aboutsummaryrefslogtreecommitdiff
path: root/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/GLES_COMPUTE/cs_shaders/gemm.cs')
-rw-r--r--src/core/GLES_COMPUTE/cs_shaders/gemm.cs1130
1 files changed, 0 insertions, 1130 deletions
diff --git a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs b/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
deleted file mode 100644
index e51908b5e5..0000000000
--- a/src/core/GLES_COMPUTE/cs_shaders/gemm.cs
+++ /dev/null
@@ -1,1130 +0,0 @@
-/*
- * Copyright (c) 2017-2018 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-layout(local_size_x = LOCAL_SIZE_X, local_size_y = LOCAL_SIZE_Y, local_size_z = LOCAL_SIZE_Z) in;
-#include "helpers_cs.h"
-
-#if defined(DATA_TYPE_FP16)
-precision mediump float;
-#endif // DATA_TYPE_FP16
-
-#if defined(DATA_TYPE_FP32)
-#ifdef GEMM_TRANSPOSE1xW
-/** This OpenGL ES kernel computes the "vector" 1x4 transposition of input matrix
- *
- * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src_attrs The attributes of the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_attrs The attributes of the destination matrix
- */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes src_attrs;
- ImageAttributes dst_attrs;
-};
-TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
-TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
-
-void main(void)
-{
- /* Compute address for Matrix B - source */
- ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
- ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
-
- /* Compute address for Matrix B transposed - destination. X and Y are swapped */
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst_attrs.stride_y);
-
- vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src_ptr, src_iter);
- VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, b0);
-}
-#endif /* GEMM_TRANSPOSE1xW */
-
-#ifdef GEMM_INTERLEAVE4x4
-/** This OpenGLES kernel reshapes the input matrix interleaving the values
- *
- * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src_attrs The attributes of the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_attrs The attributes of the destination matrix
- */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes src_attrs;
- ImageAttributes dst_attrs;
-};
-TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
-TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
-
-void main(void)
-{
- /* Compute source and destination addresses */
- ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
- ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
-
- int i;
- int j;
-
- for(i = 0; i < 4; ++i)
- {
- for(j = 0; j < 4; ++j)
- {
- float res = LOAD(src_ptr, IMAGE_OFFSET(src_iter, i, j));
- STORE(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, (i * 4 + j)), res);
- }
- }
-}
-#endif /* GEMM_INTERLEAVE4x4 */
-
-#ifdef GEMM_ACCUMULATE_BIASES
-/** This kernel accumulates each row with the biases vector
- *
- * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F32
- * @param[in] accum_attrs The attributes of the accumulate tensor
- * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
- * @param[in] biases_attrs The attributes of the biases tensor
- */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes accum_attrs;
- VectorAttributes biases_attrs;
-};
-TENSOR_DECLARATION(1, accumBuffer, float, accum_ptr, accum_shift, 2, restrict);
-TENSOR_DECLARATION(2, biasesBuffer, float, biases_ptr, biases_shift, 2, readonly);
-
-void main(void)
-{
- ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift);
- VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift);
-
- for(int i = 0; i < 16; ++i)
- {
- float accum_value = LOAD(accum_ptr, TENSOR_OFFSET_ADVANCE(accum_iter, i));
- float biases_value = LOAD(biases_ptr, TENSOR_OFFSET_ADVANCE(biases_iter, i));
- accum_value = biases_value + accum_value;
-
- // Store result in the accummulate buffer
- STORE(accum_ptr, TENSOR_OFFSET_ADVANCE(accum_iter, i), accum_value);
- }
-}
-#endif /* GEMM_ACCUMULATE_BIASES */
-
-#ifdef GEMM_MM_INTERLEAVED_TRANSPOSED /* unvalidate */
-/** This OpenGL ES kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
- * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
- *
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_attrs The attributes of the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_attrs The attributes of the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_attrs The attributes of the destination matrix
- */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes src0_attrs;
- ImageAttributes src1_attrs;
- ImageAttributes dst_attrs;
-};
-TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly);
-TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly);
-TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
-
-void main()
-{
- ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
- ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
- ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
-
- /* Compute address for matrix A and B */
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y));
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(gl_GlobalInvocationID.x) * (src1_attrs.stride_y));
- /* Compute end row address for matrix B */
- int end_row_mtx_b = int(TENSOR_OFFSET_ADVANCE(src1_iter, COLS_B));
-
- /* Reset accumulators */
- vec4 c00 = vec4(0.0f);
- vec4 c10 = vec4(0.0f);
- vec4 c20 = vec4(0.0f);
- vec4 c30 = vec4(0.0f);
-
- // FIXME: loop unrolling really needed for GLES?
- for(; int(CURRENT_ITEM_OFFSET(src1_iter)) <= (end_row_mtx_b - 8); TENSOR_ITERATOR_ADVANCE(src0_iter, 8), TENSOR_ITERATOR_ADVANCE(src1_iter, 8))
- {
- /* Load values from matrix A (interleaved) and matrix B (transposed) */
- vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter);
- vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
-
- c00 += vec4(a0.x) * b0;
- c10 += vec4(a0.y) * b0;
- c20 += vec4(a0.z) * b0;
- c30 += vec4(a0.w) * b0;
-
- /* Load values from matrix A (interleaved) and matrix B (transposed) */
- a0 = VLOAD4(vec4, src0_ptr, TENSOR_OFFSET_ADVANCE(src0_iter, 4));
- b0 = VLOAD4(vec4, src1_ptr, TENSOR_OFFSET_ADVANCE(src1_iter, 4));
-
- c00 += vec4(a0.x) * b0;
- c10 += vec4(a0.y) * b0;
- c20 += vec4(a0.z) * b0;
- c30 += vec4(a0.w) * b0;
- }
-
- for(; int(CURRENT_ITEM_OFFSET(src1_iter)) < end_row_mtx_b; TENSOR_ITERATOR_ADVANCE(src0_iter, 4), TENSOR_ITERATOR_ADVANCE(src1_iter, 4))
- {
- /* Load values from matrix A (interleaved) and matrix B (transposed) */
- vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter);
- vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
-
- c00 += vec4(a0.x) * b0;
- c10 += vec4(a0.y) * b0;
- c20 += vec4(a0.z) * b0;
- c30 += vec4(a0.w) * b0;
- }
-
- /* Multiply by the weight of matrix product */
- c00 = c00 * vec4(ALPHA);
- c10 = c10 * vec4(ALPHA);
- c20 = c20 * vec4(ALPHA);
- c30 = c30 * vec4(ALPHA);
-
- /* Store 4x4 block */
- VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 0), c00);
- VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), c10);
- VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), c20);
- VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), c30);
-}
-#endif /* GEMM_MM_INTERLEAVED_TRANSPOSED */
-
-#ifdef GEMM_MM_FLOATING_POINT
-/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
- * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
- *
- * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
- * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_attrs The attributes of the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_attrs The attributes of the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_attrs The attributes of the destination matrix
- */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes src0_attrs;
- ImageAttributes src1_attrs;
- ImageAttributes dst_attrs;
-};
-TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly);
-TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly);
-TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
-
-void main()
-{
- ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
- ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
- ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
-
- int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
- /* Compute the address for the vector A and matrix B */
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y) * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, idx * 4);
-
- /* Compute end row address for matrix A */
- int end_row_vec_a = int(TENSOR_OFFSET_ADVANCE_IN_BYTES(src0_iter, COLS_A * 4));
-
- /* Reset accumulators */
- vec4 acc0 = vec4(0.0f);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec4 acc1 = vec4(0.0f);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec4 acc2 = vec4(0.0f);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 acc3 = vec4(0.0f);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- for(; int(CURRENT_ITEM_OFFSET(src0_iter)) <= (end_row_vec_a - 2); TENSOR_ITERATOR_ADVANCE(src0_iter, 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(2) * src1_attrs.stride_y))
- {
- vec2 a0 = VLOAD2_CURRENT_ITEM(vec2, src0_ptr, src0_iter);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec2 a1 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec2 a2 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec2 a3 = VLOAD2(vec2, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
- vec4 b1 = VLOAD4(vec4, src1_ptr, IMAGE_OFFSET(src1_iter, 0, 1));
-
- acc0 += b0 * vec4(a0.x);
- acc0 += b1 * vec4(a0.y);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * vec4(a1.x);
- acc1 += b1 * vec4(a1.y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * vec4(a2.x);
- acc2 += b1 * vec4(a2.y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * vec4(a3.x);
- acc3 += b1 * vec4(a3.y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
-
- for(; int(CURRENT_ITEM_OFFSET(src0_iter)) < end_row_vec_a; TENSOR_ITERATOR_ADVANCE(src0_iter, 1), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y))
- {
- // Load values from matrix A
- float a0 = LOAD_CURRENT_ITEM(src0_ptr, src0_iter);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float a1 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
- //float a1 = 0;
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float a2 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float a3 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
-
- acc0 += b0 * vec4(a0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * vec4(a1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * vec4(a2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * vec4(a3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
-
- /* Multiply by the weight of vector-matrix product */
- acc0 = acc0 * vec4(ALPHA);
- VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = acc1 * vec4(ALPHA);
- VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = acc2 * vec4(ALPHA);
- VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = acc3 * vec4(ALPHA);
- VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-}
-#endif /* GEMM_MM_FLOATING_POINT */
-
-#ifdef GEMM_MM_FLOATING_POINT_BIFROST
-/** This OpenGL ES kernel computes the matrix multiplication between matrix A (src0) and matrix B (src1)
- * Matrix A and matrix B in case both matrices have not been reshaped
- *
- * @note The number of elements processed along the x and y directions must be passed at compile time using -DNUM_ELEMS_PROCESSED_PER_THREAD_X and -DNUM_ELEMS_PROCESSED_PER_THREAD_Y.
- * @note The number of matrix A columns must be passed at compile time using -DCOLS_A.
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src0_attrs The attributes of the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_attrs The attributes of the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_attrs The attributes of the destination matrix
- */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes src0_attrs;
- ImageAttributes src1_attrs;
- ImageAttributes dst_attrs;
-};
-TENSOR_DECLARATION(1, src0Buffer, float, src0_ptr, src0_shift, 2, readonly);
-TENSOR_DECLARATION(2, src1Buffer, float, src1_ptr, src1_shift, 2, readonly);
-TENSOR_DECLARATION(3, dstBuffer, float, dst_ptr, dst_shift, 2, writeonly);
-
-void main()
-{
- ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
- ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
- ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
-
- int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
- /* Compute the address for the vector A and matrix B */
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y) * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, idx * 4);
-
- /* Reset accumulators */
- vec4 acc0 = vec4(0.0f);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec4 acc1 = vec4(0.0f);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec4 acc2 = vec4(0.0f);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 acc3 = vec4(0.0f);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // A and B src indices get incremented at the same time.
- int i = 0;
- for(; i <= (COLS_A - 4); i += 4)
- {
- // Load values from matrix A and matrix B
- vec4 a0 = VLOAD4_CURRENT_ITEM(vec4, src0_ptr, src0_iter);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec4 a1 = VLOAD4(vec4, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec4 a2 = VLOAD4(vec4, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 a3 = VLOAD4(vec4, src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y);
-
- // Multiply and accumulate
- acc0 += b0 * vec4(a0.x);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * vec4(a1.x);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * vec4(a2.x);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * vec4(a3.x);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // Load values from matrix B
- b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y);
-
- // Multiply and accumulate
- acc0 += b0 * vec4(a0.y);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * vec4(a1.y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * vec4(a2.y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * vec4(a3.y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // Load values from matrix B
- b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y);
-
- // Multiply and accumulate
- acc0 += b0 * vec4(a0.z);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * vec4(a1.z);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * vec4(a2.z);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * vec4(a3.z);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- // Load values from matrix B
- b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y);
-
- // Multiply and accumulate
- acc0 += b0 * vec4(a0.w);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * vec4(a1.w);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * vec4(a2.w);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * vec4(a3.w);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- TENSOR_ITERATOR_ADVANCE(src0_iter, 4);
- }
-
- for(; i < COLS_A; ++i)
- {
- // Load values from matrix A
- float a0 = LOAD_CURRENT_ITEM(src0_ptr, src0_iter);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- float a1 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- float a2 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- float a3 = LOAD(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 b0 = VLOAD4_CURRENT_ITEM(vec4, src1_ptr, src1_iter);
-
- // Multiply and accumulate
- acc0 += b0 * vec4(a0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * vec4(a1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * vec4(a2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * vec4(a3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y);
- TENSOR_ITERATOR_ADVANCE(src0_iter, 1);
- }
-
- /* Multiply by the weight of vector-matrix product */
- acc0 = acc0 * vec4(ALPHA);
- VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 = acc1 * vec4(ALPHA);
- VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 = acc2 * vec4(ALPHA);
- VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 = acc3 * vec4(ALPHA);
- VSTORE4(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-}
-#endif /* GEMM_MM_FLOATING_POINT_BIFROST */
-
-#ifdef GEMM_MATRIXADDITION
-/** This OpenGL ES kernel performs the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta:
- *
- * @attention The beta's value need to be passed at compile time using BETA
- *
- * @param[in] src_ptr Pointer to the source matrix. Supported data types: F32
- * @param[in] src_attrs The attributes of the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_attrs The attributes of the destination matrix
- */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes src_attrs;
- ImageAttributes dst_attrs;
-};
-TENSOR_DECLARATION(1, srcBuffer, float, src_ptr, src_shift, 2, readonly);
-TENSOR_DECLARATION(2, dstBuffer, float, dst_ptr, dst_shift, 2, restrict);
-
-void main(void)
-{
- /* Compute source and destination addresses */
- ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
- ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
-
- /* Load values from A x B */
- vec4 alpha_ab = VLOAD4_CURRENT_ITEM(vec4, dst_ptr, dst_iter);
- vec4 c = VLOAD4_CURRENT_ITEM(vec4, src_ptr, src_iter);
-
- /* Computes alpha * axb + beta * c */
- vec4 out1 = alpha_ab + vec4(float(BETA) * c);
-
- /* Store final result in axb matrix */
- VSTORE4_CURRENT_ITEM(dst_ptr, dst_iter, out1);
-}
-#endif /* GEMM_MATRIXADDITION */
-
-#elif defined(DATA_TYPE_FP16)
-
-#ifdef GEMM_TRANSPOSE1xW
-/** This OpenGL ES kernel computes the "vector" 1x8 transposition of input matrix
- *
- * @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src_attrs The attributes of the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_attrs The attributes of the destination matrix
- */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes src_attrs;
- ImageAttributes dst_attrs;
-};
-TENSOR_DECLARATION(1, srcBuffer, uvec4, src_ptr, src_shift, 4, readonly);
-TENSOR_DECLARATION(2, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly);
-
-void main(void)
-{
- /* Compute address for Matrix B - source */
- ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
- ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(dst_attrs, dst_shift);
-
- /* Compute address for Matrix B transposed - destination. X and Y are swapped */
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(dst_iter, gl_GlobalInvocationID.y * uint(16) + gl_GlobalInvocationID.x * dst_attrs.stride_y);
-
- STORE_CURRENT_ITEM(dst_ptr, dst_iter, LOAD_CURRENT_ITEM(src_ptr, src_iter));
-}
-#endif /* GEMM_TRANSPOSE1xW */
-
-#ifdef GEMM_INTERLEAVE4x4
-/** This OpenGLES kernel reshapes the input matrix interleaving the values
- *
- * @param[in] src_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src_attrs The attributes of the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src_ptr
- * @param[in] dst_attrs The attributes of the destination matrix
- */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes src_attrs;
- ImageAttributes dst_attrs;
-};
-TENSOR_DECLARATION(1, srcBuffer, uvec4, src_ptr, src_shift, 4, readonly);
-TENSOR_DECLARATION(2, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly);
-
-void main(void)
-{
- /* Compute source and destination addresses */
- ImageIterator src_iter = CONVERT_TO_IMAGE_ITERATOR(src_attrs, src_shift);
- ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
-
- vec4 s0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src_ptr, src_iter);
- vec4 s1[2] = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 1));
- vec4 s2[2] = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 2));
- vec4 s3[2] = LOAD_UNPACK8_HALF(src_ptr, IMAGE_OFFSET(src_iter, 0, 3));
-
- vec4 s[2];
- s[0] = vec4(s0[0].x, s1[0].x, s2[0].x, s3[0].x);
- s[1] = vec4(s0[0].y, s1[0].y, s2[0].y, s3[0].y);
- STORE_PACK8_CURRENT_ITEM_HALF(dst_ptr, dst_iter, s);
-
- s[0] = vec4(s0[0].z, s1[0].z, s2[0].z, s3[0].z);
- s[1] = vec4(s0[0].w, s1[0].w, s2[0].w, s3[0].w);
- STORE_PACK8_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, 1u), s);
-
- s[0] = vec4(s0[1].x, s1[1].x, s2[1].x, s3[1].x);
- s[1] = vec4(s0[1].y, s1[1].y, s2[1].y, s3[1].y);
- STORE_PACK8_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, 2u), s);
-
- s[0] = vec4(s0[1].z, s1[1].z, s2[1].z, s3[1].z);
- s[1] = vec4(s0[1].w, s1[1].w, s2[1].w, s3[1].w);
- STORE_PACK8_HALF(dst_ptr, TENSOR_OFFSET_ADVANCE(dst_iter, 3u), s);
-}
-#endif /* GEMM_INTERLEAVE4x4 */
-
-#ifdef GEMM_MM_FLOATING_POINT
-/** This OpenGL ES kernel computes the matrix multiplication between matrix A(src0) and matrix B(src1)
- * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_16bit and @ref gemm_transpose1x4 before running the matrix multiplication
- *
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
- *
- * @param[in] src0_ptr Pointer to the source matrix.Supported data types: F16
- * @param[in] src0_attrs The attributes of the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_attrs The attributes of the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_attrs The attributes of the destination matrix
- */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes src0_attrs;
- ImageAttributes src1_attrs;
- ImageAttributes dst_attrs;
-};
-
-#if defined(MM_PROCESS_4X)
-TENSOR_DECLARATION(1, src0Buffer, uint, src0_ptr, src0_shift, 2, readonly);
-TENSOR_DECLARATION(2, src1Buffer, uvec2, src1_ptr, src1_shift, 3, readonly);
-TENSOR_DECLARATION(3, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly);
-
-void main()
-{
- ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
- ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
- ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
-
- int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
- /* Compute the address for the vector A and matrix B */
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x);
-
- /* Compute end row address for matrix A */
- uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1);
-
- /* Reset accumulators */
- vec4 acc0 = vec4(0.0f);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec4 acc1 = vec4(0.0f);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec4 acc2 = vec4(0.0f);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 acc3 = vec4(0.0f);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) <= int(end_row_vec_a - uint(4));
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(2) * src1_attrs.stride_y))
- {
- vec2 a0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec2 a1 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec2 a2 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec2 a3 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- vec4 b0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src1_ptr, src1_iter);
- vec4 b1 = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, 1));
-
- acc0 += b0 * vec4(a0.x);
- acc0 += b1 * vec4(a0.y);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * vec4(a1.x);
- acc1 += b1 * vec4(a1.y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * vec4(a2.x);
- acc2 += b1 * vec4(a2.y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * vec4(a3.x);
- acc3 += b1 * vec4(a3.y);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
-
- for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 2), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, src1_attrs.stride_y))
- {
- vec2 a0 = LOAD_UNPACK2_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec2 a1 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec2 a2 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec2 a3 = LOAD_UNPACK2_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- vec4 b0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src1_ptr, src1_iter);
-
- acc0 += b0 * (a0.x);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b0 * (a1.x);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b0 * (a2.x);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b0 * (a3.x);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
-
- /* Multiply by the weight of vector-matrix product */
- acc0 = acc0 * vec4(ALPHA);
-
- STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-}
-#elif defined(MM_PROCESS_4X_OPTIMIZED) /* PROCESS_4X */
-TENSOR_DECLARATION(1, src0Buffer, uvec4, src0_ptr, src0_shift, 4, readonly);
-TENSOR_DECLARATION(2, src1Buffer, uvec2, src1_ptr, src1_shift, 3, readonly);
-TENSOR_DECLARATION(3, dstBuffer, uvec2, dst_ptr, dst_shift, 3, writeonly);
-
-void main()
-{
- ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
- ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
- ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
-
- int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
- /* Compute the address for the vector A and matrix B */
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x);
-
- /* Compute end row address for matrix A */
- uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1);
-
- /* Reset accumulators */
- vec4 acc0 = vec4(0.0f);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec4 acc1 = vec4(0.0f);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec4 acc2 = vec4(0.0f);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 acc3 = vec4(0.0f);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) <= int(end_row_vec_a - uint(16));
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * src0_attrs.stride_x), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y))
- {
- vec4 a0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec4 a1[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec4 a2[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 a3[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- vec4 b;
-
- for(int i = 0; i < 8; i++)
- {
- int j = i >> 2;
- int k = i % 4;
-
- b = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i));
-
- acc0 += b * vec4(a0[j][k]);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b * vec4(a1[j][k]);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b * vec4(a2[j][k]);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b * vec4(a3[j][k]);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
- }
-
- for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 2 * 8), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y))
- {
- vec4 a0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
-
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- vec4 a1[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 1));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- vec4 a2[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 2));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- vec4 a3[2] = LOAD_UNPACK8_HALF(src0_ptr, IMAGE_OFFSET(src0_iter, 0, 3));
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-
- vec4 b;
-
- int leftover = COLS_A % 8;
-
- for(int i = 0; i < leftover; i++)
- {
- int j = i >> 2;
- int k = i % 4;
-
- b = LOAD_UNPACK4_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i));
-
- acc0 += b * vec4(a0[j][k]);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- acc1 += b * vec4(a1[j][k]);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- acc2 += b * vec4(a2[j][k]);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- acc3 += b * vec4(a3[j][k]);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- }
- }
-
- /* Multiply by the weight of vector-matrix product */
- acc0 = acc0 * vec4(ALPHA);
-
- STORE_PACK4_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc0);
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
- STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), acc1);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 1
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
- STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), acc2);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 2
-#if NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
- STORE_PACK4_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), acc3);
-#endif // NUM_ELEMS_PROCESSED_PER_THREAD_Y > 3
-}
-#elif defined(MM_PROCESS_8X) /* PROCESS_8X */
-TENSOR_DECLARATION(1, src0Buffer, uvec4, src0_ptr, src0_shift, 4, readonly);
-TENSOR_DECLARATION(2, src1Buffer, uvec4, src1_ptr, src1_shift, 4, readonly);
-TENSOR_DECLARATION(3, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly);
-
-void main()
-{
- ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
- ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
- ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
-
- int idx = int(gl_GlobalInvocationID.x) * int(NUM_ELEMS_PROCESSED_PER_THREAD_X);
- /* Compute the address for the vector A and matrix B */
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * src0_attrs.stride_y * uint(NUM_ELEMS_PROCESSED_PER_THREAD_Y));
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(idx) * src1_attrs.stride_x);
-
- /* Compute end row address for matrix A */
- uint end_row_vec_a = uint(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) + uint(COLS_A << 1);
-
- /* Reset accumulators */
- vec4 acc[2];
-
- acc[0] = vec4(0.0f);
- acc[1] = vec4(0.0f);
-
- for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) <= int(end_row_vec_a - uint(16));
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * src0_attrs.stride_x), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y))
- {
- vec4 a[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
- vec4 b[2];
-
- for(int i = 0; i < 8; i++)
- {
- int j = i >> 2;
- int k = i % 4;
-
- b = LOAD_UNPACK8_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i));
-
- acc[0] += b[0] * vec4(a[j][k]);
- acc[1] += b[1] * vec4(a[j][k]);
- }
- }
-
- for(; int(CURRENT_ITEM_OFFSET_IN_BYTES(src0_iter)) < int(end_row_vec_a);
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(8) * uint(2)), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(8) * src1_attrs.stride_y))
- {
- vec4 a[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
- vec4 b[2];
-
- int leftover = COLS_A % 8;
-
- for(int i = 0; i < leftover; i++)
- {
- int j = i >> 2;
- int k = i % 4;
-
- b = LOAD_UNPACK8_HALF(src1_ptr, IMAGE_OFFSET(src1_iter, 0, i));
-
- acc[0] += b[0] * vec4(a[j][k]);
- acc[1] += b[1] * vec4(a[j][k]);
- }
- }
-
- /* Multiply by the weight of vector-matrix product */
- acc[0] = acc[0] * vec4(ALPHA);
- acc[1] = acc[1] * vec4(ALPHA);
-
- STORE_PACK8_CURRENT_ITEM_HALF(dst_ptr, dst_iter, acc);
-}
-#endif /* PROCESS_8X */
-#endif /* GEMM_MM_FLOATING_POINT */
-
-#ifdef GEMM_ACCUMULATE_BIASES
-#if defined(ACCUM_PROCESS_4X)
-/** This kernel accumulates each row with the biases vector
- *
- * @param[in, out] accum_ptr Pointer to the accumulate tensor. Supported data type: F16
- * @param[in] accum_attrs The attributes of the accumulate tensor
- * @param[in] biases_ptr Pointer to the biases vector. Same as @p accum_ptr
- * @param[in] biases_attrs The attributes of the biases tensor
- */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes accum_attrs;
- VectorAttributes biases_attrs;
-};
-
-TENSOR_DECLARATION(1, accumBuffer, uvec2, accum_ptr, accum_shift, 3, restrict);
-TENSOR_DECLARATION(2, biasesBuffer, uvec2, biases_ptr, biases_shift, 3, readonly);
-
-void main(void)
-{
- ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift);
- VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift);
-
- vec4 u[2];
- u[0] = LOAD_UNPACK4_CURRENT_ITEM_HALF(accum_ptr, accum_iter);
- u[1] = LOAD_UNPACK4_CURRENT_ITEM_HALF(biases_ptr, biases_iter);
-
- vec4 tmp;
- tmp = u[0] + u[1];
- STORE_PACK4_CURRENT_ITEM_HALF(accum_ptr, accum_iter, tmp);
-}
-#elif defined(ACCUM_PROCESS_8X) /* ACCUM_PROCESS_8X */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes accum_attrs;
- VectorAttributes biases_attrs;
-};
-
-TENSOR_DECLARATION(1, accumBuffer, uvec4, accum_ptr, accum_shift, 4, restrict);
-TENSOR_DECLARATION(2, biasesBuffer, uvec4, biases_ptr, biases_shift, 4, readonly);
-
-void main(void)
-{
- ImageIterator accum_iter = CONVERT_TO_IMAGE_ITERATOR(accum_attrs, accum_shift);
- VectorIterator biases_iter = CONVERT_TO_VECTOR_ITERATOR(biases_attrs, biases_shift);
-
- vec4 u[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(accum_ptr, accum_iter);
- vec4 v[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(biases_ptr, biases_iter);
-
- vec4 r[2];
- r[0] = u[0] + v[0];
- r[1] = u[1] + v[1];
- STORE_PACK8_CURRENT_ITEM_HALF(accum_ptr, accum_iter, r);
-}
-#endif /* ACCUM_PROCESS_8X */
-#endif /* GEMM_ACCUMULATE_BIASES */
-
-#ifdef GEMM_MM_INTERLEAVED_TRANSPOSED
-/** This OpenGL ES kernel is optimised for Midgard. It computes the matrix multiplication between matrix A (src0) and matrix B (src1)
- * Matrix A and matrix B must be reshaped respectively with @ref gemm_interleave4x4_32bit and @ref gemm_transpose1x4 before running the matrix multiplication
- *
- * @note The optional value of scalar alpha is passed at compile time using -DALPHA=alpha
- *
- * @param[in] src0_ptr Pointer to the source matrix. Supported data types: F16
- * @param[in] src0_attrs The attributes of the source matrix
- * @param[in] src1_ptr Pointer to the source matrix. Supported data types: same as @p src0_ptr
- * @param[in] src1_attrs The attributes of the source matrix
- * @param[out] dst_ptr Pointer to the destination matrix Supported data types: same as @p src0_ptr
- * @param[in] dst_attrs The attributes of the destination matrix
- */
-SHADER_PARAMS_DECLARATION
-{
- ImageAttributes src0_attrs;
- ImageAttributes src1_attrs;
- ImageAttributes dst_attrs;
-};
-TENSOR_DECLARATION(1, src0Buffer, uvec2, src0_ptr, src0_shift, 3, readonly);
-TENSOR_DECLARATION(2, src1Buffer, uvec4, src1_ptr, src1_shift, 4, readonly);
-TENSOR_DECLARATION(3, dstBuffer, uvec4, dst_ptr, dst_shift, 4, writeonly);
-
-void main()
-{
- ImageIterator src0_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src0_attrs, src0_shift);
- ImageIterator src1_iter = CONVERT_TO_IMAGE_ITERATOR_NO_STEP(src1_attrs, src1_shift);
- ImageIterator dst_iter = CONVERT_TO_IMAGE_ITERATOR(dst_attrs, dst_shift);
-
- /* Compute address for matrix A and B */
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, uint(gl_GlobalInvocationID.y) * (src0_attrs.stride_y));
- TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, uint(gl_GlobalInvocationID.x) * (src1_attrs.stride_y));
- /* Compute end row address for matrix B */
- int end_row_mtx_b = (int(CURRENT_ITEM_OFFSET_IN_BYTES(src1_iter)) >> 1) + int(COLS_B);
-
- /* Reset accumulators */
- vec4 c00[2];
- vec4 c10[2];
- vec4 c20[2];
- vec4 c30[2];
- c00[0] = vec4(0.0f);
- c00[1] = vec4(0.0f);
- c10[0] = vec4(0.0f);
- c10[1] = vec4(0.0f);
- c20[0] = vec4(0.0f);
- c20[1] = vec4(0.0f);
- c30[0] = vec4(0.0f);
- c30[1] = vec4(0.0f);
-
- // FIXME: loop unrolling really needed for GLES?
- for(; (int(CURRENT_ITEM_OFFSET_IN_BYTES(src1_iter)) >> 1) <= (end_row_mtx_b - 16); TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 16), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, 32))
- {
- /* Load values from matrix A (interleaved) and matrix B (transposed) */
- vec4 a0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
- vec4 b0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src1_ptr, src1_iter);
-
- c00[0] += vec4(a0.x) * b0[0];
- c00[1] += vec4(a0.x) * b0[1];
- c10[0] += vec4(a0.y) * b0[0];
- c10[1] += vec4(a0.y) * b0[1];
- c20[0] += vec4(a0.z) * b0[0];
- c20[1] += vec4(a0.z) * b0[1];
- c30[0] += vec4(a0.w) * b0[0];
- c30[1] += vec4(a0.w) * b0[1];
-
- /* Load values from matrix A (interleaved) and matrix B (transposed) */
- a0 = LOAD_UNPACK4_HALF(src0_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(src0_iter, 8));
- b0 = LOAD_UNPACK8_HALF(src1_ptr, TENSOR_OFFSET_ADVANCE_IN_BYTES(src1_iter, 16));
-
- c00[0] += vec4(a0.x) * b0[0];
- c00[1] += vec4(a0.x) * b0[1];
- c10[0] += vec4(a0.y) * b0[0];
- c10[1] += vec4(a0.y) * b0[1];
- c20[0] += vec4(a0.z) * b0[0];
- c20[1] += vec4(a0.z) * b0[1];
- c30[0] += vec4(a0.w) * b0[0];
- c30[1] += vec4(a0.w) * b0[1];
- }
-
- for(; (int(CURRENT_ITEM_OFFSET_IN_BYTES(src1_iter)) >> 1) < end_row_mtx_b; TENSOR_ITERATOR_ADVANCE_IN_BYTES(src0_iter, 8), TENSOR_ITERATOR_ADVANCE_IN_BYTES(src1_iter, 16))
- {
- /* Load values from matrix A (interleaved) and matrix B (transposed) */
- vec4 a0 = LOAD_UNPACK4_CURRENT_ITEM_HALF(src0_ptr, src0_iter);
- vec4 b0[2] = LOAD_UNPACK8_CURRENT_ITEM_HALF(src1_ptr, src1_iter);
-
- c00[0] += vec4(a0.x) * b0[0];
- c00[1] += vec4(a0.x) * b0[1];
- c10[0] += vec4(a0.y) * b0[0];
- c10[1] += vec4(a0.y) * b0[1];
- c20[0] += vec4(a0.z) * b0[0];
- c20[1] += vec4(a0.z) * b0[1];
- c30[0] += vec4(a0.w) * b0[0];
- c30[1] += vec4(a0.w) * b0[1];
- }
-
- /* Multiply by the weight of matrix product */
- c00[0] = c00[0] * vec4(ALPHA);
- c00[1] = c00[1] * vec4(ALPHA);
- c10[0] = c10[0] * vec4(ALPHA);
- c10[1] = c10[1] * vec4(ALPHA);
- c20[0] = c20[0] * vec4(ALPHA);
- c20[1] = c20[1] * vec4(ALPHA);
- c30[0] = c30[0] * vec4(ALPHA);
- c30[1] = c30[1] * vec4(ALPHA);
-
- /* Store 4x8 block */
- STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 0), c00);
- STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 1), c10);
- STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 2), c20);
- STORE_PACK8_HALF(dst_ptr, IMAGE_OFFSET(dst_iter, 0, 3), c30);
-}
-#endif /* GEMM_MM_INTERLEAVED_TRANSPOSED */
-#else /* DATA_TYPE_FP16 */
-#error Data type not supported
-#endif /* DATA_TYPE_FP32 */