aboutsummaryrefslogtreecommitdiff
path: root/src/core/NEON/kernels/NEArithmeticSubtractionKernel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/NEON/kernels/NEArithmeticSubtractionKernel.cpp')
-rw-r--r--src/core/NEON/kernels/NEArithmeticSubtractionKernel.cpp817
1 files changed, 0 insertions, 817 deletions
diff --git a/src/core/NEON/kernels/NEArithmeticSubtractionKernel.cpp b/src/core/NEON/kernels/NEArithmeticSubtractionKernel.cpp
deleted file mode 100644
index 8bfb37ea18..0000000000
--- a/src/core/NEON/kernels/NEArithmeticSubtractionKernel.cpp
+++ /dev/null
@@ -1,817 +0,0 @@
-/*
- * Copyright (c) 2016-2020 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "arm_compute/core/NEON/kernels/NEArithmeticSubtractionKernel.h"
-
-#include "arm_compute/core/CPP/Validate.h"
-#include "arm_compute/core/NEON/NEAsymm.h"
-#include "arm_compute/core/NEON/NESymm.h"
-#include "arm_compute/core/NEON/wrapper/wrapper.h"
-#include "arm_compute/core/TensorInfo.h"
-#include "arm_compute/core/Validate.h"
-
-namespace arm_compute
-{
-namespace
-{
-template <typename T>
-inline typename std::enable_if<std::is_same<T, int8_t>::value, int8_t>::type
-quantize(float val, const QuantizationInfo &info)
-{
- return quantize_qasymm8_signed(val, info);
-}
-
-template <typename T>
-inline typename std::enable_if<std::is_same<T, uint8_t>::value, uint8_t>::type
-quantize(float val, const QuantizationInfo &info)
-{
- return quantize_qasymm8(val, info);
-}
-
-template <typename T>
-void sub_same(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat)
-{
- /** NEON vector tag type. */
- using ExactTagType = typename wrapper::traits::neon_bitvector_tag_t<T, wrapper::traits::BitWidth::W128>;
-
- // Create input windows
- Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
- Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
-
- // Clear X Dimension on execution window as we handle manually
- Window win = window;
- win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- constexpr int window_step_x = 16 / sizeof(T);
- const auto window_start_x = static_cast<int>(window.x().start());
- const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
-
- Iterator input1(in1, window.broadcast_if_dimension_le_one(in1->info()->tensor_shape()));
- Iterator input2(in2, window.broadcast_if_dimension_le_one(in2->info()->tensor_shape()));
- Iterator output(out, window);
-
- if(is_broadcast_across_x)
- {
- const bool is_broadcast_input_2 = input2_win.x().step() == 0;
- Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
- Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
- const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
- const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
-
- // Clear X Dimension on execution window as we handle manually
- non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator broadcast_input(broadcast_tensor, broadcast_win);
- Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
- Iterator output(out, win);
-
- execute_window_loop(win, [&](const Coordinates &)
- {
- const auto non_broadcast_input_ptr = reinterpret_cast<const T *>(non_broadcast_input.ptr());
- const auto output_ptr = reinterpret_cast<T *>(output.ptr());
-
- const T broadcast_value = *reinterpret_cast<const T *>(broadcast_input.ptr());
- const auto broadcast_value_vec = wrapper::vdup_n(broadcast_value, ExactTagType{});
-
- // Compute S elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const auto non_broadcast_v = wrapper::vloadq(non_broadcast_input_ptr + x);
- auto res = is_sat ? wrapper::vqsub(broadcast_value_vec, non_broadcast_v) : wrapper::vsub(broadcast_value_vec, non_broadcast_v);
- if(is_broadcast_input_2)
- {
- res = wrapper::vmul(res, wrapper::vdup_n(static_cast<T>(-1), ExactTagType{}));
- }
- wrapper::vstore(output_ptr + x, res);
- }
-
- // Compute left-over elements
- for(; x < window_end_x; ++x)
- {
- const auto non_broadcast_v = *(non_broadcast_input_ptr + x);
- auto res = is_sat ? wrapper::sub_sat(broadcast_value, non_broadcast_v) : broadcast_value - non_broadcast_v;
- if(is_broadcast_input_2)
- {
- res = static_cast<T>(-1) * res;
- }
-
- *(output_ptr + x) = res;
- }
- },
- broadcast_input, non_broadcast_input, output);
- }
- else
- {
- // Clear X Dimension on execution window as we handle manually
- input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
- input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator input1(in1, input1_win);
- Iterator input2(in2, input2_win);
- Iterator output(out, win);
-
- execute_window_loop(win, [&](const Coordinates &)
- {
- const auto input1_ptr = reinterpret_cast<const T *>(input1.ptr());
- const auto input2_ptr = reinterpret_cast<const T *>(input2.ptr());
- const auto output_ptr = reinterpret_cast<T *>(output.ptr());
-
- // Compute S elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const auto val1 = wrapper::vloadq(input1_ptr + x);
- const auto val2 = wrapper::vloadq(input2_ptr + x);
- const auto res = is_sat ? wrapper::vqsub(val1, val2) : wrapper::vsub(val1, val2);
- wrapper::vstore(output_ptr + x, res);
- }
-
- // Compute left-over elements
- for(; x < window_end_x; ++x)
- {
- const auto val1 = *(input1_ptr + x);
- const auto val2 = *(input2_ptr + x);
- *(output_ptr + x) = is_sat ? wrapper::sub_sat(val1, val2) : val1 - val2;
- }
- },
- input1, input2, output);
- }
-}
-
-template <typename T>
-void sub_quantized(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat)
-{
- ARM_COMPUTE_UNUSED(is_sat);
-
- // Create input windows
- Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
- Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
-
- // Clear X Dimension on execution window as we handle manually
- Window win = window;
- win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- const int window_step_x = 16;
- const auto window_start_x = static_cast<int>(window.x().start());
- const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
-
- const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
- const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
- const UniformQuantizationInfo oq_info = out->info()->quantization_info().uniform();
-
- const float32x4_t vscale1 = vdupq_n_f32(iq1_info.scale);
- const float32x4_t vscale2 = vdupq_n_f32(iq2_info.scale);
- const float32x4_t invvscaleo = vdupq_n_f32(1.f / oq_info.scale);
- const int32x4_t voffset1 = vdupq_n_s32(iq1_info.offset);
- const int32x4_t voffset2 = vdupq_n_s32(iq2_info.offset);
- const float32x4_t voffseto = vdupq_n_f32(oq_info.offset);
-
- if(is_broadcast_across_x)
- {
- const bool is_broadcast_input_2 = input2_win.x().step() == 0;
- Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
- Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
- const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
- const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
- const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform();
- const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
-
- // Clear X Dimension on execution window as we handle manually
- non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator broadcast_input(broadcast_tensor, broadcast_win);
- Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
- Iterator output(out, win);
-
- execute_window_loop(win, [&](const Coordinates &)
- {
- const auto non_broadcast_input_ptr = reinterpret_cast<const T *>(non_broadcast_input.ptr());
- const auto output_ptr = reinterpret_cast<T *>(output.ptr());
-
- const auto broadcast_value = *reinterpret_cast<const T *>(broadcast_input.ptr());
- const auto broadcast_value_vec = wrapper::vdup_n(static_cast<T>(broadcast_value), wrapper::traits::vector_128_tag{});
-
- const float32x4x4_t bf =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgetlow(broadcast_value_vec))))), voffset2)), vscale2),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgetlow(broadcast_value_vec))))), voffset2)), vscale2),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgethigh(broadcast_value_vec))))), voffset2)), vscale2),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgethigh(broadcast_value_vec))))), voffset2)), vscale2),
- }
- };
- const float bfs = static_cast<int32_t>(broadcast_value - broadcast_qinfo.offset) * broadcast_qinfo.scale;
-
- // Compute S elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const auto a = wrapper::vloadq(non_broadcast_input_ptr + x);
-
- const float32x4x4_t af =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgetlow(a))))), voffset1)), vscale1),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgetlow(a))))), voffset1)), vscale1),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgethigh(a))))), voffset1)), vscale1),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgethigh(a))))), voffset1)), vscale1),
- }
- };
-
- const int32x4x4_t rf =
- {
- {
-#ifdef __aarch64__
- vcvtnq_s32_f32(vmlaq_f32(voffseto, is_broadcast_input_2 ? vsubq_f32(bf.val[0], af.val[0]) : vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
- vcvtnq_s32_f32(vmlaq_f32(voffseto, is_broadcast_input_2 ? vsubq_f32(bf.val[1], af.val[1]) : vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
- vcvtnq_s32_f32(vmlaq_f32(voffseto, is_broadcast_input_2 ? vsubq_f32(bf.val[2], af.val[2]) : vsubq_f32(af.val[2], bf.val[2]), invvscaleo)),
- vcvtnq_s32_f32(vmlaq_f32(voffseto, is_broadcast_input_2 ? vsubq_f32(bf.val[3], af.val[3]) : vsubq_f32(af.val[3], bf.val[3]), invvscaleo)),
-#else //__aarch64__
- vcvtq_s32_f32(vmlaq_f32(voffseto, is_broadcast_input_2 ? vsubq_f32(bf.val[0], af.val[0]) : vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
- vcvtq_s32_f32(vmlaq_f32(voffseto, is_broadcast_input_2 ? vsubq_f32(bf.val[1], af.val[1]) : vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
- vcvtq_s32_f32(vmlaq_f32(voffseto, is_broadcast_input_2 ? vsubq_f32(bf.val[2], af.val[2]) : vsubq_f32(af.val[2], bf.val[2]), invvscaleo)),
- vcvtq_s32_f32(vmlaq_f32(voffseto, is_broadcast_input_2 ? vsubq_f32(bf.val[3], af.val[3]) : vsubq_f32(af.val[3], bf.val[3]), invvscaleo)),
-#endif //__aarch64__
- }
- };
-
- const auto pa = wrapper::vqmov<T>(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
- const auto pb = wrapper::vqmov<T>(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
- wrapper::vstore(output_ptr + x, wrapper::vcombine(pa, pb));
- }
-
- // Compute left-over elements
- for(; x < window_end_x; ++x)
- {
- const float afs = static_cast<int32_t>(*(non_broadcast_input_ptr + x) - non_broadcast_qinfo.offset) * non_broadcast_qinfo.scale;
- *(output_ptr + x) = quantize<T>((afs - bfs), out->info()->quantization_info());
- }
- },
- broadcast_input, non_broadcast_input, output);
- }
- else
- {
- // Clear X Dimension on execution window as we handle manually
- input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
- input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator input1(in1, input1_win);
- Iterator input2(in2, input2_win);
- Iterator output(out, win);
-
- execute_window_loop(win, [&](const Coordinates &)
- {
- const auto input1_ptr = reinterpret_cast<const T *>(input1.ptr());
- const auto input2_ptr = reinterpret_cast<const T *>(input2.ptr());
- const auto output_ptr = reinterpret_cast<T *>(output.ptr());
-
- // Compute S elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const auto a = wrapper::vloadq(input1_ptr + x);
- const auto b = wrapper::vloadq(input2_ptr + x);
-
- const float32x4x4_t af =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgetlow(a))))), voffset1)), vscale1),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgetlow(a))))), voffset1)), vscale1),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgethigh(a))))), voffset1)), vscale1),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgethigh(a))))), voffset1)), vscale1),
- }
- };
-
- const float32x4x4_t bf =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgetlow(b))))), voffset2)), vscale2),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgetlow(b))))), voffset2)), vscale2),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgetlow(wrapper::vmovl(wrapper::vgethigh(b))))), voffset2)), vscale2),
- vmulq_f32(vcvtq_f32_s32(vsubq_s32(wrapper::vreinterpret(wrapper::vmovl(wrapper::vgethigh(wrapper::vmovl(wrapper::vgethigh(b))))), voffset2)), vscale2),
- }
- };
-
- const int32x4x4_t rf =
- {
- {
-#ifdef __aarch64__
- vcvtnq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
- vcvtnq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
- vcvtnq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[2], bf.val[2]), invvscaleo)),
- vcvtnq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[3], bf.val[3]), invvscaleo)),
-#else //__aarch64__
- vcvtq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
- vcvtq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
- vcvtq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[2], bf.val[2]), invvscaleo)),
- vcvtq_s32_f32(vmlaq_f32(voffseto, vsubq_f32(af.val[3], bf.val[3]), invvscaleo)),
-#endif //__aarch64__
- }
- };
-
- const auto pa = wrapper::vqmov<T>(vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1])));
- const auto pb = wrapper::vqmov<T>(vcombine_s16(vqmovn_s32(rf.val[2]), vqmovn_s32(rf.val[3])));
- wrapper::vstore(output_ptr + x, wrapper::vcombine(pa, pb));
- }
-
- // Compute left-over elements
- for(; x < window_end_x; ++x)
- {
- const float afs = static_cast<int32_t>((*(input1_ptr + x)) - iq1_info.offset) * iq1_info.scale;
- const float bfs = static_cast<int32_t>((*(input2_ptr + x)) - iq2_info.offset) * iq2_info.scale;
-
- *(output_ptr + x) = quantize<T>((afs - bfs), out->info()->quantization_info());
- }
- },
- input1, input2, output);
- }
-}
-
-void sub_QSYMM16_QSYMM16_QSYMM16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat)
-{
- ARM_COMPUTE_UNUSED(is_sat);
-
- // Create input windows
- Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
- Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
-
- // Clear X Dimension on execution window as we handle manually
- Window win = window;
- win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- const int window_step_x = 8;
- const auto window_start_x = static_cast<int>(window.x().start());
- const auto window_end_x = static_cast<int>(window.x().end());
- const bool is_broadcast_across_x = (input1_win.x().step() == 0) || (input2_win.x().step() == 0);
-
- const UniformQuantizationInfo iq1_info = in1->info()->quantization_info().uniform();
- const UniformQuantizationInfo iq2_info = in2->info()->quantization_info().uniform();
- const UniformQuantizationInfo oq_info = out->info()->quantization_info().uniform();
-
- const float32x4_t vscale1 = vdupq_n_f32(iq1_info.scale);
- const float32x4_t vscale2 = vdupq_n_f32(iq2_info.scale);
- const float32x4_t invvscaleo = vdupq_n_f32(1.f / oq_info.scale);
-
- if(is_broadcast_across_x)
- {
- const bool is_broadcast_input_2 = input2_win.x().step() == 0;
- Window broadcast_win = is_broadcast_input_2 ? input2_win : input1_win;
- Window non_broadcast_win = !is_broadcast_input_2 ? input2_win : input1_win;
- const ITensor *broadcast_tensor = is_broadcast_input_2 ? in2 : in1;
- const ITensor *non_broadcast_tensor = !is_broadcast_input_2 ? in2 : in1;
- const UniformQuantizationInfo broadcast_qinfo = broadcast_tensor->info()->quantization_info().uniform();
- const UniformQuantizationInfo non_broadcast_qinfo = non_broadcast_tensor->info()->quantization_info().uniform();
-
- // Clear X Dimension on execution window as we handle manually
- non_broadcast_win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator broadcast_input(broadcast_tensor, broadcast_win);
- Iterator non_broadcast_input(non_broadcast_tensor, non_broadcast_win);
- Iterator output(out, win);
-
- execute_window_loop(win, [&](const Coordinates &)
- {
- const auto non_broadcast_input_ptr = reinterpret_cast<const int16_t *>(non_broadcast_input.ptr());
- const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
-
- const int16_t broadcast_value = *reinterpret_cast<const int16_t *>(broadcast_input.ptr());
- const int16x8_t broadcast_value_vec = vdupq_n_s16(broadcast_value);
-
- const float32x4x2_t bf =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(broadcast_value_vec))), vscale2),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(broadcast_value_vec))), vscale2),
- }
- };
- const float bfs = static_cast<int32_t>(broadcast_value) * broadcast_qinfo.scale;
-
- // Compute S elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const int16x8_t a = vld1q_s16(non_broadcast_input_ptr + x);
- const float32x4x2_t af =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(a))), vscale1),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(a))), vscale1),
- }
- };
-
- const int32x4x4_t rf =
- {
- {
-#ifdef __aarch64__
- vcvtnq_s32_f32(vmulq_f32(is_broadcast_input_2 ? vsubq_f32(bf.val[0], af.val[0]) : vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
- vcvtnq_s32_f32(vmulq_f32(is_broadcast_input_2 ? vsubq_f32(bf.val[1], af.val[1]) : vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
-#else //__aarch64__
- vcvtq_s32_f32(vmulq_f32(is_broadcast_input_2 ? vsubq_f32(bf.val[0], af.val[0]) : vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
- vcvtq_s32_f32(vmulq_f32(is_broadcast_input_2 ? vsubq_f32(bf.val[1], af.val[1]) : vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
-#endif //__aarch64__
- }
- };
-
- const int16x8_t pa = vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]));
- vst1q_s16(output_ptr + x, pa);
- }
-
- // Compute left-over elements
- for(; x < window_end_x; ++x)
- {
- const float afs = static_cast<int32_t>(*(non_broadcast_input_ptr + x)) * non_broadcast_qinfo.scale;
- *(output_ptr + x) = quantize_qsymm16(is_broadcast_input_2 ? (bfs - afs) : (afs - bfs), oq_info);
- }
- },
- broadcast_input, non_broadcast_input, output);
- }
- else
- {
- // Clear X Dimension on execution window as we handle manually
- input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
- input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator input1(in1, input1_win);
- Iterator input2(in2, input2_win);
- Iterator output(out, win);
-
- execute_window_loop(win, [&](const Coordinates &)
- {
- const auto input1_ptr = reinterpret_cast<const int16_t *>(input1.ptr());
- const auto input2_ptr = reinterpret_cast<const int16_t *>(input2.ptr());
- const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
-
- // Compute S elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const int16x8_t a = vld1q_s16(input1_ptr + x);
- const int16x8_t b = vld1q_s16(input2_ptr + x);
-
- const float32x4x2_t af =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(a))), vscale1),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(a))), vscale1),
- }
- };
-
- const float32x4x2_t bf =
- {
- {
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_low_s16(b))), vscale2),
- vmulq_f32(vcvtq_f32_s32(vmovl_s16(vget_high_s16(b))), vscale2),
- }
- };
-
- const int32x4x2_t rf =
- {
- {
-#ifdef __aarch64__
- vcvtnq_s32_f32(vmulq_f32(vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
- vcvtnq_s32_f32(vmulq_f32(vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
-#else //__aarch64__
- vcvtq_s32_f32(vmulq_f32(vsubq_f32(af.val[0], bf.val[0]), invvscaleo)),
- vcvtq_s32_f32(vmulq_f32(vsubq_f32(af.val[1], bf.val[1]), invvscaleo)),
-#endif //__aarch64__
- }
- };
-
- const int16x8_t pa = vcombine_s16(vqmovn_s32(rf.val[0]), vqmovn_s32(rf.val[1]));
- vst1q_s16(output_ptr + x, pa);
- }
-
- // Compute left-over elements
- for(; x < window_end_x; ++x)
- {
- const float afs = static_cast<int32_t>((*(input1_ptr + x))) * iq1_info.scale;
- const float bfs = static_cast<int32_t>((*(input2_ptr + x))) * iq2_info.scale;
- *(output_ptr + x) = quantize_qsymm16((afs - bfs), out->info()->quantization_info());
- }
- },
- input1, input2, output);
- }
-}
-
-void sub_S16_U8_S16_impl(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat, bool is_swapped)
-{
- // Create input windows
- Window win = window;
- Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
- Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
-
- // Clear X Dimension on execution window as we handle manually
- win.set(Window::DimX, Window::Dimension(0, 1, 1));
- input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
- input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator input1(in1, input1_win);
- Iterator input2(in2, input2_win);
- Iterator output(out, win);
-
- const int window_step_x = 8;
- const auto window_start_x = static_cast<int>(window.x().start());
- const auto window_end_x = static_cast<int>(window.x().end());
-
- execute_window_loop(win, [&](const Coordinates &)
- {
- const auto input1_ptr = reinterpret_cast<const int16_t *>(input1.ptr());
- const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
- const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
-
- if(!is_sat)
- {
- // Compute S elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const auto vin1 = wrapper::vloadq(input1_ptr + x);
- const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x)));
- const auto res = is_swapped ? wrapper::vsub(vin2, vin1) : wrapper::vsub(vin1, vin2);
- wrapper::vstore(output_ptr + x, res);
- }
-
- // Compute left-over elements
- for(; x < window_end_x; ++x)
- {
- const auto res = is_swapped ? static_cast<int16_t>(*(input2_ptr + x)) - *(input1_ptr + x) : *(input1_ptr + x) - static_cast<int16_t>(*(input2_ptr + x));
- *(output_ptr + x) = res;
- }
- }
- else
- {
- // Compute S elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const auto vin1 = wrapper::vloadq(input1_ptr + x);
- const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x)));
- const auto res = is_swapped ? wrapper::vqsub(vin2, vin1) : wrapper::vqsub(vin1, vin2);
- wrapper::vstore(output_ptr + x, res);
- }
-
- // Compute left-over elements
- for(; x < window_end_x; ++x)
- {
- const auto res = is_swapped ? wrapper::sub_sat(static_cast<int16_t>(*(input2_ptr + x)), *(input1_ptr + x)) : wrapper::sub_sat(*(input1_ptr + x), static_cast<int16_t>(*(input2_ptr + x)));
- *(output_ptr + x) = res;
- }
- }
- },
- input1, input2, output);
-}
-
-void sub_S16_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat)
-{
- sub_S16_U8_S16_impl(in1, in2, out, window, is_sat, false);
-}
-
-void sub_U8_S16_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat)
-{
- // Swap arguments
- sub_S16_U8_S16_impl(in2, in1, out, window, is_sat, true);
-}
-
-void sub_U8_U8_S16(const ITensor *in1, const ITensor *in2, ITensor *out, const Window &window, bool is_sat)
-{
- // Create input windows
- Window win = window;
- Window input1_win = window.broadcast_if_dimension_le_one(in1->info()->tensor_shape());
- Window input2_win = window.broadcast_if_dimension_le_one(in2->info()->tensor_shape());
-
- // Clear X Dimension on execution window as we handle manually
- win.set(Window::DimX, Window::Dimension(0, 1, 1));
- input1_win.set(Window::DimX, Window::Dimension(0, 1, 1));
- input2_win.set(Window::DimX, Window::Dimension(0, 1, 1));
-
- Iterator input1(in1, input1_win);
- Iterator input2(in2, input2_win);
- Iterator output(out, win);
-
- const int window_step_x = 8;
- const auto window_start_x = static_cast<int>(window.x().start());
- const auto window_end_x = static_cast<int>(window.x().end());
-
- execute_window_loop(win, [&](const Coordinates &)
- {
- const auto input1_ptr = reinterpret_cast<const uint8_t *>(input1.ptr());
- const auto input2_ptr = reinterpret_cast<const uint8_t *>(input2.ptr());
- const auto output_ptr = reinterpret_cast<int16_t *>(output.ptr());
-
- if(!is_sat)
- {
- // Compute S elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const auto vin1 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input1_ptr + x)));
- const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x)));
- wrapper::vstore(output_ptr + x, wrapper::vsub(vin1, vin2));
- }
-
- // Compute left-over elements
- for(; x < window_end_x; ++x)
- {
- *(output_ptr + x) = static_cast<int16_t>(*(input1_ptr + x)) - static_cast<int16_t>(*(input2_ptr + x));
- }
- }
- else
- {
- // Compute S elements per iteration
- int x = window_start_x;
- for(; x <= (window_end_x - window_step_x); x += window_step_x)
- {
- const auto vin1 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input1_ptr + x)));
- const auto vin2 = vreinterpretq_s16_u16(wrapper::vmovl(wrapper::vload(input2_ptr + x)));
- wrapper::vstore(output_ptr + x, wrapper::vqsub(vin1, vin2));
- }
-
- // Compute left-over elements
- for(; x < window_end_x; ++x)
- {
- *(output_ptr + x) = wrapper::sub_sat(static_cast<int16_t>(*(input1_ptr + x)),
- static_cast<int16_t>(*(input2_ptr + x)));
- }
- }
- },
- input1, input2, output);
-}
-
-inline Status validate_arguments(const ITensorInfo &input1, const ITensorInfo &input2, const ITensorInfo &output, ConvertPolicy policy)
-{
- ARM_COMPUTE_UNUSED(policy);
- ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(&input1);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input1, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM16, DataType::S16, DataType::F16, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&input2, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM16, DataType::S16, DataType::F16, DataType::F32);
- ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&output, 1, DataType::U8, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM16, DataType::S16, DataType::F16, DataType::F32);
-
- const TensorShape out_shape = TensorShape::broadcast_shape(input1.tensor_shape(), input2.tensor_shape());
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(out_shape.total_size() == 0, "Inputs are not broadcast compatible");
-
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(
- !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8)
- && !(input1.data_type() == DataType::QASYMM8 && input2.data_type() == DataType::QASYMM8)
- && !(input1.data_type() == DataType::QASYMM8_SIGNED && input2.data_type() == DataType::QASYMM8_SIGNED)
- && !(input1.data_type() == DataType::QSYMM16 && input2.data_type() == DataType::QSYMM16)
- && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8)
- && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::S16)
- && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::U8)
- && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::S16)
- && !(input1.data_type() == DataType::F32 && input2.data_type() == DataType::F32)
- && !(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16),
- "You called subtract with the wrong image formats");
-
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(
- input1.data_type() == DataType::QASYMM8_SIGNED && input2.data_type() == DataType::QASYMM8_SIGNED && policy == ConvertPolicy::WRAP
- && input1.data_type() == DataType::QASYMM8 && input2.data_type() == DataType::QASYMM8 && policy == ConvertPolicy::WRAP
- && input1.data_type() == DataType::QSYMM16 && input2.data_type() == DataType::QSYMM16 && policy == ConvertPolicy::WRAP,
- "Convert policy cannot be WRAP if datatype is QASYMM8 or QASYMM8_SIGNED");
-
- // Validate in case of configured output
- if(output.total_size() > 0)
- {
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(
- !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::U8)
- && !(input1.data_type() == DataType::QASYMM8 && input2.data_type() == DataType::QASYMM8 && output.data_type() == DataType::QASYMM8)
- && !(input1.data_type() == DataType::QASYMM8_SIGNED && input2.data_type() == DataType::QASYMM8_SIGNED && output.data_type() == DataType::QASYMM8_SIGNED)
- && !(input1.data_type() == DataType::QSYMM16 && input2.data_type() == DataType::QSYMM16 && output.data_type() == DataType::QSYMM16)
- && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16)
- && !(input1.data_type() == DataType::U8 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16)
- && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::U8 && output.data_type() == DataType::S16)
- && !(input1.data_type() == DataType::S16 && input2.data_type() == DataType::S16 && output.data_type() == DataType::S16)
- && !(input1.data_type() == DataType::F32 && input2.data_type() == DataType::F32 && output.data_type() == DataType::F32)
- && !(input1.data_type() == DataType::F16 && input2.data_type() == DataType::F16 && output.data_type() == DataType::F16),
- "You called subtract with the wrong image formats");
-
- ARM_COMPUTE_RETURN_ERROR_ON_MSG(detail::have_different_dimensions(out_shape, output.tensor_shape(), 0),
- "Wrong shape for output");
- }
- return Status{};
-}
-} // namespace
-
-NEArithmeticSubtractionKernel::NEArithmeticSubtractionKernel()
- : _func(nullptr), _input1(nullptr), _input2(nullptr), _output(nullptr), _policy(ConvertPolicy::WRAP)
-{
-}
-
-void NEArithmeticSubtractionKernel::configure(const ITensor *input1, const ITensor *input2, ITensor *output, ConvertPolicy policy)
-{
- ARM_COMPUTE_ERROR_ON_NULLPTR(input1, input2, output);
- ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(*input1->info(), *input2->info(), *output->info(), policy));
-
- _input1 = input1;
- _input2 = input2;
- _output = output;
- _policy = policy;
-
- const std::pair<TensorShape, ValidRegion> broadcast_pair = ITensorInfo::broadcast_shape_and_valid_region(*input1->info(), *input2->info());
- const TensorShape &out_shape = broadcast_pair.first;
- const ValidRegion &valid_region = broadcast_pair.second;
-
- // Auto initialize output if not initialized
- set_shape_if_empty(*output->info(), out_shape);
-
- switch(input1->info()->data_type())
- {
- case DataType::U8:
- if(input2->info()->data_type() == DataType::U8 && output->info()->data_type() == DataType::U8)
- {
- _func = &sub_same<uint8_t>;
- }
- else if(input2->info()->data_type() == DataType::U8 && output->info()->data_type() == DataType::S16)
- {
- _func = &sub_U8_U8_S16;
- }
- else
- {
- _func = &sub_U8_S16_S16;
- }
- break;
- case DataType::QASYMM8:
- _func = &sub_quantized<uint8_t>;
- set_data_type_if_unknown(*output->info(), DataType::QASYMM8);
- break;
- case DataType::QASYMM8_SIGNED:
- _func = &sub_quantized<int8_t>;
- set_data_type_if_unknown(*output->info(), DataType::QASYMM8_SIGNED);
- break;
- case DataType::S16:
- if(input2->info()->data_type() == DataType::U8)
- {
- _func = &sub_S16_U8_S16;
- }
- else
- {
- _func = &sub_same<int16_t>;
- }
- set_format_if_unknown(*output->info(), Format::S16);
- break;
- case DataType::QSYMM16:
- _func = &sub_QSYMM16_QSYMM16_QSYMM16;
- set_data_type_if_unknown(*output->info(), DataType::QSYMM16);
- break;
-#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
- case DataType::F16:
- _func = &sub_same<float16_t>;
- set_format_if_unknown(*output->info(), Format::F16);
- break;
-#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
- case DataType::F32:
- _func = &sub_same<float>;
- set_format_if_unknown(*output->info(), Format::F32);
- break;
- default:
- _func = nullptr;
- }
-
- // NEArithmeticSubtractionKernel doesn't need padding so update_window_and_padding() can be skipped
- Coordinates coord;
- coord.set_num_dimensions(output->info()->num_dimensions());
- output->info()->set_valid_region(valid_region);
- Window win = calculate_max_window(valid_region, Steps());
-
- INEKernel::configure(win);
-}
-
-Status NEArithmeticSubtractionKernel::validate(const ITensorInfo *input1, const ITensorInfo *input2, const ITensorInfo *output, ConvertPolicy policy)
-{
- ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input1, input2, output);
- ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(*input1, *input2, *output, policy));
-
- return Status{};
-}
-
-void NEArithmeticSubtractionKernel::run(const Window &window, const ThreadInfo &info)
-{
- ARM_COMPUTE_UNUSED(info);
- ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
- ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
- ARM_COMPUTE_ERROR_ON(_func == nullptr);
-
- (*_func)(_input1, _input2, _output, window, (_policy == ConvertPolicy::SATURATE));
-}
-} // namespace arm_compute