aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/tile_helpers.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/tile_helpers.h')
-rw-r--r--src/core/CL/cl_kernels/tile_helpers.h1002
1 files changed, 901 insertions, 101 deletions
diff --git a/src/core/CL/cl_kernels/tile_helpers.h b/src/core/CL/cl_kernels/tile_helpers.h
index f2d2f26cf2..8129606277 100644
--- a/src/core/CL/cl_kernels/tile_helpers.h
+++ b/src/core/CL/cl_kernels/tile_helpers.h
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2021 Arm Limited.
+ * Copyright (c) 2021-2023 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
@@ -21,14 +21,50 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
+#ifndef ACL_SRC_CORE_CL_CL_KERNELS_TILE_HELPERS
+#define ACL_SRC_CORE_CL_CL_KERNELS_TILE_HELPERS
// *INDENT-OFF*
// clang-format off
+#define TILE_VECTOR_SIZE1 1
+#define TILE_VECTOR_SIZE2 2
+#define TILE_VECTOR_SIZE3 3
+#define TILE_VECTOR_SIZE4 4
+#define TILE_VECTOR_SIZE5 8
+#define TILE_VECTOR_SIZE6 8
+#define TILE_VECTOR_SIZE7 8
+#define TILE_VECTOR_SIZE8 8
+#define TILE_VECTOR_SIZE9 16
+#define TILE_VECTOR_SIZE10 16
+#define TILE_VECTOR_SIZE11 16
+#define TILE_VECTOR_SIZE12 16
+#define TILE_VECTOR_SIZE13 16
+#define TILE_VECTOR_SIZE14 16
+#define TILE_VECTOR_SIZE15 16
+#define TILE_VECTOR_SIZE16 16
+
+#define TILE_VECTOR_TYPE1(DATA_TYPE) DATA_TYPE##1
+#define TILE_VECTOR_TYPE2(DATA_TYPE) DATA_TYPE##2
+#define TILE_VECTOR_TYPE3(DATA_TYPE) DATA_TYPE##3
+#define TILE_VECTOR_TYPE4(DATA_TYPE) DATA_TYPE##4
+#define TILE_VECTOR_TYPE5(DATA_TYPE) DATA_TYPE##8
+#define TILE_VECTOR_TYPE6(DATA_TYPE) DATA_TYPE##8
+#define TILE_VECTOR_TYPE7(DATA_TYPE) DATA_TYPE##8
+#define TILE_VECTOR_TYPE8(DATA_TYPE) DATA_TYPE##8
+#define TILE_VECTOR_TYPE9(DATA_TYPE) DATA_TYPE##16
+#define TILE_VECTOR_TYPE10(DATA_TYPE) DATA_TYPE##16
+#define TILE_VECTOR_TYPE11(DATA_TYPE) DATA_TYPE##16
+#define TILE_VECTOR_TYPE12(DATA_TYPE) DATA_TYPE##16
+#define TILE_VECTOR_TYPE13(DATA_TYPE) DATA_TYPE##16
+#define TILE_VECTOR_TYPE14(DATA_TYPE) DATA_TYPE##16
+#define TILE_VECTOR_TYPE15(DATA_TYPE) DATA_TYPE##16
+#define TILE_VECTOR_TYPE16(DATA_TYPE) DATA_TYPE##16
+
/** Tile object
* A tile object is a 2D memory block and can be accessed using the following syntax:
* -# a[m0].v = access the the vector at row "m0" (OpenCL vector)
- * -# a[m0].s[x] = access the scalar element at row "m0" and column "n0" (scalar access)
+ * -# dst[m0].s[n0] = access the scalar element at row "m0" and column "n0" (scalar access)
*
* @param[in] DATA_TYPE Data type of the tile
* @param[in] H Number of tile rows
@@ -38,8 +74,8 @@
#define TILE(DATA_TYPE, H, W, BASENAME) TILE_STR(DATA_TYPE, H, W, BASENAME)
#define TILE_STR(DATA_TYPE, H, W, BASENAME) \
union { \
- DATA_TYPE s[W]; \
- DATA_TYPE##W v; \
+ DATA_TYPE s[TILE_VECTOR_SIZE##W]; \
+ TILE_VECTOR_TYPE##W(DATA_TYPE) v; \
} BASENAME[H]
#define TENSOR4D_IMAGE(name) \
@@ -70,6 +106,90 @@
#define TENSOR4D_STR(name, type) TENSOR4D_##type(name)
#define TENSOR4D(name, type) TENSOR4D_STR(name, type)
+#define TENSOR4D_T_IMAGE(name) \
+ __read_only image2d_t name##_img, \
+ __global uchar *name##_ptr, \
+ uint name##_stride_y, \
+ uint name##_stride_z, \
+ uint name##_stride_w, \
+ uint name##_c, \
+ uint name##_w, \
+ uint name##_h, \
+ uint name##_n, \
+ uint name##_offset_first_element_in_bytes
+
+#define TENSOR4D_T_BUFFER(name) \
+ __global uchar *name##_ptr, \
+ uint name##_stride_y, \
+ uint name##_stride_z, \
+ uint name##_stride_w, \
+ uint name##_c, \
+ uint name##_w, \
+ uint name##_h, \
+ uint name##_n, \
+ uint name##_offset_first_element_in_bytes
+
+#define TENSOR4D_T_STR(name, type) TENSOR4D_T_##type(name)
+
+/** Legacy tensor 4D arguments
+ *
+ * @param[in] name Tensor name. The tensor name is the prefix of the tensor components
+ * @param[in] type Tensor type (BUFFER or IMAGE)
+ */
+#define TENSOR4D_T(name, type) TENSOR4D_T_STR(name, type)
+
+#define TENSOR4D_RO_T_IMAGE(name) \
+ __read_only image2d_t name##_img, \
+ TENSOR4D_T_BUFFER(name)
+
+#define TENSOR4D_RO_T_BUFFER(name) TENSOR4D_T_BUFFER(name)
+
+#define TENSOR4D_RO_T_STR(name, type) TENSOR4D_RO_T_##type(name)
+
+/** Read-Only (RO) tensor 4D.
+ *
+ * @param[in] name Tensor name. The tensor name is the prefix of the tensor components
+ * @param[in] type Tensor type (BUFFER or IMAGE)
+ */
+#define TENSOR4D_RO_T(name, type) TENSOR4D_RO_T_STR(name, type)
+
+#define TENSOR4D_WO_T_IMAGE(name) \
+ __write_only image2d_t name##_img, \
+ TENSOR4D_T_BUFFER(name)
+
+#define TENSOR4D_WO_T_BUFFER(name) TENSOR4D_T_BUFFER(name)
+
+#define TENSOR4D_WO_T_STR(name, type) TENSOR4D_WO_T_##type(name)
+
+/** Write-Only (WO) tensor 4D.
+ *
+ * @param[in] name Tensor name. The tensor name is the prefix of the tensor components
+ * @param[in] type Tensor type (BUFFER or IMAGE)
+ */
+#define TENSOR4D_WO_T(name, type) TENSOR4D_WO_T_STR(name, type)
+
+#define TENSOR3D_T_IMAGE(name) \
+ __read_only image2d_t name##_img, \
+ __global uchar *name##_ptr, \
+ uint name##_stride_y, \
+ uint name##_stride_z, \
+ uint name##_w, \
+ uint name##_h, \
+ uint name##_n, \
+ uint name##_offset_first_element_in_bytes
+
+#define TENSOR3D_T_BUFFER(name) \
+ __global uchar *name##_ptr, \
+ uint name##_stride_y, \
+ uint name##_stride_z, \
+ uint name##_w, \
+ uint name##_h, \
+ uint name##_n, \
+ uint name##_offset_first_element_in_bytes
+
+#define TENSOR3D_T_STR(name, type) TENSOR3D_T_##type(name)
+#define TENSOR3D_T(name, type) TENSOR3D_T_STR(name, type)
+
#if !defined(UNROLL_WITH_PRAGMA)
#define UNROLL_INCR(idx, step, macro) idx += (step); (macro)
@@ -235,51 +355,128 @@
*
* @note Performs: c += dot(a, b)
*
- * @param[in] DST_DATA_TYPE Accumulator data type
- * @param[in] K0 Number of accumulations
- * @param[in] a OpenCL vector a
- * @param[in] b OpenCL vector b
- * @param[in] c Scalar variable c
+ * @param[in] A_DATA_TYPE A (lhs) data type
+ * @param[in] B_DATA_TYPE B (rhs) data type
+ * @param[in] C_DATA_TYPE C (accumulator) data type
+ * @param[in] K0 Number of accumulations
+ * @param[in] a OpenCL vector a
+ * @param[in] b OpenCL vector b
+ * @param[in] c Scalar variable c
*/
-#define DOT_PRODUCT_INTEGER8(DST_DATA_TYPE, K0, a, b, c) DOT_PRODUCT_INTEGER8_STR(DST_DATA_TYPE, K0, a, b, c)
-#define DOT_PRODUCT_INTEGER8_STR(DST_DATA_TYPE, K0, a, b, c) DOT_PRODUCT##K0##_INTEGER8(DST_DATA_TYPE, a, b, c)
-#define DOT_PRODUCT1_INTEGER8(DST_DATA_TYPE, a, b, c) \
+#define DOT_PRODUCT_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, K0, a, b, c) DOT_PRODUCT_INTEGER8_STR(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, K0, a, b, c)
+#define DOT_PRODUCT_INTEGER8_STR(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, K0, a, b, c) DOT_PRODUCT##K0##_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c)
+#define DOT_PRODUCT1_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
({ \
- c += (DST_DATA_TYPE)a * (DST_DATA_TYPE)b; \
+ c += (C_DATA_TYPE)(a) * (C_DATA_TYPE)(b); \
})
-#define DOT_PRODUCT2_INTEGER8(DST_DATA_TYPE, a, b, c) \
+#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_khr_integer_dot_product)
+#define DOT_PRODUCT2_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) c += dot((A_DATA_TYPE##4)((a).s01, (A_DATA_TYPE##2)(0)), (B_DATA_TYPE##4)(((b).s01), (B_DATA_TYPE##2)(0)));
+#define DOT_PRODUCT3_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) c += dot((A_DATA_TYPE##4)((a).s012, (A_DATA_TYPE)0), (B_DATA_TYPE##4)(((b).s012), (B_DATA_TYPE)0));
+#define DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) c += dot((a), (b));
+#elif defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8) // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_khr_integer_dot_product)
+#define DOT_PRODUCT2_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) c = arm_dot_acc((A_DATA_TYPE##4)((a).s01, (A_DATA_TYPE##2)(0)), (B_DATA_TYPE##4)(((b).s01), (B_DATA_TYPE##2)(0)), (c));
+#define DOT_PRODUCT3_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) c = arm_dot_acc((A_DATA_TYPE##4)((a).s012, (A_DATA_TYPE)0), (B_DATA_TYPE##4)(((b).s012), (B_DATA_TYPE)0), (c));
+#define DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) c = arm_dot_acc((a), (b), (c));
+#elif defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8) // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
+#define DOT_PRODUCT2_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) c += arm_dot((A_DATA_TYPE##4)((a).s01, (A_DATA_TYPE##2)(0)), (B_DATA_TYPE##4)(((b).s01), (B_DATA_TYPE##2)(0)));
+#define DOT_PRODUCT3_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) c += arm_dot((A_DATA_TYPE##4)((a).s012, (A_DATA_TYPE)0), (B_DATA_TYPE##4)(((b).s012), (B_DATA_TYPE)0));
+#define DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) c += arm_dot((a), (b));
+#else // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
+#define DOT_PRODUCT2_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
({ \
- c += (DST_DATA_TYPE)a.s0 * (DST_DATA_TYPE)b.s0; \
- c += (DST_DATA_TYPE)a.s1 * (DST_DATA_TYPE)b.s1; \
+ c += (C_DATA_TYPE)(a).s0 * (C_DATA_TYPE)(b).s0; \
+ c += (C_DATA_TYPE)(a).s1 * (C_DATA_TYPE)(b).s1; \
})
-#define DOT_PRODUCT3_INTEGER8(DST_DATA_TYPE, a, b, c) \
+#define DOT_PRODUCT3_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
({ \
- DOT_PRODUCT2_INTEGER8(DST_DATA_TYPE, a, b, c); \
- c += (DST_DATA_TYPE)a.s2 * (DST_DATA_TYPE)b.s2; \
+ DOT_PRODUCT2_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c); \
+ c += (C_DATA_TYPE)(a).s2 * (C_DATA_TYPE)(b).s2; \
})
-#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
-#define DOT_PRODUCT4_INTEGER8(DST_DATA_TYPE, x, y, val) val = arm_dot_acc((x), (y), (val));
-#elif defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8) // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
-#define DOT_PRODUCT4_INTEGER8(DST_DATA_TYPE, x, y, val) val += arm_dot((x), (y));
-#else // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
-#define DOT_PRODUCT4_INTEGER8(DST_DATA_TYPE, x, y, val) \
+#define DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, x, y, val) \
({ \
- val += (DST_DATA_TYPE)x.s0 * (DST_DATA_TYPE)y.s0; \
- val += (DST_DATA_TYPE)x.s1 * (DST_DATA_TYPE)y.s1; \
- val += (DST_DATA_TYPE)x.s2 * (DST_DATA_TYPE)y.s2; \
- val += (DST_DATA_TYPE)x.s3 * (DST_DATA_TYPE)y.s3; \
+ val += (C_DATA_TYPE)(x).s0 * (C_DATA_TYPE)(y).s0; \
+ val += (C_DATA_TYPE)(x).s1 * (C_DATA_TYPE)(y).s1; \
+ val += (C_DATA_TYPE)(x).s2 * (C_DATA_TYPE)(y).s2; \
+ val += (C_DATA_TYPE)(x).s3 * (C_DATA_TYPE)(y).s3; \
})
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
-#define DOT_PRODUCT8_INTEGER8(DST_DATA_TYPE, a, b, c) \
- ({ \
- DOT_PRODUCT4_INTEGER8(DST_DATA_TYPE, (a.lo), (b.lo), c); \
- DOT_PRODUCT4_INTEGER8(DST_DATA_TYPE, (a.hi), (b.hi), c); \
+#define DOT_PRODUCT5_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
+ ({ \
+ DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s0123), ((b).s0123), c); \
+ DOT_PRODUCT1_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s4), ((b).s4), c); \
})
-#define DOT_PRODUCT16_INTEGER8(DST_DATA_TYPE, a, b, c) \
- ({ \
- DOT_PRODUCT8_INTEGER8(DST_DATA_TYPE, (a.lo), (b.lo), c); \
- DOT_PRODUCT8_INTEGER8(DST_DATA_TYPE, (a.hi), (b.hi), c); \
+#define DOT_PRODUCT6_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
+ ({ \
+ DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s0123), ((b).s0123), c); \
+ DOT_PRODUCT2_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s45), ((b).s45), c); \
+ })
+#define DOT_PRODUCT7_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
+ ({ \
+ DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s0123), ((b).s0123), c); \
+ DOT_PRODUCT3_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s456), ((b).s456), c); \
+ })
+#define DOT_PRODUCT8_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
+ ({ \
+ DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).lo), ((b).lo), c); \
+ DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).hi), ((b).hi), c); \
+ })
+#define DOT_PRODUCT9_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
+ ({ \
+ DOT_PRODUCT8_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s01234567), ((b).s01234567), c); \
+ DOT_PRODUCT1_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s8), ((b).s8), c); \
+ })
+#define DOT_PRODUCT10_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
+ ({ \
+ DOT_PRODUCT8_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s01234567), ((b).s01234567), c); \
+ DOT_PRODUCT2_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s89), ((b).s89), c); \
+ })
+#define DOT_PRODUCT11_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
+ ({ \
+ DOT_PRODUCT8_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s01234567), ((b).s01234567), c); \
+ DOT_PRODUCT3_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s89A), ((b).s89A), c); \
+ })
+#define DOT_PRODUCT12_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
+ ({ \
+ DOT_PRODUCT8_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s01234567), ((b).s01234567), c); \
+ DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s89AB), ((b).s89AB), c); \
})
+#define DOT_PRODUCT13_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
+ ({ \
+ DOT_PRODUCT8_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s01234567), ((b).s01234567), c); \
+ DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s89AB), ((b).s89AB), c); \
+ DOT_PRODUCT1_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).sC), ((b).sC), c); \
+ })
+#define DOT_PRODUCT14_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
+ ({ \
+ DOT_PRODUCT8_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s01234567), ((b).s01234567), c); \
+ DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s89AB), ((b).s89AB), c); \
+ DOT_PRODUCT2_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).sCD), ((b).sCD), c); \
+ })
+#define DOT_PRODUCT15_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
+ ({ \
+ DOT_PRODUCT8_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s01234567), ((b).s01234567), c); \
+ DOT_PRODUCT4_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).s89AB), ((b).s89AB), c); \
+ DOT_PRODUCT3_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).sCDE), ((b).sCDE), c); \
+ })
+#define DOT_PRODUCT16_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, a, b, c) \
+ ({ \
+ DOT_PRODUCT8_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).lo), ((b).lo), c); \
+ DOT_PRODUCT8_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, ((a).hi), ((b).hi), c); \
+ })
+
+/** Dot product integet 8bit function
+ *
+ * @note Performs: c += dot(a, b)
+ *
+ * @param[in] A_DATA_TYPE A (lhs) data type
+ * @param[in] B_DATA_TYPE B (rhs) data type
+ * @param[in] C_DATA_TYPE C (accumulator) data type
+ * @param[in] K0 Number of accumulations
+ * @param[in] a OpenCL vector a
+ * @param[in] c Scalar variable c
+ */
+#define REDUCE_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, K0, a, c) REDUCE_INTEGER8_STR(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, K0, a, c)
+#define REDUCE_INTEGER8_STR(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, K0, a, c) DOT_PRODUCT_INTEGER8(A_DATA_TYPE, B_DATA_TYPE, C_DATA_TYPE, K0, a, (TILE_VECTOR_TYPE##K0(B_DATA_TYPE))1, c)
/** Load a vector from global memory (tensor)
*
@@ -296,9 +493,28 @@
#define V_LOAD_STR(DATA_TYPE, WIDTH, TENSOR_TYPE, TENSOR, X, Y, STRIDE_Y) V_LOAD_##TENSOR_TYPE(DATA_TYPE, WIDTH, TENSOR, X, Y, STRIDE_Y)
#define V_LOAD_BUFFER(DATA_TYPE, WIDTH, TENSOR, X, Y, STRIDE_Y) \
VLOAD(WIDTH) \
- (0, (__global DATA_TYPE *)(TENSOR##_ptr + TENSOR##_offset_first_element_in_bytes + (X) * sizeof(DATA_TYPE) + (Y)*STRIDE_Y))
+ (0, (__global DATA_TYPE *)(TENSOR##_ptr + TENSOR##_offset_first_element_in_bytes + (X) * sizeof(DATA_TYPE) + (Y) * (STRIDE_Y)))
#define V_LOAD_IMAGE(DATA_TYPE, WIDTH, TENSOR, X, Y, STRIDE_Y) READ_IMAGE2D(DATA_TYPE, CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(WIDTH), TENSOR##_img, (X) / 4, (Y))
+/** Store a vector in global memory (tensor)
+ *
+ * @param[in] DATA_TYPE Data type
+ * @param[in] WIDTH Number of dst columns
+ * @param[in] TENSOR_TYPE Type of cl_type used to store the tensor in global memory (BUFFER=cl_buffer, IMAGE=cl_image).
+ * In case of cl_image, only WIDTH multiples of 4 are supported (4, 8, 16)
+ * @param[in] TENSOR Tensor basename
+ * @param[in] X Starting X position
+ * @param[in] Y Starting Y position
+ * @param[in] STRIDE_Y Stride Y (in bytes)
+ * @param[in] VALUES Values to store in memory
+ */
+#define V_STORE(DATA_TYPE, WIDTH, TENSOR_TYPE, TENSOR, X, Y, STRIDE_Y, VALUES) V_STORE_STR(DATA_TYPE, WIDTH, TENSOR_TYPE, TENSOR, X, Y, STRIDE_Y, VALUES)
+#define V_STORE_STR(DATA_TYPE, WIDTH, TENSOR_TYPE, TENSOR, X, Y, STRIDE_Y, VALUES) V_STORE_##TENSOR_TYPE(DATA_TYPE, WIDTH, TENSOR, X, Y, STRIDE_Y, VALUES)
+#define V_STORE_BUFFER(DATA_TYPE, WIDTH, TENSOR, X, Y, STRIDE_Y, VALUES) \
+ VSTORE(WIDTH) \
+ (VALUES, 0, (__global DATA_TYPE *)(TENSOR##_ptr + TENSOR##_offset_first_element_in_bytes + (X) * sizeof(DATA_TYPE) + (Y) * (STRIDE_Y)))
+#define V_STORE_IMAGE(DATA_TYPE, WIDTH, TENSOR, X, Y, STRIDE_Y, VALUES) WRITE_IMAGE2D(DATA_TYPE, CONVERT_VECTOR_SIZE_TO_PIXEL_UNIT(WIDTH), TENSOR##_img, (X) / 4, (Y), VALUES)
+
/** Load a tile from global memory (tensor)
*
* @param[in] DATA_TYPE Data type
@@ -323,6 +539,100 @@
}) \
})
+/** Store a VECTOR variable (e.g. int4, int8, char2 etc.) to a specified column in the TILE object
+ *
+ * @param[in] VECTOR Vector variable to store
+ * @param[in, out] TILE Tile variable to store to
+ * @param[in] WIDTH Width of the vector variable, also height of the tile (e.g. 2 if char2)
+ * @param[in] COLUMN Column index of the tile
+ */
+#define COPY_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, WIDTH, COLUMN) COPY_VECTOR_TO_TILE_COLUMN_STR(VECTOR, TILE, WIDTH, COLUMN)
+#define COPY_VECTOR_TO_TILE_COLUMN_STR(VECTOR, TILE, WIDTH, COLUMN) COPY_##WIDTH##_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN)
+#define COPY_1_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN) \
+ ({ \
+ TILE[0].s[COLUMN] = VECTOR; \
+ })
+
+#define COPY_2_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN) \
+ ({ \
+ TILE[0].s[COLUMN] = VECTOR.s0; \
+ TILE[1].s[COLUMN] = VECTOR.s1; \
+ })
+
+#define COPY_3_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN) \
+ ({ \
+ TILE[0].s[COLUMN] = VECTOR.s0; \
+ TILE[1].s[COLUMN] = VECTOR.s1; \
+ TILE[2].s[COLUMN] = VECTOR.s2; \
+ })
+
+#define COPY_4_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN) \
+ ({ \
+ TILE[0].s[COLUMN] = VECTOR.s0; \
+ TILE[1].s[COLUMN] = VECTOR.s1; \
+ TILE[2].s[COLUMN] = VECTOR.s2; \
+ TILE[3].s[COLUMN] = VECTOR.s3; \
+ })
+
+#define COPY_8_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN) \
+ ({ \
+ TILE[0].s[COLUMN] = VECTOR.s0; \
+ TILE[1].s[COLUMN] = VECTOR.s1; \
+ TILE[2].s[COLUMN] = VECTOR.s2; \
+ TILE[3].s[COLUMN] = VECTOR.s3; \
+ TILE[4].s[COLUMN] = VECTOR.s4; \
+ TILE[5].s[COLUMN] = VECTOR.s5; \
+ TILE[6].s[COLUMN] = VECTOR.s6; \
+ TILE[7].s[COLUMN] = VECTOR.s7; \
+ })
+
+#define COPY_16_VECTOR_TO_TILE_COLUMN(VECTOR, TILE, COLUMN) \
+ ({ \
+ TILE[0].s[COLUMN] = VECTOR.s0; \
+ TILE[1].s[COLUMN] = VECTOR.s1; \
+ TILE[2].s[COLUMN] = VECTOR.s2; \
+ TILE[3].s[COLUMN] = VECTOR.s3; \
+ TILE[4].s[COLUMN] = VECTOR.s4; \
+ TILE[5].s[COLUMN] = VECTOR.s5; \
+ TILE[6].s[COLUMN] = VECTOR.s6; \
+ TILE[7].s[COLUMN] = VECTOR.s7; \
+ TILE[8].s[COLUMN] = VECTOR.s8; \
+ TILE[9].s[COLUMN] = VECTOR.s9; \
+ TILE[10].s[COLUMN] = VECTOR.sA; \
+ TILE[11].s[COLUMN] = VECTOR.sB; \
+ TILE[12].s[COLUMN] = VECTOR.sC; \
+ TILE[13].s[COLUMN] = VECTOR.sD; \
+ TILE[14].s[COLUMN] = VECTOR.sE; \
+ TILE[15].s[COLUMN] = VECTOR.sF; \
+ })
+
+/** Load SRC_HEIGHT x SRC_WIDTH elements from global memory (tensor), and store them in a SRC_WIDTH x SRC_HEIGHT tile
+ *
+ * @param[in] DATA_TYPE Data type
+ * @param[in] SRC_HEIGHT Number of source rows, or number of columns of the output tile
+ * @param[in] SRC_WIDTH Number of source columns, or number of tile rows
+ * @param[in] TENSOR_TYPE Type of cl_type used to store the tensor in global memory (BUFFER=cl_buffer, IMAGE=cl_image).
+ * In case of cl_image, only WIDTH multiples of 4 are supported (4, 8, 16)
+ * @param[in] TENSOR Tensor basename
+ * @param[in] X Starting X position
+ * @param[in] Y Starting Y position
+ * @param[in] YI_MULTIPLIER Parameter used to multiply the internal row increment (_i).
+ * In common cases should be 1 but it becomes useful when we want to load rows which are multiple of STRIDE_Y.
+ * (e.g. loading the weights of convolution layer).
+ * In this case the address calculation is performed as: (Y + _i * Y_MULTIPLIER) * STRIDE_Y
+ * @param[in] STRIDE_Y Stride Y (in bytes) used to load each row.
+ * @param[out] dst Output tile
+ */
+#define T_LOAD_TRANSPOSED(DATA_TYPE, SRC_HEIGHT, SRC_WIDTH, TENSOR_TYPE, TENSOR, X, Y, YI_MULTIPLIER, STRIDE_Y, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _i, 0, 1, SRC_HEIGHT, \
+ { \
+ VEC_DATA_TYPE(DATA_TYPE, SRC_WIDTH) \
+ tmp = V_LOAD(DATA_TYPE, SRC_WIDTH, TENSOR_TYPE, TENSOR, X, ((Y) + _i * (int)(YI_MULTIPLIER)), STRIDE_Y); \
+ COPY_VECTOR_TO_TILE_COLUMN(tmp, dst, SRC_WIDTH, _i); \
+ }) \
+ })
+
/** Load a tile from global memory (tensor) using an indirect Y index tile
*
* @param[in] DATA_TYPE Data type
@@ -344,6 +654,42 @@
}) \
})
+/** Load a tile from global memory (tensor) using an indirect Y index tile and conditionally use a different length for the load
+ *
+ * @note If WIDTH1_CONDITION is true, the load will use the WIDTH1 length for the store
+ * @note The vectors are stored in reverse order so the invalid rows are overwritten by the valid ones
+ *
+ * @param[in] DATA_TYPE Data type
+ * @param[in] HEIGHT Number of dst rows
+ * @param[in] WIDTH0 Store width to use if WIDTH1_CONDITION = false
+ * @param[in] WIDTH1 Store width to use if WIDTH1_CONDITION = true
+ * @param[in] TENSOR_TYPE Type of cl_type used to store the tensor in global memory (BUFFER=cl_buffer, IMAGE=cl_image).
+ * In case of cl_image, only WIDTH multiples of 4 are supported (4, 8, 16)
+ * @param[in] TENSOR Tensor basename
+ * @param[in] X Starting X position
+ * @param[in] STRIDE_Y Stride Y (in bytes) used to load each row.
+ * @param[in] WIDTH1_CONDITION Condition to select the WIDTH1 store
+ * @param[out] dst Output tile
+ * @param[out] indirect_y Indirect Y index tile
+ */
+#define T_LOAD_INDIRECT_WIDTH_SELECT(DATA_TYPE, HEIGHT, WIDTH0, WIDTH1, TENSOR_TYPE, TENSOR, X, STRIDE_Y, WIDTH1_CONDITION, dst, indirect_y) \
+ ({ \
+ if(WIDTH1_CONDITION) \
+ { \
+ LOOP_UNROLLING(int, _i, 0, 1, HEIGHT, \
+ { \
+ VLOAD_PARTIAL(WIDTH0, WIDTH1) \
+ (dst[HEIGHT - 1 - _i].v, 0, (__global DATA_TYPE *)(TENSOR##_ptr + TENSOR##_offset_first_element_in_bytes + (X) * sizeof(DATA_TYPE) + (indirect_y[HEIGHT - 1 - _i].v) * STRIDE_Y)); \
+ }) \
+ } \
+ else \
+ { \
+ LOOP_UNROLLING(int, _i, 0, 1, HEIGHT, \
+ { \
+ dst[HEIGHT - 1 - _i].v = V_LOAD(DATA_TYPE, WIDTH0, TENSOR_TYPE, TENSOR, X, (indirect_y[HEIGHT - 1 - _i].v), STRIDE_Y); \
+ }) \
+ } \
+ })
/** Load a tile from global memory (tensor) when the tensor is stored using a NHWC layout
*
* @param[in] DATA_TYPE Data type
@@ -379,6 +725,53 @@
}) \
})
+/** Load a tile from global memory (tensor) when the tensor is stored using a NHWC layout with dilation for the X and Y increments
+ *
+ * @param[in] DATA_TYPE Data type
+ * @param[in] TILE_HEIGHT Number of elements to load from Y (height) dimension
+ * @param[in] TILE_WIDTH Number of elements to load from X (width) dimension
+ * @param[in] TILE_CHANNELS Number of elements to load from C (channel) dimension
+ * @param[in] TENSOR_TYPE Type of cl_type used to store the tensor in global memory (BUFFER=cl_buffer, IMAGE=cl_image). Currently BUFFER only is supported
+ * In case of cl_image, only TILE_CHANNELS multiples of 4 are supported (4, 8, 16)
+ * @param[in] TENSOR Tensor basename
+ * @param[in] B Starting batch index
+ * @param[in] Y Starting Y index
+ * @param[in] X Starting X index
+ * @param[in] C Starting C index
+ * @param[in] TENSOR_HEIGHT Number of elements to load from Y (height) dimension
+ * @param[in] TENSOR_WIDTH Number of elements to load from X (width) dimension
+ * @param[in] DILATION_X Dilation for the X increment
+ * @param[in] DILATION_Y Dilation for the Y increment
+ * @param[in] BOUNDARY_CHECK Boundary check flag. If true, it checks for any out-of-bound reads
+ * @param[out] dst Output tile
+ */
+#define T_LOAD_NHWC_WITH_DILATION(DATA_TYPE, TILE_HEIGHT, TILE_WIDTH, TILE_CHANNELS, TENSOR_TYPE, TENSOR, B, Y, X, C, TENSOR_WIDTH, TENSOR_HEIGHT, DILATION_X, DILATION_Y, BOUNDARY_CHECK, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _yk, 0, 1, TILE_HEIGHT, \
+ { \
+ LOOP_UNROLLING(int, _xk, 0, 1, TILE_WIDTH, \
+ { \
+ int _src_y = (X) + _xk * (DILATION_X); \
+ int _src_z = ((Y) + _yk * (DILATION_Y)); \
+ int _src_w = (B); \
+ bool _src_valid_y = (((X) + _xk * (DILATION_X)) >= 0) && (((X) + _xk * (DILATION_X)) < (int)(TENSOR_WIDTH)) && (((Y) + _yk * (DILATION_Y)) >= 0) && (((Y) + _yk * (DILATION_Y)) < (int)(TENSOR_HEIGHT)); \
+ if(!(BOUNDARY_CHECK)) \
+ { \
+ dst[_xk + _yk * (TILE_WIDTH)].v = VLOAD(TILE_CHANNELS) \
+ (0, (__global DATA_TYPE *)(TENSOR##_ptr + TENSOR##_offset_first_element_in_bytes + (C) * sizeof(DATA_TYPE) + (_src_y) * (TENSOR##_stride_y) + (_src_z) * (TENSOR##_stride_z) + (_src_w) * (TENSOR##_stride_w))); \
+ } \
+ else \
+ { \
+ if(_src_valid_y) \
+ { \
+ dst[_xk + _yk * (TILE_WIDTH)].v = VLOAD(TILE_CHANNELS) \
+ (0, (__global DATA_TYPE *)(TENSOR##_ptr + TENSOR##_offset_first_element_in_bytes + (C) * sizeof(DATA_TYPE) + (_src_y) * (TENSOR##_stride_y) + (_src_z) * (TENSOR##_stride_z) + (_src_w) * (TENSOR##_stride_w))); \
+ } \
+ } \
+ }) \
+ }) \
+ })
+
/** Load a tile from global memory (tensor) when the tensor is stored using a NHWC layout using indirect X and Y coordinates
*
* @param[in] DATA_TYPE Data type
@@ -391,8 +784,8 @@
* @param[in] Y Starting Y index
* @param[in] X Starting X index
* @param[in] C Starting C index
- * @param[in] TENSOR_HEIGHT Number of elements to load from Y (height) dimension
* @param[in] TENSOR_WIDTH Number of elements to load from X (width) dimension
+ * @param[in] TENSOR_HEIGHT Number of elements to load from Y (height) dimension
* @param[in] STRIDE_Y Stride Y (in bytes)
* @param[out] xi A tile with (TILE_WIDTH x TILE_HEIGHT) values with the indirect X coordinate
* @param[out] yi A tile with (TILE_WIDTH x TILE_HEIGHT) values with the indirect Y coordinate
@@ -412,6 +805,79 @@
}) \
})
+/** Load a tile from global memory (tensor) using an indirect buffer for the Y coordinates
+ *
+ * @param[in] DATA_TYPE Data type
+ * @param[in] TILE_AREA Number of elements to load from Y (height) dimension * Number of elements to load from X (width) dimension
+ * @param[in] TILE_CHANNELS Number of elements to load from C (channel) dimension
+ * @param[in] TENSOR_TYPE Type of cl_type used to store the tensor in global memory (BUFFER=cl_buffer, IMAGE=cl_image).
+ * When TENSOR_TYPE=IMAGE, the if condition for the out-of-bound check can be skipped
+ * In case of cl_image, only TILE_CHANNELS multiples of 4 are supported (4, 8, 16)
+ * @param[in] TENSOR Tensor basename
+ * @param[in] C Starting C index
+ * @param[in] STRIDE_Y Stride Y (in bytes)
+ * @param[out] yi A tile with (TILE_WIDTH x TILE_HEIGHT) values with the indirect Y coordinate
+ * 16 is the maximum indirect buffer size.
+ * @param[out] dst Output tile
+ */
+#define T_LOAD2D_INDIRECT(DATA_TYPE, TILE_AREA, TILE_CHANNELS, TENSOR_TYPE, TENSOR, C, STRIDE_Y, yi, dst) T_LOAD2D_INDIRECT_STR(DATA_TYPE, TILE_AREA, TILE_CHANNELS, TENSOR_TYPE, TENSOR, C, STRIDE_Y, yi, dst)
+#define T_LOAD2D_INDIRECT_STR(DATA_TYPE, TILE_AREA, TILE_CHANNELS, TENSOR_TYPE, TENSOR, C, STRIDE_Y, yi, dst) T_LOAD2D_INDIRECT_##TENSOR_TYPE(DATA_TYPE, TILE_AREA, TILE_CHANNELS, TENSOR_TYPE, TENSOR, C, STRIDE_Y, yi, dst)
+#define T_LOAD2D_INDIRECT_BUFFER(DATA_TYPE, TILE_AREA, TILE_CHANNELS, TENSOR_TYPE, TENSOR, C, STRIDE_Y, yi, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _i, 0, 1, TILE_AREA, \
+ { \
+ if(yi[0].s[_i] >= 0) \
+ { \
+ dst[_i].v = V_LOAD(DATA_TYPE, TILE_CHANNELS, TENSOR_TYPE, TENSOR, C, yi[0].s[_i], STRIDE_Y); \
+ } \
+ }) \
+ })
+
+#define T_LOAD2D_INDIRECT_IMAGE(DATA_TYPE, TILE_AREA, TILE_CHANNELS, TENSOR_TYPE, TENSOR, C, STRIDE_Y, yi, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _i, 0, 1, TILE_AREA, \
+ { \
+ dst[_i].v = V_LOAD(DATA_TYPE, TILE_CHANNELS, TENSOR_TYPE, TENSOR, C, yi[0].s[_i], STRIDE_Y); \
+ }) \
+ })
+
+/** Load a tile from global memory (tensor) when the tensor is stored using a NDHWC layout using indirect X, Y and Z coordinates
+ *
+ * @param[in] DATA_TYPE Data type
+ * @param[in] TILE_AREA Number of elements to load from Y (height) dimension * Number of elements to load from X (width) dimension
+ * @param[in] TILE_CHANNELS Number of elements to load from C (channel) dimension
+ * @param[in] TENSOR_TYPE Type of cl_type used to store the tensor in global memory (BUFFER=cl_buffer, IMAGE=cl_image). Currently BUFFER only is supported
+ * In case of cl_image, only TILE_CHANNELS multiples of 4 are supported (4, 8, 16)
+ * @param[in] TENSOR Tensor basename
+ * @param[in] B Starting batch index
+ * @param[in] Z Starting Z index
+ * @param[in] Y Starting Y index
+ * @param[in] X Starting X index
+ * @param[in] C Starting C index
+ * @param[in] TENSOR_WIDTH Number of elements to load from X (width) dimension
+ * @param[in] TENSOR_HEIGHT Number of elements to load from Y (height) dimension
+ * @param[in] TENSOR_DEPTH Number of elements to load from Z (depth) dimension
+ * @param[in] STRIDE_Y Stride Y (in bytes)
+ * @param[out] xi A tile with (TILE_WIDTH x TILE_HEIGHT) values with the indirect X coordinate
+ * @param[out] yi A tile with (TILE_WIDTH x TILE_HEIGHT) values with the indirect Y coordinate
+ * @param[out] zi A tile with (TILE_WIDTH x TILE_HEIGHT) values with the indirect Z coordinate
+ * @param[out] dst Output tile
+ */
+#define T_LOAD_NDHWC_INDIRECT(DATA_TYPE, TILE_AREA, TILE_CHANNELS, TENSOR_TYPE, TENSOR, B, Z, Y, X, C, TENSOR_WIDTH, TENSOR_HEIGHT, TENSOR_DEPTH, STRIDE_Y, xi, yi, zi, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _i, 0, 1, TILE_AREA, \
+ { \
+ int _src_y = (X) + xi[_i].v + ((Y) + yi[_i].v) * (TENSOR_WIDTH) + ((Z) + zi[_i].v) * (TENSOR_WIDTH * TENSOR_HEIGHT); \
+ _src_y += (B) * (int)(TENSOR_WIDTH) * (int)(TENSOR_HEIGHT) * (int)(TENSOR_DEPTH); \
+ int _src_valid_y = (((X) + xi[_i].v) >= 0 && ((X) + xi[_i].v) < (int)(TENSOR_WIDTH) && ((Y) + yi[_i].v) >= 0 && ((Y) + yi[_i].v) < (int)(TENSOR_HEIGHT) \
+ && ((Z) + zi[_i].v) >= 0 && ((Z) + zi[_i].v) < (int)(TENSOR_DEPTH)); \
+ if(_src_valid_y != 0) \
+ { \
+ dst[_i].v = V_LOAD(DATA_TYPE, TILE_CHANNELS, TENSOR_TYPE, TENSOR, C, _src_y, STRIDE_Y); \
+ } \
+ }) \
+ })
+
/** Store a tile to global memory (tensor) using an indirect Y index tile and conditionally use a different length for the store
*
* @note If WIDTH1_CONDITION is true, the store will use the WIDTH1 length for the store
@@ -437,7 +903,7 @@
LOOP_UNROLLING(int, _i, 0, 1, HEIGHT, \
{ \
VSTORE_PARTIAL(WIDTH0, WIDTH1) \
- (src[HEIGHT - 1 - _i].v, 0, (__global DATA_TYPE *)(TENSOR##_ptr + TENSOR##_offset_first_element_in_bytes + (X) * sizeof(DATA_TYPE) + (indirect_y[HEIGHT - 1 - _i].v) * STRIDE_Y)); \
+ (CONVERT(src[HEIGHT - 1 - _i].v, VEC_DATA_TYPE(DATA_TYPE, WIDTH0)), 0, (__global DATA_TYPE *)(TENSOR##_ptr + TENSOR##_offset_first_element_in_bytes + (X) * sizeof(DATA_TYPE) + (indirect_y[HEIGHT - 1 - _i].v) * STRIDE_Y)); \
}) \
} \
else \
@@ -445,7 +911,7 @@
LOOP_UNROLLING(int, _i, 0, 1, HEIGHT, \
{ \
VSTORE(WIDTH0) \
- (src[HEIGHT - 1 - _i].v, 0, (__global DATA_TYPE *)(TENSOR##_ptr + TENSOR##_offset_first_element_in_bytes + (X) * sizeof(DATA_TYPE) + (indirect_y[HEIGHT - 1 - _i].v) * STRIDE_Y)); \
+ (CONVERT(src[HEIGHT - 1 - _i].v, VEC_DATA_TYPE(DATA_TYPE, WIDTH0)), 0, (__global DATA_TYPE *)(TENSOR##_ptr + TENSOR##_offset_first_element_in_bytes + (X) * sizeof(DATA_TYPE) + (indirect_y[HEIGHT - 1 - _i].v) * STRIDE_Y)); \
}) \
} \
})
@@ -479,40 +945,160 @@
dst[_m0].s[_n0] += ((ACC_DATA_TYPE)rhs[_n0].s[_k0] * (ACC_DATA_TYPE)SRC_OFFSET); \
}) \
}) \
- }); \
+ }) \
+ })
+
+/** 8-bit quantization with fixed-point scale
+ *
+ * @param[in] SRC_DATA_TYPE SRC data type
+ * @param[in] DST_DATA_TYPE DST data type
+ * @param[in] QUANTIZATION_TYPE Quantization type (PER_TENSOR or PER_CHANNEL)
+ * @param[in] M0 Number of src/dst rows
+ * @param[in] N0 Number of src/dst columns
+ * @param[in] DST_OFFSET Quantization offset used for both the per-tensor and per-channel quantization
+ * @param[in] DST_SHIFT Quantization shift for the per-tensor quantization
+ * @param[in] DST_MULTIPLIER Quantization multiplier for the per-tensor quantization
+ * @param[in] src Input tile
+ * @param[in] dst_multipliers Output multipliers tile for the per-channel quantization
+ * @param[in] dst_shifts Output shift tile for the per-channel quantization
+ * @param[out] dst Output tile
+ */
+#define T_QUANTIZE8(SRC_DATA_TYPE, DST_DATA_TYPE, QUANTIZATION_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, src, dst_multipliers, dst_shifts, dst) T_QUANTIZE8_STR(SRC_DATA_TYPE, DST_DATA_TYPE, QUANTIZATION_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, src, dst_multipliers, dst_shifts, dst)
+#define T_QUANTIZE8_STR(SRC_DATA_TYPE, DST_DATA_TYPE, QUANTIZATION_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, src, dst_multipliers, dst_shifts, dst) T_QUANTIZE8_##QUANTIZATION_TYPE(SRC_DATA_TYPE, DST_DATA_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, src, dst_multipliers, dst_shifts, dst)
+
+/** 8-bit per-tensor quantization with fixed-point scale
+ *
+ * @param[in] SRC_DATA_TYPE SRC data type
+ * @param[in] DST_DATA_TYPE DST data type
+ * @param[in] M0 Number of src/dst rows
+ * @param[in] N0 Number of src/dst columns
+ * @param[in] DST_OFFSET Quantization offset
+ * @param[in] DST_SHIFT Quantization shift for the per-tensor quantization
+ * @param[in] DST_MULTIPLIER Quantization multiplier for the per-tensor quantization
+ * @param[in] src Input tile
+ * @param[in] dst_multipliers (unused)
+ * @param[in] dst_shifts (unused)
+ * @param[out] dst Output tile
+ */
+#define T_QUANTIZE8_PER_TENSOR(SRC_DATA_TYPE, DST_DATA_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, src, dst_multipliers, dst_shifts, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _m0, 0, 1, M0, \
+ { \
+ LOOP_UNROLLING(int, _n0, 0, 1, N0, \
+ { \
+ SRC_DATA_TYPE _tmp = 0; \
+ SRC_DATA_TYPE _src = src[_m0].s[_n0]; \
+ _src *= select((SRC_DATA_TYPE)1, ((SRC_DATA_TYPE)1 << (SRC_DATA_TYPE)(-DST_SHIFT)), ((SRC_DATA_TYPE)DST_SHIFT < (SRC_DATA_TYPE)0)); \
+ SRC_DATA_TYPE overflow = _src == DST_MULTIPLIER && _src == INT_MIN; \
+ long a_64 = (long)(_src); \
+ long b_64 = (long)(DST_MULTIPLIER); \
+ long ab_64 = a_64 * b_64; \
+ long mask1 = 1 << 30; \
+ long mask2 = 1 - (1 << 30); \
+ long is_positive_or_zero = ab_64 >= 0; \
+ long nudge = select(mask2, mask1, is_positive_or_zero); \
+ SRC_DATA_TYPE ab_x2_high32 = CONVERT((ab_64 + nudge) / (long)(1ll << 31), SRC_DATA_TYPE); \
+ _tmp = select(ab_x2_high32, (SRC_DATA_TYPE)INT_MAX, overflow); \
+ if(DST_SHIFT >= 0) \
+ { \
+ long mask = ((((int)1) << DST_SHIFT) - (long)1); \
+ long threshold = _tmp < (int)0 ? (mask >> 1) + (long)1 : (mask >> 1) + 0; \
+ _tmp = (_tmp & mask) > threshold ? (_tmp >> DST_SHIFT) + (int)1 : (_tmp >> DST_SHIFT); \
+ } \
+ _tmp += DST_OFFSET; \
+ dst[_m0].s[_n0] = CONVERT_SAT(_tmp, DST_DATA_TYPE); \
+ }) \
+ }) \
+ })
+
+/** 8-bit per-channel quantization with fixed-point scale
+ *
+ * @param[in] SRC_DATA_TYPE SRC data type
+ * @param[in] DST_DATA_TYPE DST data type
+ * @param[in] M0 Number of src/dst rows
+ * @param[in] N0 Number of src/dst columns
+ * @param[in] DST_OFFSET Quantization offset
+ * @param[in] DST_SHIFT (unused)
+ * @param[in] DST_MULTIPLIER (unused)
+ * @param[in] src Input tile
+ * @param[in] dst_multipliers Output multipliers tile for the per-channel quantization
+ * @param[in] dst_shifts Output shift tile for the per-channel quantization
+ * @param[out] dst Output tile
+ */
+#define T_QUANTIZE8_PER_CHANNEL(SRC_DATA_TYPE, DST_DATA_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, src, dst_multipliers, dst_shifts, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _m0, 0, 1, M0, \
+ { \
+ LOOP_UNROLLING(int, _n0, 0, 1, N0, \
+ { \
+ SRC_DATA_TYPE _tmp = 0; \
+ SRC_DATA_TYPE _tmp2 = 0; \
+ SRC_DATA_TYPE _src = src[_m0].s[_n0]; \
+ SRC_DATA_TYPE _dst_multiplier = dst_multipliers[0].s[_n0]; \
+ SRC_DATA_TYPE _dst_shift = dst_shifts[0].s[_n0]; \
+ _src *= select((SRC_DATA_TYPE)1, ((SRC_DATA_TYPE)1 << (SRC_DATA_TYPE)(-_dst_shift)), ((SRC_DATA_TYPE)_dst_shift < (SRC_DATA_TYPE)0)); \
+ SRC_DATA_TYPE overflow = _src == _dst_multiplier && _src == INT_MIN; \
+ long a_64 = (long)(_src); \
+ long b_64 = (long)(_dst_multiplier); \
+ long ab_64 = a_64 * b_64; \
+ long mask1 = 1 << 30; \
+ long mask2 = 1 - (1 << 30); \
+ long is_positive_or_zero = ab_64 >= 0; \
+ long nudge = select(mask2, mask1, is_positive_or_zero); \
+ SRC_DATA_TYPE ab_x2_high32 = CONVERT((ab_64 + nudge) / (long)(1ll << 31), SRC_DATA_TYPE); \
+ _tmp = select(ab_x2_high32, (SRC_DATA_TYPE)INT_MAX, overflow); \
+ long mask = ((((int)1) << _dst_shift) - (int)1); \
+ long threshold = (mask >> 1) + any(_tmp); \
+ _tmp2 = _tmp >> _dst_shift; \
+ _tmp2 += select(0, 1, (_tmp & mask) > threshold); \
+ _tmp = select(_tmp, _tmp2, _dst_shift >= 0); \
+ _tmp += DST_OFFSET; \
+ dst[_m0].s[_n0] = CONVERT_SAT(_tmp, DST_DATA_TYPE); \
+ }) \
+ }) \
})
-/** Quantized the tile (ASYMMETRIC) with fixed-point scale
+/** Quantized the 8-bit tile with fixed-point scale for asymmetric
*
* @param[in] SRC_DATA_TYPE SRC data type
* @param[in] DST_DATA_TYPE DST data type
* @param[in] M0 Number of src/dst rows
* @param[in] N0 Number of src/dst columns
- * @param[in] DST_OFFSET Quantization offset
- * @param[in] DST_SHIFT Quantization shift
- * @param[in] DST_MULTIPLIER Quantization multiplier
+ * @param[in] DST_OFFSET Quantization offset used for both the per-tensor and per-channel quantization
+ * @param[in] DST_SHIFT Quantization shift for the per-tensor quantization
+ * @param[in] DST_MULTIPLIER Quantization multiplier for the per-tensor quantization
* @param[in] src Input tile
* @param[out] dst Output tile
*/
-#define T_QUANTIZE8_ASYMMETRIC(SRC_DATA_TYPE, DST_DATA_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, src, dst) \
- ({ \
- LOOP_UNROLLING(int, _m0, 0, 1, M0, \
- { \
- LOOP_UNROLLING(int, _n0, 0, 1, N0, \
- { \
- SRC_DATA_TYPE _tmp = 0; \
- if(DST_SHIFT < 0) \
- { \
- _tmp = ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(src[_m0].s[_n0], DST_MULTIPLIER, DST_SHIFT, 1); \
- } \
- else \
- { \
- _tmp = ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(src[_m0].s[_n0], DST_MULTIPLIER, DST_SHIFT, 1); \
- } \
- _tmp += DST_OFFSET; \
- dst[_m0].s[_n0] = CONVERT_SAT(_tmp, DST_DATA_TYPE); \
- }) \
- }) \
+#define T_QUANTIZE8_ASYMMETRIC(SRC_DATA_TYPE, DST_DATA_TYPE, M0, N0, DST_OFFSET, DST_SHIFT, DST_MULTIPLIER, src, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _m0, 0, 1, M0, \
+ { \
+ LOOP_UNROLLING(int, _n0, 0, 1, N0, \
+ { \
+ SRC_DATA_TYPE _tmp = 0; \
+ SRC_DATA_TYPE _src = src[_m0].s[_n0]; \
+ _src *= select((SRC_DATA_TYPE)1, ((SRC_DATA_TYPE)1 << (SRC_DATA_TYPE)(-DST_SHIFT)), ((SRC_DATA_TYPE)DST_SHIFT < (SRC_DATA_TYPE)0)); \
+ SRC_DATA_TYPE overflow = _src == DST_MULTIPLIER && _src == INT_MIN; \
+ long a_64 = (long)(_src); \
+ long b_64 = (long)(DST_MULTIPLIER); \
+ long ab_64 = a_64 * b_64; \
+ long mask1 = 1 << 30; \
+ long mask2 = 1 - (1 << 30); \
+ long is_positive_or_zero = ab_64 >= 0; \
+ long nudge = select(mask2, mask1, is_positive_or_zero); \
+ SRC_DATA_TYPE ab_x2_high32 = CONVERT((ab_64 + nudge) / (long)(1ll << 31), SRC_DATA_TYPE); \
+ _tmp = select(ab_x2_high32, (SRC_DATA_TYPE)INT_MAX, overflow); \
+ if(DST_SHIFT >= 0) \
+ { \
+ long mask = ((((int)1) << DST_SHIFT) - (int)1); \
+ long threshold = _tmp < (int)0 ? (mask >> 1) + (long)1 : (mask >> 1) + 0; \
+ _tmp = (_tmp & mask) > threshold ? (_tmp >> DST_SHIFT) + (int)1 : (_tmp >> DST_SHIFT); \
+ } \
+ _tmp += DST_OFFSET; \
+ dst[_m0].s[_n0] = CONVERT_SAT(_tmp, DST_DATA_TYPE); \
+ }) \
+ }) \
})
/** Conditional rowset (memset by row)
@@ -537,7 +1123,7 @@
}) \
})
-/** Element-wise activation
+/** Element-wise activation for floating point types
*
* @note Performs: activation(LHS) = DST
*
@@ -558,6 +1144,68 @@
}) \
})
+
+// NOTE : A_VAL and B_VAL should be quantized values (using same quantization info as x)
+// RELU Activation
+#define relu_op_quantized(DATA_TYPE, VEC_SIZE, ZERO_POINT, A_VAL, B_VAL, x) (max((DATA_TYPE)ZERO_POINT, x))
+// Bounded RELU Activation
+#define brelu_op_quantized(DATA_TYPE, VEC_SIZE, ZERO_POINT, A_VAL, B_VAL, x) (min((DATA_TYPE)A_VAL, max((DATA_TYPE)ZERO_POINT, x)))
+// Lower Upper Bounded RELU Activation
+#define lu_brelu_op_quantized(DATA_TYPE, VEC_SIZE, ZERO_POINT, A_VAL, B_VAL, x) (min(max(x, (DATA_TYPE)B_VAL), (DATA_TYPE)A_VAL))
+// Hard Swish Activation
+#define hard_swish_op_quantized(DATA_TYPE, VEC_SIZE, ZERO_POINT, A_VAL, B_VAL, x) (x * ((min(max((DATA_TYPE)(x + (DATA_TYPE)3.f), (DATA_TYPE)0.f), (DATA_TYPE)6.f)) * (DATA_TYPE)0.166666667f))
+// Identity Activation
+#define identity_op_quantized(DATA_TYPE, VEC_SIZE, ZERO_POINT, A_VAL, B_VAL, x) (x)
+
+#define ACT_OP_QUANTIZED(op, DATA_TYPE, VEC_SIZE, ZERO_POINT, A_VAL, B_VAL, x) op##_op_quantized(DATA_TYPE, VEC_SIZE, ZERO_POINT, A_VAL, B_VAL, x)
+#define ACTIVATION_QUANTIZED(op, DATA_TYPE, VEC_SIZE, ZERO_POINT, A_VAL, B_VAL, x) ACT_OP_QUANTIZED(op, DATA_TYPE, VEC_SIZE, ZERO_POINT, A_VAL, B_VAL, x)
+
+#define V_ADD(A_VAL, B_VAL) ((A_VAL) + (B_VAL))
+#define V_SUB(A_VAL, B_VAL) ((A_VAL) - (B_VAL))
+#define V_DIV(A_VAL, B_VAL) ((A_VAL) / (B_VAL))
+#define V_MUL(A_VAL, B_VAL) ((A_VAL) * (B_VAL))
+
+/** Element-wise activation for quantized types
+ *
+ * @note Performs: activation(LHS) = DST
+ *
+ * @param[in] DATA_TYPE SRC/DST data type
+ * @param[in] M0 Number of SRC/DST rows
+ * @param[in] N0 Number of SRC/DST columns
+ * @param[in] ACTIVATION_TYPE Activation type
+ * @param[in] ZERO_POINT The zero value to consider in the computation
+ * @param[in] A_VAL Quantized A value used for the activation (e.g. tanh_op, brelu,..)
+ * @param[in] B_VAL Quantized B value used for the activation (e.g. tanh_op, brelu,..)
+ * @param[out] src SRC tile
+ * @param[out] dst DST tile
+ */
+#define T_ACTIVATION_QUANTIZED(DATA_TYPE, M0, N0, ACTIVATION_TYPE, ZERO_POINT, A_VAL, B_VAL, src, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _m0, 0, 1, M0, \
+ { \
+ dst[_m0].v = ACTIVATION_QUANTIZED(ACTIVATION_TYPE, DATA_TYPE, N0, ZERO_POINT, A_VAL, B_VAL, src[_m0].v); \
+ }) \
+ })
+
+/** Element-wise addition between two tiles
+ *
+ * @note Performs: LHS + RHS = DST
+ *
+ * @param[in] DATA_TYPE LHS/RHS/DST data type
+ * @param[in] M0 Number of LHS rows
+ * @param[in] N0 Number of LHS columns
+ * @param[in] lhs LHS tile
+ * @param[in] rhs Constant RHS tile
+ * @param[out] dst DST tile
+ */
+#define T_ADD(DATA_TYPE, M0, N0, lhs, rhs, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _m0, 0, 1, M0, \
+ { \
+ dst[_m0].v = lhs[_m0].v + rhs[_m0].v; \
+ }) \
+ })
+
/** Element-wise addition with a constant value
*
* @note Performs: LHS + constant = DST
@@ -573,30 +1221,125 @@
({ \
LOOP_UNROLLING(int, _m0, 0, 1, M0, \
{ \
- LOOP_UNROLLING(int, _n0, 0, 1, N0, \
- { \
- dst[_m0].s[_n0] = lhs[_m0].s[_n0] + rhs_constant; \
- }) \
+ dst[_m0].v = lhs[_m0].v + (DATA_TYPE)rhs_constant; \
+ }) \
+ })
+
+#define T_ELTWISE_BROADCAST_ADD_X(DST_DATA_TYPE, M0, N0, lhs, rhs, dst) T_ELTWISE_BROADCAST_X(V_ADD, DST_DATA_TYPE, M0, N0, lhs, rhs, dst)
+#define T_ELTWISE_BROADCAST_LHS_X_ADD(DST_DATA_TYPE, M0, N0, lhs, rhs, dst) T_ELTWISE_BROADCAST_LHS_X(V_ADD, DST_DATA_TYPE, M0, N0, lhs, rhs, dst)
+#define T_ELTWISE_BROADCAST_RHS_X_ADD(DST_DATA_TYPE, M0, N0, lhs, rhs, dst) T_ELTWISE_BROADCAST_X(V_ADD, DST_DATA_TYPE, M0, N0, lhs, rhs, dst)
+
+#define T_ELTWISE_BROADCAST_LHS_X_SUB(DST_DATA_TYPE, M0, N0, lhs, rhs, dst) T_ELTWISE_BROADCAST_LHS_X(V_SUB, DST_DATA_TYPE, M0, N0, lhs, rhs, dst)
+#define T_ELTWISE_BROADCAST_RHS_X_SUB(DST_DATA_TYPE, M0, N0, lhs, rhs, dst) T_ELTWISE_BROADCAST_X(V_SUB, DST_DATA_TYPE, M0, N0, lhs, rhs, dst)
+
+#define T_ELTWISE_BROADCAST_DIV_X(DST_DATA_TYPE, M0, N0, lhs, rhs, dst) T_ELTWISE_BROADCAST_X(V_DIV, DST_DATA_TYPE, M0, N0, lhs, rhs, dst)
+
+#define T_ELTWISE_BROADCAST_LHS_X_MUL(DST_DATA_TYPE, M0, N0, lhs, rhs, dst) T_ELTWISE_BROADCAST_LHS_X(V_MUL, DST_DATA_TYPE, M0, N0, lhs, rhs, dst)
+#define T_ELTWISE_BROADCAST_RHS_X_MUL(DST_DATA_TYPE, M0, N0, lhs, rhs, dst) T_ELTWISE_BROADCAST_X(V_MUL, DST_DATA_TYPE, M0, N0, lhs, rhs, dst)
+
+/** Element-wise scale with a constant value
+ *
+ * @note Performs: LHS * constant = DST
+ *
+ * @param[in] DATA_TYPE LHS/RHS/DST data type
+ * @param[in] M0 Number of LHS rows
+ * @param[in] N0 Number of LHS columns
+ * @param[in] lhs LHS tile
+ * @param[in] rhs_constant Constant value
+ * @param[out] dst DST tile
+ */
+#define T_SCALE_CONSTANT(DATA_TYPE, M0, N0, lhs, rhs_constant, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _m0, 0, 1, M0, \
+ { \
+ dst[_m0].v = lhs[_m0].v * (DATA_TYPE)rhs_constant; \
}) \
})
-/** Element-wise addition with RHS broadcasted (RHS has the X dimension only)
+/** Element-wise operation with RHS broadcasted (RHS has the X dimension only)
*
- * @note Performs: LHS + RHS[broadcasted] = DST
+ * @note Performs: LHS OP RHS[broadcasted] = DST
* @note Both tiles must have same data type
*
- * @param[in] DATA_TYPE LHS/RHS/DST data type
- * @param[in] M0 Number of LHS rows
- * @param[in] N0 Number of LHS columns
- * @param[in] lhs LHS tile
- * @param[in] rhs RHS tile
- * @param[out] dst DST tile
+ * @param[in] T_ELWISE_OP Elementwise operator to perform
+ * @param[in] DST_DATA_TYPE DST data type
+ * @param[in] M0 Number of LHS rows
+ * @param[in] N0 Number of LHS columns
+ * @param[in] lhs LHS tile
+ * @param[in] rhs RHS tile
+ * @param[out] dst DST tile
*/
-#define T_ADD_BROADCAST_X(DATA_TYPE, M0, N0, lhs, rhs, dst) \
+#define T_ELTWISE_BROADCAST_X(T_ELWISE_OP, DST_DATA_TYPE, M0, N0, lhs, rhs, dst) \
({ \
LOOP_UNROLLING(int, _m0, 0, 1, M0, \
{ \
- dst[_m0].v = lhs[_m0].v + rhs[0].v; \
+ dst[_m0].v = T_ELWISE_OP(CONVERT(lhs[_m0].v, VEC_DATA_TYPE(DST_DATA_TYPE, N0)), CONVERT(rhs[0].v, VEC_DATA_TYPE(DST_DATA_TYPE, N0))); \
+ }) \
+ })
+
+/** Element-wise operation with LHS broadcasted (LHS has the X dimension only)
+ *
+ * @note Performs: LHS[broadcasted] OP RHS = DST
+ * @note Both tiles must have same data type
+ *
+ * @param[in] T_ELWISE_OP Elementwise operator to perform
+ * @param[in] DST_DATA_TYPE DST data type
+ * @param[in] M0 Number of RHS rows
+ * @param[in] N0 Number of RHS columns
+ * @param[in] lhs LHS tile
+ * @param[in] rhs RHS tile
+ * @param[out] dst DST tile
+ */
+#define T_ELTWISE_BROADCAST_LHS_X(T_ELWISE_OP, DST_DATA_TYPE, M0, N0, lhs, rhs, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _m0, 0, 1, M0, \
+ { \
+ dst[_m0].v = T_ELWISE_OP(CONVERT(lhs[0].v, VEC_DATA_TYPE(DST_DATA_TYPE, N0)), CONVERT(rhs[_m0].v, VEC_DATA_TYPE(DST_DATA_TYPE, N0))); \
+ }) \
+ })
+
+#define T_ELTWISE_ADD(DST_DATA_TYPE, M0, N0, lhs, rhs, dst) T_ELTWISE(V_ADD, DST_DATA_TYPE, M0, N0, lhs, rhs, dst)
+#define T_ELTWISE_SUB(DST_DATA_TYPE, M0, N0, lhs, rhs, dst) T_ELTWISE(V_SUB, DST_DATA_TYPE, M0, N0, lhs, rhs, dst)
+#define T_ELTWISE_DIV(DST_DATA_TYPE, M0, N0, lhs, rhs, dst) T_ELTWISE(V_DIV, DST_DATA_TYPE, M0, N0, lhs, rhs, dst)
+#define T_ELTWISE_MUL(DST_DATA_TYPE, M0, N0, lhs, rhs, dst) T_ELTWISE(V_MUL, DST_DATA_TYPE, M0, N0, lhs, rhs, dst)
+
+/** Element-wise operation between two tiles (LHS and RHS)
+ *
+ * @note Performs: LHS OP RHS = DST
+ * @note Both tiles must have same data type
+ *
+ * @param[in] T_ELWISE_OP Elementwise operator to perform
+ * @param[in] DST_DATA_TYPE DST data type
+ * @param[in] M0 Number of LHS rows
+ * @param[in] N0 Number of LHS columns
+ * @param[in] lhs LHS tile
+ * @param[in] rhs RHS tile
+ * @param[out] dst DST tile
+ */
+#define T_ELTWISE(T_ELWISE_OP, DST_DATA_TYPE, M0, N0, lhs, rhs, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _m0, 0, 1, M0, \
+ { \
+ dst[_m0].v = T_ELWISE_OP(CONVERT(lhs[_m0].v, VEC_DATA_TYPE(DST_DATA_TYPE, N0)), CONVERT(rhs[_m0].v, VEC_DATA_TYPE(DST_DATA_TYPE, N0))); \
+ }) \
+ })
+
+/** Floor operation on a tile
+ *
+ * @note Performs: floor(SRC) = DST
+ * @note Both tiles must have same data type
+ *
+ * @param[in] DST_DATA_TYPE DST data type
+ * @param[in] M0 Number of SRC rows
+ * @param[in] N0 Number of SRC columns
+ * @param[in] src LHS tile
+ * @param[out] dst DST tile
+ */
+#define T_FLOOR(DST_DATA_TYPE, M0, N0, src, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _m0, 0, 1, M0, \
+ { \
+ dst[_m0].v = floor(CONVERT(src[_m0].v, VEC_DATA_TYPE(DST_DATA_TYPE, N0))); \
}) \
})
@@ -615,15 +1358,72 @@
* @param[in] lhs LHS tile
* @param[in] rhs RHS tile
* @param[in, out] dst DST tile
+ *
+ * @note For Int8/UInt8 multiplications, we only have T_MMUL_NT_T because we need
+ * the multiply the rows of Lhs and Rhs tensors to utilize dot product extension.
+ * Addition of other versions requires dealing with on the fly transposition of
+ * these tile elements and therefore is not favored.
*/
#define T_MMUL(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, LHS_LAYOUT, RHS_LAYOUT, lhs, rhs, dst) T_MMUL_##LHS_LAYOUT##_##RHS_LAYOUT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
-#define T_MMUL_NT_T(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_##LHS_DATA_TYPE##_##RHS_DATA_TYPE##_##DST_DATA_TYPE(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
-#define T_MMUL_NT_T_float_float_float(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_FLOAT(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
-#define T_MMUL_NT_T_half_half_half(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_FLOAT(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
-#define T_MMUL_NT_T_char_char_int(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_INTEGER8(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
-#define T_MMUL_NT_T_uchar_uchar_uint(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_INTEGER8(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
-#define T_MMUL_NT_T_uchar_uchar_int(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_INTEGER8(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
-#define T_MMUL_NT_T_FLOAT(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) \
+#define T_MMUL_NT_T(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_##LHS_DATA_TYPE##_##RHS_DATA_TYPE##_##DST_DATA_TYPE(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_NT_T_float_float_float(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_NT_T_half_half_float(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_NT_T_half_half_half(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_NT_T_char_char_int(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_INTEGER8(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_NT_T_uchar_uchar_uint(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_INTEGER8(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_NT_T_uchar_uchar_int(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_T_INTEGER8(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_NT_T_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) \
+ { \
+ LOOP_UNROLLING(int, _m, 0, 1, M0, \
+ { \
+ LOOP_UNROLLING(int, _n, 0, 1, N0, \
+ { \
+ LOOP_UNROLLING(int, _k, 0, 1, K0, \
+ { \
+ dst[_m].s[_n] = fma((DST_DATA_TYPE)(lhs[_m].s[_k]), (DST_DATA_TYPE)(rhs[_n].s[_k]), dst[_m].s[_n]); \
+ }) \
+ }) \
+ }) \
+ }
+
+#define T_MMUL_NT_NT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_NT_##LHS_DATA_TYPE##_##RHS_DATA_TYPE##_##DST_DATA_TYPE(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_NT_NT_float_float_float(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_NT_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_NT_NT_half_half_float(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_NT_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_NT_NT_half_half_half(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_NT_NT_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_NT_NT_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) \
+ { \
+ LOOP_UNROLLING(int, _m, 0, 1, M0, \
+ { \
+ LOOP_UNROLLING(int, _k, 0, 1, K0, \
+ { \
+ dst[_m].v = fma((DST_DATA_TYPE)(lhs[_m].s[_k]), (rhs[_k].v), dst[_m].v); \
+ }) \
+ }) \
+ }
+
+#define T_MMUL_T_NT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_T_NT_##LHS_DATA_TYPE##_##RHS_DATA_TYPE##_##DST_DATA_TYPE(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_T_NT_float_float_float(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_T_NT_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_T_NT_half_half_float(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_T_NT_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_T_NT_half_half_half(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_T_NT_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_T_NT_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) \
+ { \
+ LOOP_UNROLLING(int, _m, 0, 1, M0, \
+ { \
+ LOOP_UNROLLING(int, _n, 0, 1, N0, \
+ { \
+ LOOP_UNROLLING(int, _k, 0, 1, K0, \
+ { \
+ dst[_m].s[_n] = fma((DST_DATA_TYPE)(lhs[_k].s[_m]), (DST_DATA_TYPE)(rhs[_k].s[_n]), dst[_m].s[_n]); \
+ }) \
+ }) \
+ }) \
+ }
+
+#define T_MMUL_T_T(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_T_T_##LHS_DATA_TYPE##_##RHS_DATA_TYPE##_##DST_DATA_TYPE(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_T_T_float_float_float(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_T_T_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_T_T_half_half_float(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_T_T_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_T_T_half_half_half(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) T_MMUL_T_T_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst)
+#define T_MMUL_T_T_FLOAT(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) \
{ \
LOOP_UNROLLING(int, _m, 0, 1, M0, \
{ \
@@ -631,21 +1431,21 @@
{ \
LOOP_UNROLLING(int, _k, 0, 1, K0, \
{ \
- dst[_m].s[_n] = fma((lhs[_m].s[_k]), (rhs[_n].s[_k]), dst[_m].s[_n]); \
+ dst[_m].s[_n] = fma((DST_DATA_TYPE)(lhs[_k].s[_m]), (DST_DATA_TYPE)(rhs[_n].s[_k]), dst[_m].s[_n]); \
}) \
}) \
}) \
}
-#define T_MMUL_NT_T_INTEGER8(DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) \
- ({ \
- LOOP_UNROLLING(int, _m, 0, 1, M0, \
- { \
- LOOP_UNROLLING(int, _n, 0, 1, N0, \
- { \
- DOT_PRODUCT_INTEGER8(DST_DATA_TYPE, K0, (lhs[_m].v), (rhs[_n].v), dst[_m].s[_n]); \
- }) \
- }) \
- })
-
-// clang-format on
-// *INDENT-ON* \ No newline at end of file
+
+#define T_MMUL_NT_T_INTEGER8(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, M0, N0, K0, lhs, rhs, dst) \
+ ({ \
+ LOOP_UNROLLING(int, _m, 0, 1, M0, \
+ { \
+ LOOP_UNROLLING(int, _n, 0, 1, N0, \
+ { \
+ DOT_PRODUCT_INTEGER8(LHS_DATA_TYPE, RHS_DATA_TYPE, DST_DATA_TYPE, K0, (lhs[_m].v), (rhs[_n].v), dst[_m].s[_n]); \
+ }) \
+ }) \
+ })
+
+#endif /* ACL_SRC_CORE_CL_CL_KERNELS_TILE_HELPERS */