aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/pooling_layer.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/pooling_layer.cl')
-rw-r--r--src/core/CL/cl_kernels/pooling_layer.cl598
1 files changed, 0 insertions, 598 deletions
diff --git a/src/core/CL/cl_kernels/pooling_layer.cl b/src/core/CL/cl_kernels/pooling_layer.cl
deleted file mode 100644
index 207669e43e..0000000000
--- a/src/core/CL/cl_kernels/pooling_layer.cl
+++ /dev/null
@@ -1,598 +0,0 @@
-/*
- * Copyright (c) 2017-2020 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "helpers.h"
-
-#if defined(POOL_AVG) || defined(POOL_L2)
-#define POOL_OP(x, y) ((x) + (y))
-#else /* defined(POOL_AVG) || defined(POOL_L2) */
-#define POOL_OP(x, y) (fmax((x), (y)))
-#endif /* defined(POOL_AVG) || defined(POOL_L2) */
-
-#if defined(POOL_L2)
-#define POW2_OP(x, vec_size) ((x) * (x))
-#else /* defined(POOL_L2) */
-#define POW2_OP(x, vec_size) (x)
-#endif /* defined(POOL_L2) */
-
-#define DIV_OP(x, y) (x * (1.f / y))
-#define SQRT_OP(x) sqrt((x))
-
-#define DIV_OP_NHWC(x, y) (x * (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(1.f / y))
-
-#if STRIDE_X == 1
-#define POOLING3x3(res, input, output) POOLING3x3_STRIDE1(res, input, output)
-#elif STRIDE_X == 2 /* STRIDE_X == 1 */
-#define POOLING3x3(res, input, output) POOLING3x3_STRIDE2(res, input, output)
-#elif STRIDE_X == 3 /* STRIDE_X not equals 1 or 2 */
-#define POOLING3x3(res, input, output) POOLING3x3_STRIDE3(res, input, output)
-#endif /* STRIDE_X == 3 */
-
-#if defined(FP_MIXED_PRECISION)
-#define CONVERT_TO_ACC_DATA_TYPE(x, n) CONVERT(x, VEC_DATA_TYPE(ACC_DATA_TYPE, n))
-#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) \
- CONVERT_TO_ACC_DATA_TYPE(vload##n(offset, ptr), n)
-#else /* defined(FP_MIXED_PRECISION) */
-#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) vload##n(offset, ptr)
-#endif /* defined(FP_MIXED_PRECISION) */
-
-#define POOLING3x3_STRIDE1(res, input, output) \
- ({ \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \
- data00 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0)); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 2) \
- data01 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 4); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \
- data10 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 2) \
- data11 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 4); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \
- data20 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 2) \
- data21 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 4); \
- data00 = POW2_OP(data00, 4); \
- data01 = POW2_OP(data01, 2); \
- data10 = POW2_OP(data10, 4); \
- data11 = POW2_OP(data11, 2); \
- data20 = POW2_OP(data20, 4); \
- data21 = POW2_OP(data21, 2); \
- \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \
- values00 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data00.s01212323); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \
- values01 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data01.s0, data00.s3, data01.s01); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \
- values10 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data10.s01212323); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \
- values11 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data11.s0, data10.s3, data11.s01); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \
- values20 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data20.s01212323); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \
- values21 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data21.s0, data20.s3, data21.s01); \
- \
- values00 = POOL_OP(values00, values10); \
- values01 = POOL_OP(values01, values11); \
- values00 = POOL_OP(values00, values20); \
- values01 = POOL_OP(values01, values21); \
- \
- res = POOL_OP((VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s036, values01.s1), (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s147, values01.s2)); \
- res = POOL_OP(res, (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s25, values01.s03)); \
- })
-
-#define POOLING3x3_STRIDE2(res, input, output) \
- ({ \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \
- data00 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0)); \
- ACC_DATA_TYPE data01 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 8)); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \
- data10 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); \
- ACC_DATA_TYPE data11 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 8)); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \
- data20 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); \
- ACC_DATA_TYPE data21 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 8)); \
- data00 = POW2_OP(data00, 8); \
- data01 = POW2_OP(data01, 1); \
- data10 = POW2_OP(data10, 8); \
- data11 = POW2_OP(data11, 1); \
- data20 = POW2_OP(data20, 8); \
- data21 = POW2_OP(data21, 1); \
- \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \
- values00 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data00.s01223445); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \
- values01 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s667, data01); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \
- values10 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data10.s01223445); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \
- values11 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data10.s667, data11); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \
- values20 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))(data20.s01223445); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \
- values21 = (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data20.s667, data21); \
- \
- values00 = POOL_OP(values00, values10); \
- values01 = POOL_OP(values01, values11); \
- values00 = POOL_OP(values00, values20); \
- values01 = POOL_OP(values01, values21); \
- \
- res = POOL_OP((VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s036, values01.s1), (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s147, values01.s2)); \
- res = POOL_OP(res, (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(values00.s25, values01.s03)); \
- })
-
-#define POOLING3x3_STRIDE3(res, input, output) \
- ({ \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \
- data00 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0)); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \
- data01 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0) + 8); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \
- data10 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0)); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \
- data11 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0) + 8); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8) \
- data20 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0)); \
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4) \
- data21 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(4, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0) + 8); \
- data00 = POW2_OP(data00, 8); \
- data01 = POW2_OP(data01, 4); \
- data10 = POW2_OP(data10, 8); \
- data11 = POW2_OP(data11, 4); \
- data20 = POW2_OP(data20, 8); \
- data21 = POW2_OP(data21, 4); \
- \
- data00 = POOL_OP(data00, data10); \
- data01 = POOL_OP(data01, data11); \
- data00 = POOL_OP(data00, data20); \
- data01 = POOL_OP(data01, data21); \
- \
- res = POOL_OP((VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s036, data01.s1), (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s147, data01.s2)); \
- res = POOL_OP(res, (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(data00.s25, data01.s03)); \
- })
-
-ACC_DATA_TYPE calculate_avg_scale(const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
- const int pad_x, const int pad_y, const int stride_x, const int stride_y)
-{
- int start_x = get_global_id(0) * stride_x - pad_x;
- int start_y = get_global_id(1) * stride_y - pad_y;
- const int end_x = min(start_x + pool_size_x, upper_bound_w);
- const int end_y = min(start_y + pool_size_y, upper_bound_h);
-#if defined(EXCLUDE_PADDING)
- start_x = max(0, start_x);
- start_y = max(0, start_y);
-#endif /* defined(EXCLUDE_PADDING) */
- return ((end_y - start_y) * (end_x - start_x));
-}
-
-/** Performs a pooling function of pool size equal to 2.
- *
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
- * @note In case of average pooling the following information must be passed at compile time:
- * -DPOOL_AVG or -DPOOL_L2 must be provided otherwise max pooling will be performed.
- * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
- * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
- * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
- *
- * @param[in] input_ptr Pointer to the source image. Supported data types: F16/F32
- * @param[in] input_stride_x Stride of the source image in X dimension (in bytes)
- * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes)
- * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
- * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
- * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
- * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
- */
-__kernel void pooling_layer_2(
- TENSOR3D_DECLARATION(input),
- TENSOR3D_DECLARATION(output))
-{
- // Get pixels pointer
- Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
- Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
-
- // Load data
- VEC_DATA_TYPE(ACC_DATA_TYPE, 2)
- data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0));
- VEC_DATA_TYPE(ACC_DATA_TYPE, 2)
- data1 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(2, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
-
-#if defined(POOL_L2)
- // Raise to power of 2 for L2 Pooling
- data0 = POW2_OP(data0, 2);
- data1 = POW2_OP(data1, 2);
-#endif /* defined(POOL_L2) */
-
- // Perform calculations
- data0 = POOL_OP(data0, data1);
- ACC_DATA_TYPE res = POOL_OP(data0.s0, data0.s1);
-
-#if defined(POOL_AVG) || defined(POOL_L2)
- // Divide by pool region in case of average or l2 pooling
- res = DIV_OP(res, calculate_avg_scale(2, 2, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
-#endif /* defined(POOL_AVG) || defined(POOL_L2) */
-
-#if defined(POOL_L2)
- // Take square root of the result in L2 pooling
- res = SQRT_OP(res);
-#endif /* defined(POOL_L2) */
-
- // Store result
- *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res;
-}
-
-/** Performs a pooling function of pool size equal to 3
- *
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
- * @note In case of average pooling the following information must be passed at compile time:
- * -DPOOL_AVG or -DPOOL_L2 must be provided otherwise max pooling will be performed.
- * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
- * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
- * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
- *
- * @param[in] input_ptr Pointer to the source image. Supported data types: F16/F32
- * @param[in] input_stride_x Stride of the source image in X dimension (in bytes)
- * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes)
- * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
- * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
- * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
- * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
- */
-__kernel void pooling_layer_3(
- TENSOR3D_DECLARATION(input),
- TENSOR3D_DECLARATION(output))
-{
- // Get pixels pointer
- Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
- Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
-
- // Load data
- VEC_DATA_TYPE(ACC_DATA_TYPE, 3)
- data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(3, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 0, 0));
- VEC_DATA_TYPE(ACC_DATA_TYPE, 3)
- data1 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(3, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 1, 0));
- VEC_DATA_TYPE(ACC_DATA_TYPE, 3)
- data2 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(3, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, 2, 0));
-
-#if defined(POOL_L2)
- // Raise to power of 2 for L2 Pooling
- data0 = POW2_OP(data0, 3);
- data1 = POW2_OP(data1, 3);
- data2 = POW2_OP(data2, 3);
-#endif /* defined(POOL_L2) */
-
- // Perform calculations
- data0 = POOL_OP(data0, data1);
- data0 = POOL_OP(data0, data2);
- ACC_DATA_TYPE res = POOL_OP(POOL_OP(data0.s0, data0.s1), data0.s2);
-
-#if defined(POOL_AVG) || defined(POOL_L2)
- // Divide by pool region in case of average pooling
- res = DIV_OP(res, calculate_avg_scale(3, 3, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
-#endif /* defined(POOL_AVG) || defined(POOL_L2) */
-
-#if defined(POOL_L2)
- // Take square root of the result in L2 pooling
- res = SQRT_OP(res);
-#endif /* defined(POOL_L2) */
-
- // Store result
- *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res;
-}
-
-#if defined(POOLING3x3)
-
-#define CONVERT_OP(data_type) convert_##data_type##4
-#define CONVERT_VECTOR4(data_type) CONVERT_OP(data_type)
-
-VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
-calculate_avg_scale4(const int pool_size, const int upper_bound_w, const int upper_bound_h,
- const int pad_x, const int pad_y, const int stride_x, const int stride_y)
-{
- int4 start_x = ((int4)get_global_id(0) * 4 + (int4)(0, 1, 2, 3)) * (int4)stride_x - (int4)pad_x;
- int start_y = get_global_id(1) * stride_y - pad_y;
- const int4 end_x = min(start_x + (int4)pool_size, (int4)upper_bound_w);
- const int end_y = min(start_y + pool_size, upper_bound_h);
-#if defined(EXCLUDE_PADDING)
- start_x = max((int4)0, start_x);
- start_y = max(0, start_y);
-#endif /* defined(EXCLUDE_PADDING) */
- return (VEC_DATA_TYPE(ACC_DATA_TYPE, 4))(1.f) / CONVERT_VECTOR4(ACC_DATA_TYPE)(((int4)(end_y - start_y)) * (end_x - start_x));
-}
-
-/** Performs an optimized pooling function of pool size equal to 3 when the stride_x is less equal than 3
- *
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
- * @note In case of average pooling the following information must be passed at compile time:
- * -DPOOL_AVG or -DPOOL_L2 must be provided otherwise max pooling will be performed.
- * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
- * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
- * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
- *
- * @param[in] input_ptr Pointer to the source image. Supported data types: F16/F32
- * @param[in] input_stride_x Stride of the source image in X dimension (in bytes)
- * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes)
- * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
- * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
- * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
- * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
- */
-__kernel void pooling_layer_optimized_3(
- TENSOR3D_DECLARATION(input),
- TENSOR3D_DECLARATION(output))
-{
- // Get pixels pointer
- Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
- Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
-
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
- res;
-
- // Perform pooling 3x3 for 4 output elements
- POOLING3x3(res, input, output);
-
-#if defined(POOL_AVG) || defined(POOL_L2)
- // Divide by pool region in case of average pooling
- res *= calculate_avg_scale4(3, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y);
-#endif /* defined(POOL_AVG) || defined(POOL_L2) */
-
-#if defined(POOL_L2)
- // Take square root of the result in L2 pooling
- res = SQRT_OP(res);
-#endif /* defined(POOL_L2) */
-
- vstore4(CONVERT(res, VEC_DATA_TYPE(DATA_TYPE, 4)), 0, (__global DATA_TYPE *)output.ptr);
-}
-#endif // defined(POOLING3x3)
-
-#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
-
-/** Performs a pooling function of pool size equal to N (NCHW)
- *
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32;
- * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
- * @note In case of average pooling the following information must be passed at compile time:
- * -DPOOL_AVG must be provided otherwise max pooling will be performed.
- * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
- * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
- * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
- * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
- *
- * @param[in] input_ptr Pointer to the source image. Supported data types: F16/F32
- * @param[in] input_stride_x Stride of the source image in X dimension (in bytes)
- * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes)
- * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
- * @param[in] output_stride_x Stride of the destination image in X dimension (in bytes)
- * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_stride_y Stride of the destination image in Y dimension (in bytes)
- * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] output_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
- */
-__kernel void pooling_layer_MxN_nchw(
- TENSOR3D_DECLARATION(input),
- TENSOR3D_DECLARATION(output))
-{
- // Get pixels pointer
- Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
- Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
-
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
- vdata = INITIAL_VALUE;
- ACC_DATA_TYPE sdata = INITIAL_VALUE;
-
- // Load data
- for(int y = 0; y < POOL_SIZE_Y; y++)
- {
- int x = 0;
- for(; x <= ((int)POOL_SIZE_X - 8); x += 8)
- {
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
- data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0));
-#if defined(POOL_L2)
- // Raise to power of 2 for L2 Pooling
- data0 *= data0;
-#endif /* defined(POOL_L2) */
- vdata = POOL_OP(vdata, data0);
- }
-
- // Leftover
- for(; x < (int)POOL_SIZE_X; ++x)
- {
- ACC_DATA_TYPE data0 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)tensor3D_offset(&input, x, y, 0)));
-#if defined(POOL_L2)
- // Raise to power of 2 for L2 Pooling
- data0 *= data0;
-#endif /* defined(POOL_L2) */
- sdata = POOL_OP(sdata, data0);
- }
- }
-
- // Reduce result
- VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
- reduce4 = POOL_OP(vdata.s0123, vdata.s4567);
- VEC_DATA_TYPE(ACC_DATA_TYPE, 2)
- reduce2 = POOL_OP(reduce4.s01, reduce4.s23);
- ACC_DATA_TYPE res = POOL_OP(reduce2.s0, reduce2.s1);
- res = POOL_OP(res, sdata);
-
-#if defined(POOL_AVG) || defined(POOL_L2)
- // Divide by pool region in case of average pooling
- res = DIV_OP(res, calculate_avg_scale(POOL_SIZE_X, POOL_SIZE_Y, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
-#endif /* defined(POOL_AVG) || defined(POOL_L2) */
-
-#if defined(POOL_L2)
- // Take square root of the result in L2 pooling
- res = SQRT_OP(res);
-#endif /* defined(POOL_L2) */
-
- // Store result
- *(__global DATA_TYPE *)output.ptr = (DATA_TYPE)res;
-}
-#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
-
-ACC_DATA_TYPE calculate_avg_scale_nhwc(const int pool_size_x, const int pool_size_y, int upper_bound_w, int upper_bound_h,
- const int pad_x, const int pad_y, const int stride_x, const int stride_y)
-{
- int start_x = get_global_id(1) * stride_x - pad_x;
-#if defined(DST_DEPTH)
- int start_y = (get_global_id(2) % DST_DEPTH) * stride_y - pad_y;
-#else /* defined(DST_DEPTH) */
- int start_y = get_global_id(2) * stride_y - pad_y;
-#endif /* defined(DST_DEPTH) */
-
-#if !defined(EXCLUDE_PADDING)
- upper_bound_w += pad_x;
- upper_bound_h += pad_y;
-#endif /* defined(EXCLUDE_PADDING) */
- const int end_x = min(start_x + pool_size_x, upper_bound_w);
- const int end_y = min(start_y + pool_size_y, upper_bound_h);
-#if defined(EXCLUDE_PADDING)
- start_x = max(0, start_x);
- start_y = max(0, start_y);
-#endif /* defined(EXCLUDE_PADDING) */
- return ((end_y - start_y) * (end_x - start_x));
-}
-
-/** Performs a pooling function of pool size equal to N (NHWC)
- *
- * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32
- * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
- * @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT
- * @note Strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
- * @note Pad values must be passed at compile time using -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
- * @note In case of average pooling the following information must be passed at compile time:
- * -DPOOL_AVG must be provided otherwise max pooling will be performed.
- * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
- *
- * @param[in] input_ptr Pointer to the source image. Supported data types: F16/F32
- * @param[in] input_stride_x Stride of the source image in X dimension (in bytes)
- * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] input_stride_y Stride of the source image in Y dimension (in bytes)
- * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
- * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
- * @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source image
- * @param[out] output_ptr Pointer to the destination image. Supported data types: same as @p input_ptr
- * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
- * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
- * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes)
- * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
- * @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes)
- * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
- * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination image
- */
-__kernel void pooling_layer_MxN_nhwc(
- TENSOR4D_DECLARATION(input),
- TENSOR4D_DECLARATION(output))
-{
- // Get pixels pointer
-#if defined(DST_DEPTH)
- Tensor4D input = CONVERT_TO_TENSOR4D_STRUCT(input, DST_DEPTH);
- Tensor4D output = CONVERT_TO_TENSOR4D_STRUCT(output, DST_DEPTH);
-#else /* defined(DST_DEPTH) */
- Tensor3D input = CONVERT_TO_TENSOR3D_STRUCT(input);
- Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT(output);
-#endif /* defined(DST_DEPTH) */
-
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
- vdata = INITIAL_VALUE;
-
- const int idx_width = get_global_id(1) * STRIDE_X;
-#if defined(DST_DEPTH)
- const int idx_height = (get_global_id(2) % DST_DEPTH) * STRIDE_Y;
-#else /* defined(DST_DEPTH) */
- const int idx_height = get_global_id(2) * STRIDE_Y;
-#endif /* defined(DST_DEPTH) */
-
- for(int y = 0; y < POOL_SIZE_Y; ++y)
- {
- int y1 = select(y, PAD_Y - idx_height, y + idx_height - PAD_Y < 0 || y + idx_height - PAD_Y >= MAX_HEIGHT);
- for(int x = 0; x < POOL_SIZE_X; ++x)
- {
- int x1 = select(x, PAD_X - idx_width - 1, x + idx_width - PAD_X < 0 || x + idx_width - PAD_X >= MAX_WIDTH);
- x1 = select(x1, PAD_X - idx_width - 1, y != y1);
-
-#if defined(DST_DEPTH)
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
- data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor4D_offset(&input, 0, x1 - PAD_X, y1 - PAD_Y, 0));
-#else /* defined(DST_DEPTH) */
- VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
- data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)tensor3D_offset(&input, 0, x1 - PAD_X, y1 - PAD_Y));
-#endif /* defined(DST_DEPTH) */
-
-#if defined(POOL_L2)
- // Raise to power of 2 for L2 Pooling
- data0 *= data0;
-#endif /* defined(POOL_L2) */
- vdata = POOL_OP(vdata, CONVERT(data0, VEC_DATA_TYPE(ACC_DATA_TYPE, 8)));
- }
- }
-
-#if defined(POOL_AVG) || defined(POOL_L2)
- // Divide by pool region in case of average pooling
- vdata = DIV_OP_NHWC(vdata, calculate_avg_scale_nhwc(POOL_SIZE_X, POOL_SIZE_Y, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
-#endif /* defined(POOL_AVG) || defined(POOL_L2) */
-
-#if defined(POOL_L2)
- // Take square root of the result in L2 pooling
- vdata = SQRT_OP(vdata);
-#endif /* defined(POOL_L2) */
-
- // Store result
- vstore8(CONVERT(vdata, VEC_DATA_TYPE(DATA_TYPE, 8)), 0, (__global DATA_TYPE *)output.ptr);
-}