- // Check vector-by-matrix case
- if(out_shape[1] == 1)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[0] != in1_shape[1], "The number of input0's columns must be equal to input1's rows");
- }
- else
- {
- in0_shape.collapse(2);
- in1_shape.collapse(2);
- out_shape.collapse(2);
-
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(in0_shape[2] != out_shape[2], "Output tensor must have the same number of batches of input0 tensor");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_shape[2] != 1 && in0_shape[2] != in1_shape[2], "Input1 tensor must have the same number of batches of input0 or the number of batches must be set to 1");
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(in1_shape[0] % 16, "Input1's width must be a multiple of 16");
- }
-
- return Status{};
-}
-} // namespace
-
-NEGEMMLowpMatrixMultiplyKernel::NEGEMMLowpMatrixMultiplyKernel()
- : _input0(nullptr), _input1(nullptr), _output(nullptr), _slide_matrix_b(true)
-{
-}
-
-void NEGEMMLowpMatrixMultiplyKernel::configure(const ITensor *input0, const ITensor *input1, ITensor *output)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input0, input1, output);
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input0->info(), input1->info(), output->info()));
-
- TensorShape in1_shape = input1->info()->tensor_shape();
- in1_shape.collapse(2);
-
- _input0 = input0;
- _input1 = input1;
- _output = output;
- _slide_matrix_b = in1_shape[2] != 1;
-
- constexpr unsigned int num_elems_processed_per_iteration_x = 16;
- constexpr unsigned int num_elems_processed_per_iteration_y = 4;
-
- Window win;
-
- // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication
- if((output->info()->dimension(1) == 1))
- {
- // Configure kernel window
- win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration_x));
- }
- else
- {
- win = calculate_max_window(*output->info(), Steps(num_elems_processed_per_iteration_x, num_elems_processed_per_iteration_y));
- }
-
- INEKernel::configure(win);
-}
-
-Status NEGEMMLowpMatrixMultiplyKernel::validate(const ITensorInfo *input0, const ITensorInfo *input1, const ITensorInfo *output)
-{
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input0, input1, output));
-
- return Status{};
-}
-
-void NEGEMMLowpMatrixMultiplyKernel::run(const Window &window, const ThreadInfo &info)
-{
- ARM_COMPUTE_UNUSED(info);
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
-
- // Check if the output tensor is a vector. If so,the kernel runs the vector-matrix multiplication path
- if((_output->info()->dimension(1) == 1))
- {
- const auto width_matrix_a = static_cast<int>(_input0->info()->dimension(0));
- const auto width_matrix_b = static_cast<int>(_input1->info()->dimension(0));
- const auto width_out = static_cast<int>(_output->info()->dimension(0));
- const auto in_b_stride = static_cast<int>(_input1->info()->strides_in_bytes()[1] / data_size_from_type(_input1->info()->data_type()));
-
- // The implementation computes 16 elements per iteration
- const int window_start_x = 16 * info.thread_id;
- const int window_step_x = 16 * info.num_threads;
- // Make sure (window_end_x - window_start_x) is a multiple of window_step_x
- const int window_end_x = ceil_to_multiple(width_matrix_b - window_start_x, window_step_x) + window_start_x;
-
- Window win_out(window);
- win_out.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
- win_out.set(Window::DimY, Window::Dimension(0, 1, 1));
-
- Window win_a(window);
- win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
- win_a.set(Window::DimY, Window::Dimension(0, 0, 0));
-
- Window win_b;
- // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
- // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
- if(_input1->info()->num_dimensions() >= 3)
- {
- win_b = window;
- }
- win_b.set(Window::DimX, Window::Dimension(window_start_x, window_end_x, window_step_x));
- win_b.set(Window::DimY, Window::Dimension(0, 1, 1));
-
- Iterator ina(_input0, win_a);
- Iterator inb(_input1, win_b);
- Iterator out(_output, win_out);
-
- switch(_input0->info()->data_type())
- {
- case DataType::S8:
- case DataType::QASYMM8_SIGNED:
- {
- vector_matrix_multiply_s8(ina, inb, out, width_matrix_a, width_matrix_b, width_out, in_b_stride, window);
- break;
- }
- case DataType::U8:
- case DataType::QASYMM8:
- {
- vector_matrix_multiply_u8(ina, inb, out, width_matrix_a, width_matrix_b, width_out, in_b_stride, window);
- break;
- }
- default:
- {
- ARM_COMPUTE_ERROR("Not supported");
- break;
- }
- }
- }
- else
- {
- const size_t in_b_stride = _input1->info()->strides_in_bytes()[1];
- const int width_b = _input1->info()->dimension(0);
-
- // Set step_x and step_y for matrix A. Scale by a factor of 4 the Y range as the input interleaved matrix A has 4 times less the rows of the output matrix
- Window win_a(window);
- win_a.set(Window::DimX, Window::Dimension(0, 0, 0));
- win_a.set(Window::DimY, Window::Dimension(window.y().start() / 4, window.y().end() / 4, 1));
-
- // Set step_x and step_y for matrix B. Scale by a factor of 16 the X range as the input transposed matrix A has 16 times less the columns of the output matrix
- Window win_b;
- // Don't slice matrix B along the z dimension if matrix B has just 2 dimensions and matrix A more than 2
- // This scenario can happen when the the matrix multiplication is used to perform a convolution operation
- if(_slide_matrix_b)
- {
- win_b = window;
- }
- win_b.set(Window::DimX, Window::Dimension(window.x().start() / 16, window.x().end() / 16, in_b_stride));
- win_b.set(Window::DimY, Window::Dimension(0, 0, 0));
-
- // The step x and step y for the output matrix has been already set using in configure()
- Iterator ina(_input0, win_a);
- Iterator inb(_input1, win_b);
- Iterator out(_output, window);
-
- switch(_input0->info()->data_type())
- {
- case DataType::S8:
- case DataType::QASYMM8_SIGNED:
- {
- matrix_multiply_s8(ina, inb, out, width_b, *_output->info(), window);
- break;
- }
- case DataType::U8:
- case DataType::QASYMM8:
- {
- matrix_multiply_u8(ina, inb, out, width_b, *_output->info(), window);
- break;
- }
- default:
- {
- ARM_COMPUTE_ERROR("Not supported");
- break;
- }
- }
- }
-}
-} // namespace arm_compute