aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl')
-rw-r--r--src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl521
1 files changed, 0 insertions, 521 deletions
diff --git a/src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl b/src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl
deleted file mode 100644
index 8a126a019c..0000000000
--- a/src/core/CL/cl_kernels/optical_flow_pyramid_lk.cl
+++ /dev/null
@@ -1,521 +0,0 @@
-/*
- * Copyright (c) 2017-2018 ARM Limited.
- *
- * SPDX-License-Identifier: MIT
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to
- * deal in the Software without restriction, including without limitation the
- * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- * sell copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-#include "helpers.h"
-#include "types.h"
-
-/*
- *The criteria for lost tracking is that the spatial gradient matrix has:
- * - Determinant less than DETERMINANT_THR
- * - or minimum eigenvalue is smaller then EIGENVALUE_THR
- *
- * The thresholds for the determinant and the minimum eigenvalue is
- * defined by the OpenVX spec
- *
- * Note: Also lost tracking happens when the point tracked coordinate is outside
- * the image coordinates
- *
- * https://www.khronos.org/registry/vx/specs/1.0/html/d0/d0c/group__group__vision__function__opticalflowpyrlk.html
- */
-
-/* Internal Lucas-Kanade Keypoint struct */
-typedef struct InternalKeypoint
-{
- float x; /**< The x coordinate. */
- float y; /**< The y coordinate. */
- float tracking_status; /**< A zero indicates a lost point. Initialized to 1 by corner detectors. */
- float dummy; /**< Dummy member for alignment. */
-} InternalKeypoint;
-
-/** Threshold for the determinant. Used for lost tracking criteria */
-#define DETERMINANT_THR 1.0e-07f
-
-/** Thresholds for minimum eigenvalue. Used for lost tracking criteria */
-#define EIGENVALUE_THR 1.0e-04f
-
-/** Constants used for Lucas-Kanade Algorithm */
-#define W_BITS (14)
-#define FLT_SCALE (1.0f / (float)(1 << 20))
-#define D0 ((float)(1 << W_BITS))
-#define D1 (1.0f / (float)(1 << (W_BITS - 5)))
-
-/** Initializes the internal new points array when the level of pyramid is NOT equal to max.
- *
- * @param[in,out] old_points_internal An array of internal key points that are defined at the old_images high resolution pyramid.
- * @param[in,out] new_points_internal An array of internal key points that are defined at the new_images high resolution pyramid.
- * @param[in] scale Scale factor to apply for the new_point coordinates.
- */
-__kernel void init_level(
- __global float4 *old_points_internal,
- __global float4 *new_points_internal,
- const float scale)
-{
- int idx = get_global_id(0);
-
- // Get old and new keypoints
- float4 old_point = old_points_internal[idx];
- float4 new_point = new_points_internal[idx];
-
- // Scale accordingly with the pyramid_scale
- old_point.xy *= (float2)(2.0f);
- new_point.xy *= (float2)(2.0f);
-
- old_points_internal[idx] = old_point;
- new_points_internal[idx] = new_point;
-}
-
-/** Initializes the internal new points array when the level of pyramid is equal to max.
- *
- * @param[in] old_points An array of key points that are defined at the old_images high resolution pyramid.
- * @param[in,out] old_points_internal An array of internal key points that are defined at the old_images high resolution pyramid.
- * @param[out] new_points_internal An array of internal key points that are defined at the new_images high resolution pyramid.
- * @param[in] scale Scale factor to apply for the new_point coordinates.
- */
-__kernel void init_level_max(
- __global Keypoint *old_points,
- __global InternalKeypoint *old_points_internal,
- __global InternalKeypoint *new_points_internal,
- const float scale)
-{
- int idx = get_global_id(0);
-
- Keypoint old_point = old_points[idx];
-
- // Get old keypoint to track
- InternalKeypoint old_point_internal;
- old_point_internal.x = old_point.x * scale;
- old_point_internal.y = old_point.y * scale;
- old_point_internal.tracking_status = 1.f;
-
- // Store internal keypoints
- old_points_internal[idx] = old_point_internal;
- new_points_internal[idx] = old_point_internal;
-}
-
-/** Initializes the new_points array when the level of pyramid is equal to max and if use_initial_estimate = 1.
- *
- * @param[in] old_points An array of key points that are defined at the old_images high resolution pyramid.
- * @param[in] new_points_estimates An array of estimate key points that are defined at the old_images high resolution pyramid.
- * @param[in,out] old_points_internal An array of internal key points that are defined at the old_images high resolution pyramid.
- * @param[out] new_points_internal An array of internal key points that are defined at the new_images high resolution pyramid.
- * @param[in] scale Scale factor to apply for the new_point coordinates.
- */
-__kernel void init_level_max_initial_estimate(
- __global Keypoint *old_points,
- __global Keypoint *new_points_estimates,
- __global InternalKeypoint *old_points_internal,
- __global InternalKeypoint *new_points_internal,
- const float scale)
-{
- int idx = get_global_id(0);
-
- Keypoint old_point = old_points[idx];
- Keypoint new_point_estimate = new_points_estimates[idx];
- InternalKeypoint old_point_internal;
- InternalKeypoint new_point_internal;
-
- // Get old keypoint to track
- old_point_internal.x = old_point.x * scale;
- old_point_internal.y = old_point.y * scale;
- old_point_internal.tracking_status = 1.f;
-
- // Get new keypoint to track
- new_point_internal.x = new_point_estimate.x * scale;
- new_point_internal.y = new_point_estimate.y * scale;
- new_point_internal.tracking_status = new_point_estimate.tracking_status;
-
- // Store internal keypoints
- old_points_internal[idx] = old_point_internal;
- new_points_internal[idx] = new_point_internal;
-}
-
-/** Truncates the coordinates stored in new_points array
- *
- * @param[in] new_points_internal An array of estimate key points that are defined at the new_images high resolution pyramid.
- * @param[out] new_points An array of internal key points that are defined at the new_images high resolution pyramid.
- */
-__kernel void finalize(
- __global InternalKeypoint *new_points_internal,
- __global Keypoint *new_points)
-{
- int idx = get_global_id(0);
-
- // Load internal keypoint
- InternalKeypoint new_point_internal = new_points_internal[idx];
-
- // Calculate output point
- Keypoint new_point;
- new_point.x = round(new_point_internal.x);
- new_point.y = round(new_point_internal.y);
- new_point.strength = 0.f;
- new_point.scale = 0.f;
- new_point.orientation = 0.f;
- new_point.tracking_status = new_point_internal.tracking_status;
- new_point.error = 0.f;
-
- // Store new point
- new_points[idx] = new_point;
-}
-
-/** Computes A11, A12, A22, min_eig, ival, ixval and iyval at level 0th of the pyramid. These values will be used in step 1.
- *
- * @param[in] old_image_ptr Pointer to the input old image. Supported data types: U8
- * @param[in] old_image_stride_x Stride of the input old image in X dimension (in bytes)
- * @param[in] old_image_step_x old_image_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] old_image_stride_y Stride of the input old image in Y dimension (in bytes)
- * @param[in] old_image_step_y old_image_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] old_image_offset_first_element_in_bytes The offset of the first element in the input old image
- * @param[in] old_scharr_gx_ptr Pointer to the input scharr x image. Supported data types: S16
- * @param[in] old_scharr_gx_stride_x Stride of the input scharr x image in X dimension (in bytes)
- * @param[in] old_scharr_gx_step_x old_scharr_gx_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] old_scharr_gx_stride_y Stride of the input scharr x image in Y dimension (in bytes)
- * @param[in] old_scharr_gx_step_y old_scharr_gx_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] old_scharr_gx_offset_first_element_in_bytes The offset of the first element in the input scharr x image
- * @param[in] old_scharr_gy_ptr Pointer to the input scharr y image. Supported data types: S16
- * @param[in] old_scharr_gy_stride_x Stride of the input scharr y image in X dimension (in bytes)
- * @param[in] old_scharr_gy_step_x old_scharr_gy_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] old_scharr_gy_stride_y Stride of the input scharr y image in Y dimension (in bytes)
- * @param[in] old_scharr_gy_step_y old_scharr_gy_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] old_scharr_gy_offset_first_element_in_bytes The offset of the first element in the input scharr y image
- * @param[in] old_points An array of key points. Those key points are defined at the old_images high resolution pyramid
- * @param[in, out] new_points An output array of key points. Those key points are defined at the new_images high resolution pyramid
- * @param[out] coeff It stores | A11 | A12 | A22 | min_eig | for each keypoint
- * @param[out] iold_val It stores | ival | ixval | iyval | dummy | for each point in the window centered on old_keypoint
- * @param[in] window_dimension The size of the window on which to perform the algorithm
- * @param[in] window_dimension_pow2 The squared size of the window on which to perform the algorithm
- * @param[in] half_window The half size of the window on which to perform the algorithm
- * @param[in] border_limits It stores the right border limit (width - window_dimension - 1, height - window_dimension - 1,)
- * @param[in] eig_const 1.0f / (float)(2.0f * window_dimension * window_dimension)
- * @param[in] level0 It is set to 1 if level 0 of the pyramid
- */
-void __kernel lktracker_stage0(
- IMAGE_DECLARATION(old_image),
- IMAGE_DECLARATION(old_scharr_gx),
- IMAGE_DECLARATION(old_scharr_gy),
- __global float4 *old_points,
- __global float4 *new_points,
- __global float4 *coeff,
- __global short4 *iold_val,
- const int window_dimension,
- const int window_dimension_pow2,
- const int half_window,
- const float3 border_limits,
- const float eig_const,
- const int level0)
-{
- int idx = get_global_id(0);
-
- Image old_image = CONVERT_TO_IMAGE_STRUCT_NO_STEP(old_image);
- Image old_scharr_gx = CONVERT_TO_IMAGE_STRUCT_NO_STEP(old_scharr_gx);
- Image old_scharr_gy = CONVERT_TO_IMAGE_STRUCT_NO_STEP(old_scharr_gy);
-
- // Get old keypoint
- float2 old_keypoint = old_points[idx].xy - (float2)half_window;
-
- // Get the floor value
- float2 iold_keypoint = floor(old_keypoint);
-
- // Check if using the window dimension we can go out of boundary in the following for loops. If so, invalidate the tracked point
- if(any(iold_keypoint < border_limits.zz) || any(iold_keypoint >= border_limits.xy))
- {
- if(level0 == 1)
- {
- // Invalidate tracked point as we are at level 0
- new_points[idx].s2 = 0.0f;
- }
-
- // Not valid coordinate. It sets min_eig to 0.0f
- coeff[idx].s3 = 0.0f;
-
- return;
- }
-
- // Compute weight for the bilinear interpolation
- float2 ab = old_keypoint - iold_keypoint;
-
- // Weight used for Bilinear-Interpolation on Scharr images
- // w_scharr.s0 = (1.0f - ab.x) * (1.0f - ab.y)
- // w_scharr.s1 = ab.x * (1.0f - ab.y)
- // w_scharr.s2 = (1.0f - ab.x) * ab.y
- // w_scharr.s3 = ab.x * ab.y
-
- float4 w_scharr;
- w_scharr.s3 = ab.x * ab.y;
- w_scharr.s0 = w_scharr.s3 + 1.0f - ab.x - ab.y;
- w_scharr.s12 = ab - (float2)w_scharr.s3;
-
- // Weight used for Bilinear-Interpolation on Old and New images
- // w.s0 = round(w_scharr.s0 * D0)
- // w.s1 = round(w_scharr.s1 * D0)
- // w.s2 = round(w_scharr.s2 * D0)
- // w.s3 = w.s3 = D0 - w.s0 - w.s1 - w.s2
-
- float4 w;
- w = round(w_scharr * (float4)D0);
- w.s3 = D0 - w.s0 - w.s1 - w.s2; // Added for matching VX implementation
-
- // G.s0 = A11, G.s1 = A12, G.s2 = A22, G.s3 = min_eig
- int4 iG = (int4)0;
-
- // Window offset
- int window_offset = idx * window_dimension_pow2;
-
- // Compute Spatial Gradient Matrix G
- for(ushort ky = 0; ky < window_dimension; ++ky)
- {
- int offset_y = iold_keypoint.y + ky;
- for(ushort kx = 0; kx < window_dimension; ++kx)
- {
- int offset_x = iold_keypoint.x + kx;
- float4 px;
-
- // Load values from old_image for computing the bilinear interpolation
- px = convert_float4((uchar4)(vload2(0, offset(&old_image, offset_x, offset_y)),
- vload2(0, offset(&old_image, offset_x, offset_y + 1))));
-
- // old_i.s0 = ival, old_i.s1 = ixval, old_i.s2 = iyval, old_i.s3 = dummy
- float4 old_i;
-
- // Compute bilinear interpolation (with D1 scale factor) for ival
- old_i.s0 = dot(px, w) * D1;
-
- // Load values from old_scharr_gx for computing the bilinear interpolation
- px = convert_float4((short4)(vload2(0, (__global short *)offset(&old_scharr_gx, offset_x, offset_y)),
- vload2(0, (__global short *)offset(&old_scharr_gx, offset_x, offset_y + 1))));
-
- // Compute bilinear interpolation for ixval
- old_i.s1 = dot(px, w_scharr);
-
- // Load values from old_scharr_gy for computing the bilinear interpolation
- px = convert_float4((short4)(vload2(0, (__global short *)offset(&old_scharr_gy, offset_x, offset_y)),
- vload2(0, (__global short *)offset(&old_scharr_gy, offset_x, offset_y + 1))));
-
- // Compute bilinear interpolation for iyval
- old_i.s2 = dot(px, w_scharr);
-
- // Rounding (it could be omitted. Used just for matching the VX implementation)
- int4 iold = convert_int4(round(old_i));
-
- // Accumulate values in the Spatial Gradient Matrix
- iG.s0 += (int)(iold.s1 * iold.s1);
- iG.s1 += (int)(iold.s1 * iold.s2);
- iG.s2 += (int)(iold.s2 * iold.s2);
-
- // Store ival, ixval and iyval
- iold_val[window_offset + kx] = convert_short4(iold);
- }
- window_offset += window_dimension;
- }
-
- // Scale iA11, iA12 and iA22
- float4 G = convert_float4(iG) * (float4)FLT_SCALE;
-
- // Compute minimum eigen value
- G.s3 = (float)(G.s2 + G.s0 - sqrt(pown(G.s0 - G.s2, 2) + 4.0f * G.s1 * G.s1)) * eig_const;
-
- // Store A11. A11, A22 and min_eig
- coeff[idx] = G;
-}
-
-/** Computes the motion vector for a given keypoint
- *
- * @param[in] new_image_ptr Pointer to the input new image. Supported data types: U8
- * @param[in] new_image_stride_x Stride of the input new image in X dimension (in bytes)
- * @param[in] new_image_step_x new_image_stride_x * number of elements along X processed per workitem(in bytes)
- * @param[in] new_image_stride_y Stride of the input new image in Y dimension (in bytes)
- * @param[in] new_image_step_y new_image_stride_y * number of elements along Y processed per workitem(in bytes)
- * @param[in] new_image_offset_first_element_in_bytes The offset of the first element in the input new image
- * @param[in, out] new_points An output array of key points. Those key points are defined at the new_images high resolution pyramid
- * @param[in] coeff The | A11 | A12 | A22 | min_eig | for each keypoint
- * @param[in] iold_val The | ival | ixval | iyval | dummy | for each point in the window centered on old_keypoint
- * @param[in] window_dimension The size of the window on which to perform the algorithm
- * @param[in] window_dimension_pow2 The squared size of the window on which to perform the algorithm
- * @param[in] half_window The half size of the window on which to perform the algorithm
- * @param[in] num_iterations The maximum number of iterations
- * @param[in] epsilon The value for terminating the algorithm.
- * @param[in] border_limits It stores the right border limit (width - window_dimension - 1, height - window_dimension - 1,)
- * @param[in] eig_const 1.0f / (float)(2.0f * window_dimension * window_dimension)
- * @param[in] level0 It is set to 1 if level of pyramid = 0
- * @param[in] term_epsilon It is set to 1 if termination = TERM_CRITERIA_EPSILON
- */
-void __kernel lktracker_stage1(
- IMAGE_DECLARATION(new_image),
- __global float4 *new_points,
- __global float4 *coeff,
- __global short4 *iold_val,
- const int window_dimension,
- const int window_dimension_pow2,
- const int half_window,
- const int num_iterations,
- const float epsilon,
- const float3 border_limits,
- const float eig_const,
- const int level0,
- const int term_epsilon)
-{
- int idx = get_global_id(0);
- Image new_image = CONVERT_TO_IMAGE_STRUCT_NO_STEP(new_image);
-
- // G.s0 = A11, G.s1 = A12, G.s2 = A22, G.s3 = min_eig
- float4 G = coeff[idx];
-
- // Determinant
- float D = G.s0 * G.s2 - G.s1 * G.s1;
-
- // Check if it is a good point to track
- if(G.s3 < EIGENVALUE_THR || D < DETERMINANT_THR)
- {
- if(level0 == 1)
- {
- // Invalidate tracked point as we are at level 0
- new_points[idx].s2 = 0;
- }
-
- return;
- }
-
- // Compute inverse
- //D = native_recip(D);
- D = 1.0 / D;
-
- // Get new keypoint
- float2 new_keypoint = new_points[idx].xy - (float)half_window;
-
- // Get new point
- float2 out_new_point = new_points[idx].xy;
-
- // Keep delta obtained in the previous iteration
- float2 prev_delta = (float2)0.0f;
-
- int j = 0;
- while(j < num_iterations)
- {
- // Get the floor value
- float2 inew_keypoint = floor(new_keypoint);
-
- // Check if using the window dimension we can go out of boundary in the following for loops. If so, invalidate the tracked point
- if(any(inew_keypoint < border_limits.zz) || any(inew_keypoint >= border_limits.xy))
- {
- if(level0 == 1)
- {
- // Invalidate tracked point as we are at level 0
- new_points[idx].s2 = 0.0f;
- }
- else
- {
- new_points[idx].xy = out_new_point;
- }
-
- return;
- }
-
- // Compute weight for the bilinear interpolation
- float2 ab = new_keypoint - inew_keypoint;
-
- // Weight used for Bilinear-Interpolation on Old and New images
- // w.s0 = round((1.0f - ab.x) * (1.0f - ab.y) * D0)
- // w.s1 = round(ab.x * (1.0f - ab.y) * D0)
- // w.s2 = round((1.0f - ab.x) * ab.y * D0)
- // w.s3 = D0 - w.s0 - w.s1 - w.s2
-
- float4 w;
- w.s3 = ab.x * ab.y;
- w.s0 = w.s3 + 1.0f - ab.x - ab.y;
- w.s12 = ab - (float2)w.s3;
- w = round(w * (float4)D0);
- w.s3 = D0 - w.s0 - w.s1 - w.s2;
-
- // Mismatch vector
- int2 ib = 0;
-
- // Old val offset
- int old_val_offset = idx * window_dimension_pow2;
-
- for(int ky = 0; ky < window_dimension; ++ky)
- {
- for(int kx = 0; kx < window_dimension; ++kx)
- {
- // ival, ixval and iyval have been computed in the previous stage
- int4 old_ival = convert_int4(iold_val[old_val_offset]);
-
- // Load values from old_image for computing the bilinear interpolation
- float4 px = convert_float4((uchar4)(vload2(0, offset(&new_image, inew_keypoint.x + kx, inew_keypoint.y + ky)),
- vload2(0, offset(&new_image, inew_keypoint.x + kx, inew_keypoint.y + ky + 1))));
-
- // Compute bilinear interpolation on new image
- int jval = (int)round(dot(px, w) * D1);
-
- // Compute luminance difference
- int diff = (int)(jval - old_ival.s0);
-
- // Accumulate values in mismatch vector
- ib += (diff * old_ival.s12);
-
- // Update old val offset
- old_val_offset++;
- }
- }
-
- float2 b = convert_float2(ib) * (float2)FLT_SCALE;
-
- // Optical Flow
- float2 delta;
-
- delta.x = (float)((G.s1 * b.y - G.s2 * b.x) * D);
- delta.y = (float)((G.s1 * b.x - G.s0 * b.y) * D);
-
- // Update new point coordinate
- new_keypoint += delta;
-
- out_new_point = new_keypoint + (float2)half_window;
-
- if(term_epsilon == 1)
- {
- float mag2 = dot(delta, delta);
-
- if(mag2 <= epsilon)
- {
- new_points[idx].xy = out_new_point;
-
- return;
- }
- }
-
- // Check convergence analyzing the previous delta
- if(j > 0 && all(fabs(delta + prev_delta) < (float2)0.01f))
- {
- out_new_point -= delta * (float2)0.5f;
-
- new_points[idx].xy = out_new_point;
-
- return;
- }
-
- // Update previous delta
- prev_delta = delta;
-
- j++;
- }
-
- new_points[idx].xy = out_new_point;
-}