aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/nhwc/pooling_layer.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/nhwc/pooling_layer.cl')
-rw-r--r--src/core/CL/cl_kernels/nhwc/pooling_layer.cl364
1 files changed, 364 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/nhwc/pooling_layer.cl b/src/core/CL/cl_kernels/nhwc/pooling_layer.cl
new file mode 100644
index 0000000000..5b59ff5088
--- /dev/null
+++ b/src/core/CL/cl_kernels/nhwc/pooling_layer.cl
@@ -0,0 +1,364 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+#include "repeat.h"
+#include "tile_helpers.h"
+
+#if defined(POOL_AVG) || defined(POOL_L2)
+#define POOL_OP(x, y) ((x) + (y))
+#else /* defined(POOL_AVG) || defined(POOL_L2) */
+#define POOL_OP(x, y) (fmax((x), (y)))
+#endif /* defined(POOL_AVG) || defined(POOL_L2) */
+
+#if defined(POOL_L2)
+#define POW2_OP(x, vec_size) ((x) * (x))
+#else /* defined(POOL_L2) */
+#define POW2_OP(x, vec_size) (x)
+#endif /* defined(POOL_L2) */
+
+#define DIV_OP(x, y) (x * (1.f / y))
+#define SQRT_OP(x) sqrt((x))
+
+#if defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE)
+
+#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
+/** Performs pooling layer of size equal to MxN. This OpenCL kernel can perform the following pooling types:
+ * -# max, -DPOOL_MAX must be passed at compile time
+ * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time
+ * -# l2 normalisation, -DPOOL_L2 must be passed at compile time
+ *
+ * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16
+ * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float
+ * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result
+ * @note Pool size must be passed at compile time using -DPOOL_SIZE_X and -DPOOL_SIZE_Y. e.g. -DPOOL_SIZE_X=4, -DPOOL_SIZE_Y=4
+ * @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT
+ * @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE
+ * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
+ * @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y
+ * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
+ * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
+ *
+ * @param[in] input_ptr Pointer to the source tensor. Supported data types: F32/F16
+ * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
+ * @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes)
+ * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void pooling_layer_MxN_nhwc(
+ TENSOR4D_DECLARATION(input),
+ TENSOR4D_DECLARATION(output))
+{
+ // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0
+ // Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side
+ int idx_out_c = GET_SPATIAL_IDX(0, VEC_SIZE, VEC_SIZE_LEFTOVER);
+ int idx_out_w = GET_SPATIAL_IDX(1, 1, 0);
+#if DST_BATCH_SIZE != 1
+ // If batch size != 1, the batch size dimension is collapsed over the height dimension
+ int idx_out_h = GET_SPATIAL_IDX(2, 1, 0) % DST_HEIGHT;
+ int idx_out_n = GET_SPATIAL_IDX(2, 1, 0) / DST_HEIGHT;
+#else //DST_BATCH_SIZE != 1
+ int idx_out_h = GET_SPATIAL_IDX(2, 1, 0);
+ int idx_out_n = 0;
+#endif // DST_BATCH_SIZE != 1
+
+ __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_w;
+
+ __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n *
+ output_stride_w;
+
+ VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
+ res0 = INITIAL_VALUE;
+
+ int idx_in_w = idx_out_w * STRIDE_X - PAD_X;
+ int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y;
+
+ int pool_x_s = max((int)0, -idx_in_w);
+ int pool_x_e = min((int)POOL_SIZE_X, (int)SRC_WIDTH - idx_in_w);
+ int pool_y_s = max((int)0, -idx_in_h);
+ int pool_y_e = min((int)POOL_SIZE_Y, (int)SRC_HEIGHT - idx_in_h);
+
+#if defined(EXCLUDE_PADDING)
+ int filter_size = (pool_y_e - pool_y_s) * (pool_x_e - pool_x_s);
+#else // defined(EXCLUDE_PADDING)
+ int filter_size = POOL_SIZE_X * POOL_SIZE_Y;
+#endif // defined(EXCLUDE_PADDING)
+
+#if POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0
+ // Global pooling path
+ for(int y = 0; y < POOL_SIZE_Y; ++y)
+ {
+#pragma unroll 8
+ for(int x = 0; x < POOL_SIZE_X; ++x)
+ {
+#else // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0
+ for(int y = pool_y_s; y < pool_y_e; ++y)
+ {
+#pragma unroll 8
+ for(int x = pool_x_s; x < pool_x_e; ++x)
+ {
+#endif // POOL_SIZE_X == SRC_WIDTH && POOL_SIZE_Y == SRC_HEIGHT && PAD_X == 0 && PAD_Y == 0
+ VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
+ data0;
+#if defined(FP_MIXED_PRECISION)
+ // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
+ data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
+#else // defined(FP_MIXED_PRECISION)
+ data0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + (x + idx_in_w) * input_stride_y + (y + idx_in_h) * input_stride_z));
+#endif // defined(FP_MIXED_PRECISION)
+
+#if defined(POOL_L2)
+ // Raise to power of 2 for L2 Pooling
+ data0 *= data0;
+#endif // defined(POOL_L2)
+ res0 = POOL_OP(res0, data0);
+ }
+ }
+
+#if defined(POOL_AVG) || defined(POOL_L2)
+ res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size;
+#endif // defined(POOL_AVG) || defined(POOL_L2)
+
+#if defined(POOL_L2)
+ // Take square root of the result in L2 pooling
+ res0 = SQRT_OP(res0);
+#endif // defined(POOL_L2)
+
+ // Store result
+#if defined(FP_MIXED_PRECISION)
+ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+ res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
+ STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
+#else // defined(FP_MIXED_PRECISION)
+ STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
+#endif // defined(FP_MIXED_PRECISION)
+}
+#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
+
+#define SELECT_TYPE SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
+
+/** Performs pooling layer of size equal to 2. This OpenCL kernel can perform the following pooling types:
+ * -# max, -DPOOL_MAX must be passed at compile time
+ * -# max extracting the max index, -DPOOL_MAX and -DEXTRACT_MAX_INDEX must be passed at compile time
+ * -# average, -DPOOL_AVG must be passed at compile time. If padding has to be expluded, -DEXCLUDE_PADDING should be passed at compile time
+ * -# l2 normalisation, -DPOOL_L2 must be passed at compile time
+ *
+ * @note Datatype must be passed at compile type using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32/F16
+ * @note Accumulation data type must be passed at compile time using -DACC_DATA_TYPE e.g. -DACC_DATA_TYPE=float
+ * @note If -DFP_MIXED_PRECISION is passed at compile time, the kernel will use F32 for the partial result
+ * @note Input tensor width and height must be passed at compile time using -DSRC_WIDTH and -DSRC_HEIGHT
+ * @note Output tensor height, channels and batch size must be passed at compile time using -DDST_HEIGHT, -DDST_CHANNELS and -DDST_BATCH_SIZE
+ * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
+ * @note Pool pads must be passed at compile time using -DPAD_X and -DPAD_Y
+ * @note Vector size must be passed at compile time using -DVEC_SIZE=size. e.g. -DVEC_SIZE=16
+ * @note Leftover vector size must be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE
+ * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
+ *
+ * @param[in] input_ptr Pointer to the source tensor. Supported data types: F32/F16
+ * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes)
+ * @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] output_ptr Pointer to the destination tensor. Supported data types: same as @p input_ptr
+ * @param[in] output_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] output_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] output_stride_z Stride of the destination tensor in Z dimension (in bytes)
+ * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] output_stride_w Stride of the destination tensor in W dimension (in bytes)
+ * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] output_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in] indices_ptr (Optional) Pointer to the indices tensor. Supported data types: U32
+ * @param[in] indices_stride_x (Optional) Stride of the indices tensor in X dimension (in bytes)
+ * @param[in] indices_step_x (Optional) indices_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] indices_stride_y (Optional) Stride of the indices tensor in Y dimension (in bytes)
+ * @param[in] indices_step_y (Optional) indices_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] indices_stride_z (Optional) Stride of the indices tensor in Z dimension (in bytes)
+ * @param[in] indices_step_z (Optional) indices_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] indices_stride_w (Optional) Stride of the indices tensor in W dimension (in bytes)
+ * @param[in] indices_step_w (Optional) indices_stride_w * number of elements along W processed per workitem(in bytes)
+ * @param[in] indices_offset_first_element_in_bytes (Optional) The offset of the first element in the indices tensor
+ */
+__kernel void pooling_layer_2x2_nhwc(
+ TENSOR4D_DECLARATION(input),
+ TENSOR4D_DECLARATION(output)
+#if defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
+ ,
+ TENSOR4D_DECLARATION(indices)
+#endif // defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
+)
+{
+ // Note: If C is not multiple of VEC_SIZE, we shift back of VEC_SIZE_LEFTOVER elements to compute the leftover elements for get_global_id(0) == 0
+ // Note: If C is less than VEC_SIZE, VEC_SIZE should be SHRINKED to the closest smaller VEC_SIZE. This operation is performed on the host side
+ int idx_out_c = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0);
+ int idx_out_w = get_global_id(1);
+#if DST_BATCH_SIZE != 1
+ // If batch size != 1, the batch size dimension is collapsed over the height dimension
+ int idx_out_h = get_global_id(2) % DST_HEIGHT;
+ int idx_out_n = get_global_id(2) / DST_HEIGHT;
+#else //SRC_BATCH_SIZE != 1
+ int idx_out_h = get_global_id(2);
+ int idx_out_n = 0;
+#endif // SRC_BATCH_SIZE != 1
+
+ int idx_in_w = idx_out_w * STRIDE_X - PAD_X;
+ int idx_in_h = idx_out_h * STRIDE_Y - PAD_Y;
+
+ __global unsigned char *in_base_ptr = input_ptr + input_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_n * input_stride_w;
+
+ __global unsigned char *out_base_ptr = output_ptr + output_offset_first_element_in_bytes + idx_out_c * sizeof(DATA_TYPE) + idx_out_w * output_stride_y + idx_out_h * output_stride_z + idx_out_n *
+ output_stride_w;
+
+ int pool_x_s = max((int)0, -idx_in_w);
+ int pool_x_e = min((int)2, (int)SRC_WIDTH - idx_in_w);
+ int pool_y_s = max((int)0, -idx_in_h);
+ int pool_y_e = min((int)2, (int)SRC_HEIGHT - idx_in_h);
+
+ int filter_size = (pool_x_e - pool_x_s) * (pool_y_e - pool_y_s);
+
+ int x0 = pool_x_s + idx_in_w;
+ int y0 = pool_y_s + idx_in_h;
+ int x1 = pool_x_e - 1 + idx_in_w;
+ int y1 = pool_y_e - 1 + idx_in_h;
+
+ REPEAT_VAR_INIT_TO_CONST(4, VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE), data, 0);
+
+#if defined(FP_MIXED_PRECISION)
+ // In case of FP_MIXED_PRECISION, ACC_DATA_TYPE is != DATA_TYPE
+ data0 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y0 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
+ data1 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y0 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
+ data2 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y1 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
+ data3 = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y1 * input_stride_z)), VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE));
+#else // defined(FP_MIXED_PRECISION)
+ data0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y0 * input_stride_z));
+ data1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y0 * input_stride_z));
+ data2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x0 * input_stride_y + y1 * input_stride_z));
+ data3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(in_base_ptr + x1 * input_stride_y + y1 * input_stride_z));
+#endif // defined(FP_MIXED_PRECISION)
+
+#if !defined(POOL_MAX)
+ if(filter_size != 4)
+ {
+ SELECT_TYPE cond_w_s = (SELECT_TYPE)idx_in_w < (SELECT_TYPE)0;
+ SELECT_TYPE cond_w_e = (SELECT_TYPE)idx_in_w >= (SELECT_TYPE)(SRC_WIDTH - 1);
+ SELECT_TYPE cond_h_s = (SELECT_TYPE)idx_in_h < (SELECT_TYPE)0;
+ SELECT_TYPE cond_h_e = (SELECT_TYPE)idx_in_h >= (SELECT_TYPE)(SRC_HEIGHT - 1);
+
+ // Make invalid the values loaded if the x or y coordinate was clamped (out-of-bound)
+ data0 = select(data0, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_s | cond_h_s));
+ data1 = select(data1, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_e | cond_h_s));
+ data2 = select(data2, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_s | cond_h_e));
+ data3 = select(data3, (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))INITIAL_VALUE, (SELECT_TYPE)(cond_w_e | cond_h_e));
+ }
+#endif // !defined(POOL_MAX)
+
+#if defined(POOL_L2)
+ // Raise to power of 2 for L2 Pooling
+ data0 *= data0;
+ data1 *= data1;
+ data2 *= data2;
+ data3 *= data3;
+#endif /* defined(POOL_L2) */
+
+ VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE)
+ res0 = data0;
+ res0 = POOL_OP(res0, data1);
+ res0 = POOL_OP(res0, data2);
+ res0 = POOL_OP(res0, data3);
+
+#if defined(POOL_AVG) || defined(POOL_L2)
+#if defined(EXCLUDE_PADDING)
+ res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))filter_size;
+#else // !defined(EXCLUDE_PADDING)
+ res0 /= (VEC_DATA_TYPE(ACC_DATA_TYPE, VEC_SIZE))4;
+#endif // defined(EXCLUDE_PADDING)
+#endif // defined(POOL_AVG) || defined(POOL_L2)
+
+#if defined(POOL_L2)
+ // Take square root of the result in L2 pooling
+ res0 = SQRT_OP(res0);
+#endif // defined(POOL_L2)
+
+ // Store result
+#if defined(FP_MIXED_PRECISION)
+ VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
+ res_converted0 = CONVERT(res0, VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE));
+ STORE_VECTOR_SELECT(res_converted, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
+#else // defined(FP_MIXED_PRECISION)
+ STORE_VECTOR_SELECT(res, DATA_TYPE, out_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, (VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0);
+#endif // defined(FP_MIXED_PRECISION)
+
+#if defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
+
+ // This part is used to return the index of the maximum value
+ // Note: DST_CHANNELS and DST_BATCH_SIZE can be used for either the input and output tensor
+
+ // note: Batch dimension does not contribute in the offset contribution
+ VEC_DATA_TYPE(uint, VEC_SIZE)
+ base_index = (uint)idx_out_c;
+
+ base_index += VEC_OFFS(uint, VEC_SIZE);
+
+ VEC_DATA_TYPE(uint, VEC_SIZE)
+ index0 = base_index + (uint)x0 * DST_CHANNELS + (uint)y0 * (DST_CHANNELS * SRC_WIDTH);
+ VEC_DATA_TYPE(uint, VEC_SIZE)
+ index1 = base_index + (uint)x1 * DST_CHANNELS + (uint)y0 * (DST_CHANNELS * SRC_WIDTH);
+ VEC_DATA_TYPE(uint, VEC_SIZE)
+ index2 = base_index + (uint)x0 * DST_CHANNELS + (uint)y1 * (DST_CHANNELS * SRC_WIDTH);
+ VEC_DATA_TYPE(uint, VEC_SIZE)
+ index3 = base_index + (uint)x1 * DST_CHANNELS + (uint)y1 * (DST_CHANNELS * SRC_WIDTH);
+
+ index0 = select(index1, index0, CONVERT(isgreaterequal(data0, data1), VEC_DATA_TYPE(int, VEC_SIZE)));
+ index1 = select(index3, index2, CONVERT(isgreaterequal(data2, data3), VEC_DATA_TYPE(int, VEC_SIZE)));
+ index0 = select(index1, index0, CONVERT(isgreaterequal(max(data0, data1), max(data2, data3)), VEC_DATA_TYPE(int, VEC_SIZE)));
+
+ __global unsigned char *idx_base_ptr = indices_ptr + indices_offset_first_element_in_bytes + idx_out_c * sizeof(uint) + idx_out_w * indices_stride_y + idx_out_h * indices_stride_z + idx_out_n *
+ indices_stride_w;
+
+ // Store result
+ STORE_VECTOR_SELECT(index, uint, idx_base_ptr, VEC_SIZE, VEC_SIZE_LEFTOVER, ((VEC_SIZE_LEFTOVER != 0) && get_global_id(0) == 0));
+#endif // defined(EXTRACT_MAX_INDEX) && defined(POOL_MAX)
+}
+#endif // defined(VEC_SIZE) && defined(VEC_SIZE_LEFTOVER) && defined(SRC_WIDTH) && defined(SRC_HEIGHT) && defined(DST_CHANNELS) && defined(DST_HEIGHT) && defined(DST_BATCH_SIZE) && defined(ACC_DATA_TYPE) \ No newline at end of file