aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/nchw/scale.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/nchw/scale.cl')
-rw-r--r--src/core/CL/cl_kernels/nchw/scale.cl271
1 files changed, 271 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/nchw/scale.cl b/src/core/CL/cl_kernels/nchw/scale.cl
new file mode 100644
index 0000000000..2b4d6be9fb
--- /dev/null
+++ b/src/core/CL/cl_kernels/nchw/scale.cl
@@ -0,0 +1,271 @@
+/*
+ * Copyright (c) 2016-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+#include "tile_helpers.h"
+
+/** Transforms four 2D coordinates. This is used to map the output coordinates to the input coordinates.
+ *
+ * @param[in] coord 2D coordinates to transform.
+ * @param[in] scale input/output scale ratio
+ *
+ * @return a float8 containing 4 2D transformed values in the input image.
+ */
+inline const float8 transform_nearest(const float2 coord, const float2 scale)
+{
+#ifdef SAMPLING_POLICY_TOP_LEFT
+ const float4 in_x_coords = (float4)(coord.s0, 1 + coord.s0, 2 + coord.s0, 3 + coord.s0);
+ const float4 new_x = in_x_coords * (float4)(scale.s0);
+ const float4 new_y = (float4)(coord.s1 * scale.s1);
+ return (float8)(new_x.s0, new_y.s0, new_x.s1, new_y.s1, new_x.s2, new_y.s2, new_x.s3, new_y.s3);
+#elif SAMPLING_POLICY_CENTER
+ const float4 in_x_coords = (float4)(coord.s0, 1 + coord.s0, 2 + coord.s0, 3 + coord.s0);
+ const float4 new_x = (in_x_coords + ((float4)(0.5f))) * (float4)(scale.s0);
+ const float4 new_y = (float4)((coord.s1 + 0.5f) * scale.s1);
+ return (float8)(new_x.s0, new_y.s0, new_x.s1, new_y.s1, new_x.s2, new_y.s2, new_x.s3, new_y.s3);
+#else /* SAMPLING_POLICY */
+#error("Unsupported sampling policy");
+#endif /* SAMPLING_POLICY */
+}
+
+/** Transforms four 2D coordinates. This is used to map the output coordinates to the input coordinates.
+ *
+ * @param[in] coord 2D coordinates to transform.
+ * @param[in] scale input/output scale ratio
+ *
+ * @return a float8 containing 4 2D transformed values in the input image.
+ */
+inline const float8 transform_bilinear(const float2 coord, const float2 scale)
+{
+ const float4 in_x_coords = (float4)(coord.s0, 1 + coord.s0, 2 + coord.s0, 3 + coord.s0);
+#ifdef SAMPLING_POLICY_TOP_LEFT
+ const float4 new_x = in_x_coords * (float4)(scale.s0);
+ const float4 new_y = (float4)(coord.s1 * scale.s1);
+ return (float8)(new_x.s0, new_y.s0, new_x.s1, new_y.s1, new_x.s2, new_y.s2, new_x.s3, new_y.s3);
+#elif SAMPLING_POLICY_CENTER
+ const float4 new_x = (in_x_coords + ((float4)(0.5f))) * (float4)(scale.s0) - (float4)(0.5f);
+ const float4 new_y = (float4)((coord.s1 + 0.5f) * scale.s1 - 0.5f);
+ return (float8)(new_x.s0, new_y.s0, new_x.s1, new_y.s1, new_x.s2, new_y.s2, new_x.s3, new_y.s3);
+#else /* SAMPLING_POLICY */
+#error("Unsupported sampling policy");
+#endif /* SAMPLING_POLICY */
+}
+
+/** Performs an affine transformation on an image interpolating with the NEAREAST NEIGHBOUR method. Input and output are single channel U8 or S16.
+ *
+ * @note Sampling policy to used is passed as -DSAMPLING_POLICY_(TYPE) e.g. -DSAMPLING_POLICY_TOP_LEFT
+ *
+ * @param[in] in_ptr Pointer to the source image. Supported data types: U8, S16.
+ * @param[in] in_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] in_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] in_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] in_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] in_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[out] out_ptr Pointer to the destination image. Supported data types: U8, S16. (Must be the same as the input)
+ * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] out_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] out_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image
+ */
+__kernel void scale_nearest_neighbour_nchw(
+ IMAGE_DECLARATION(in),
+ IMAGE_DECLARATION(out))
+{
+ const int x = get_global_id(0);
+ const int y = get_global_id(1);
+
+ float8 transformed = transform_nearest((float2)(x * VEC_SIZE, y), (float2)(SCALE_X, SCALE_Y));
+#ifdef ALIGN_CORNERS
+ transformed = round(transformed);
+#endif // ALIGN_CORNERS
+
+ TILE(SELECT_DATA_TYPE(DATA_TYPE), 1, 4, cond);
+ cond[0].v = CONVERT(((transformed.even < 0) || (transformed.even >= (int)SRC_WIDTH)) || ((transformed.odd < 0) || (transformed.odd >= (int)SRC_HEIGHT)), SELECT_VEC_DATA_TYPE(DATA_TYPE, 4));
+
+ TILE(int, 1, 4, in_x);
+ TILE(int, 1, 4, in_y);
+ in_x[0].v = convert_int4(clamp(transformed.even, 0.f, SRC_WIDTH - 1.f));
+ in_y[0].v = convert_int4(clamp(transformed.odd, 0.f, SRC_HEIGHT - 1.f));
+
+ TILE(DATA_TYPE, 1, VEC_SIZE, out_vals);
+ LOOP_UNROLLING(int, i, 0, 1, VEC_SIZE,
+ {
+ out_vals[0].s[i] = select(*((__global DATA_TYPE *)(in_ptr + in_offset_first_element_in_bytes + in_x[0].s[i] * sizeof(DATA_TYPE) + in_y[0].s[i] * in_stride_y)), (DATA_TYPE)CONSTANT_VALUE, cond[0].s[i]);
+ })
+
+ __global uchar *out_addr = out_ptr + out_offset_first_element_in_bytes + x * out_step_x + y * out_stride_y;
+
+ if(x == get_global_size(0) - 1)
+ {
+#if VEC_SIZE == 1
+ VSTORE_PARTIAL(VEC_SIZE, VEC_SIZE_LEFTOVER)
+ (out_vals[0].s[0], 0, (__global DATA_TYPE *)out_addr);
+#else // VEC_SIZE == 1
+ VSTORE_PARTIAL(VEC_SIZE, VEC_SIZE_LEFTOVER)
+ (out_vals[0].v, 0, (__global DATA_TYPE *)out_addr);
+#endif // VEC_SIZE == 1
+ }
+ else
+ {
+#if VEC_SIZE == 1
+ VSTORE(VEC_SIZE)
+ (out_vals[0].s[0], 0, (__global DATA_TYPE *)out_addr);
+#else // VEC_SIZE == 1
+ VSTORE(VEC_SIZE)
+ (out_vals[0].v, 0, (__global DATA_TYPE *)out_addr);
+#endif // VEC_SIZE == 1
+ }
+}
+
+/** Performs an affine transformation on an image interpolating with the BILINEAR method.
+ *
+ * @note Sampling policy to used is passed as -DSAMPLING_POLICY_(TYPE) e.g. -DSAMPLING_POLICY_TOP_LEFT
+ *
+ * @param[in] in_ptr Pointer to the source image. Supported data types: U8, S16.
+ * @param[in] in_stride_x Stride of the source image in X dimension (in bytes)
+ * @param[in] in_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] in_stride_y Stride of the source image in Y dimension (in bytes)
+ * @param[in] in_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] in_offset_first_element_in_bytes The offset of the first element in the source image
+ * @param[out] out_ptr Pointer to the destination image. Supported data types: U8, S16. (Must be the same as the input)
+ * @param[in] out_stride_x Stride of the destination image in X dimension (in bytes)
+ * @param[in] out_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] out_stride_y Stride of the destination image in Y dimension (in bytes)
+ * @param[in] out_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] out_offset_first_element_in_bytes The offset of the first element in the destination image
+ */
+__kernel void scale_bilinear_nchw(
+ IMAGE_DECLARATION(in),
+ IMAGE_DECLARATION(out))
+{
+ const int x = get_global_id(0);
+ const int y = get_global_id(1);
+
+ TILE(float, 1, 8, trans_coords);
+ TILE(float, 1, 8, floor_coords);
+ TILE(int, 1, 16, in_x);
+ TILE(int, 1, 16, in_y);
+
+ trans_coords[0].v = transform_bilinear((float2)(x * VEC_SIZE, y), (float2)(SCALE_X, SCALE_Y));
+ floor_coords[0].v = floor(trans_coords[0].v);
+
+ LOOP_UNROLLING(int, i, 0, 1, 4,
+ {
+ LOOP_UNROLLING(int, j, 0, 1, 4,
+ {
+ in_x[0].s[i * 4 + j] = floor_coords[0].s[i * 2 + 0] + (j % 2);
+ in_y[0].s[i * 4 + j] = floor_coords[0].s[i * 2 + 1] + (j > 1);
+ })
+ })
+
+#if defined(BORDER_MODE_CONSTANT)
+ TILE(SELECT_DATA_TYPE(DATA_TYPE), 1, 16, cond);
+ cond[0].v = CONVERT(((in_x[0].v < 0) || (in_x[0].v >= (int)SRC_WIDTH)) || ((in_y[0].v < 0) || (in_y[0].v >= (int)SRC_HEIGHT)), SELECT_VEC_DATA_TYPE(DATA_TYPE, 16));
+#endif // defined(BORDER_MODE_CONSTANT)
+
+ in_x[0].v = clamp(in_x[0].v, 0, (int16)((int)SRC_WIDTH - 1));
+ in_y[0].v = clamp(in_y[0].v, 0, (int16)((int)SRC_HEIGHT - 1));
+
+ TILE(DATA_TYPE, 1, 16, in_vals);
+
+ // Loads the values from the input image
+#if defined(BORDER_MODE_CONSTANT)
+ LOOP_UNROLLING(int, i, 0, 1, 16,
+ {
+ in_vals[0].s[i] = select(*((__global DATA_TYPE *)(in_ptr + in_offset_first_element_in_bytes + in_x[0].s[i] * sizeof(DATA_TYPE) + in_y[0].s[i] * (int)in_stride_y)), (DATA_TYPE)CONSTANT_VALUE, cond[0].s[i]);
+ })
+#else // defined(BORDER_MODE_CONSTANT)
+ LOOP_UNROLLING(int, i, 0, 1, 16,
+ {
+ in_vals[0].s[i] = *((__global DATA_TYPE *)(in_ptr + in_offset_first_element_in_bytes + in_x[0].s[i] * sizeof(DATA_TYPE) + in_y[0].s[i] * (int)in_stride_y));
+ })
+#endif // defined(BORDER_MODE_CONSTANT)
+
+ TILE(float, 1, 8, a);
+ TILE(float, 1, 8, b);
+
+ a[0].v = trans_coords[0].v - floor_coords[0].v;
+ b[0].v = ((float8)(1.f)) - a[0].v;
+
+#if defined(OFFSET) && defined(SCALE)
+ TILE(float, 1, 16, in_vals_f32);
+ TILE(float, 1, 4, out_vals_f32);
+
+ in_vals_f32[0].v = convert_float16(convert_int16(in_vals[0].v) - (int16)OFFSET) * (float16)SCALE;
+
+ // Bilinear interpolation: (in0 * b0 * b1) + (in1 * a0 * b1) + (in2 * b0 * a1) + (in3 * a0 * a1)
+ // (in4 * b2 * b3) + (in5 * a2 * b3) + (in6 * b2 * a3) + (in7 * a2 * a3)
+ // (in8 * b4 * b5) + (in9 * a4 * b5) + (in10 * b4 * a5) + (in11 * a4 * a5)
+ // (in12 * b6 * b7) + (in13 * a6 * b7) + (in14 * b6 * a7) + (in15 * a6 * a7)
+ LOOP_UNROLLING(int, i, 0, 1, 4,
+ {
+ out_vals_f32[0].s[i] = (in_vals_f32[0].s[i * 4 + 0] * b[0].s[i * 2] * b[0].s[i * 2 + 1]) + (in_vals_f32[0].s[i * 4 + 1] * a[0].s[i * 2] * b[0].s[i * 2 + 1]) + (in_vals_f32[0].s[i * 4 + 2] * b[0].s[i * 2] * a[0].s[i * 2 + 1]) + (in_vals_f32[0].s[i * 4 + 3] * a[0].s[i * 2] * a[0].s[i * 2 + 1]);
+ })
+
+ TILE(DATA_TYPE, 1, 4, out_vals_4);
+ TILE(DATA_TYPE, 1, VEC_SIZE, out_vals);
+
+ out_vals_4[0].v = CONVERT_SAT(convert_int4_sat_rtp(out_vals_f32[0].v / (float)SCALE) + OFFSET, VEC_DATA_TYPE(DATA_TYPE, 4));
+
+ LOOP_UNROLLING(int, i, 0, 1, VEC_SIZE,
+ {
+ out_vals[0].s[i] = out_vals_4[0].s[i];
+ })
+#else // defined(OFFSET) && defined(SCALE)
+
+ TILE(DATA_TYPE, 1, VEC_SIZE, out_vals);
+
+ // Bilinear interpolation: (in0 * b0 * b1) + (in1 * a0 * b1) + (in2 * b0 * a1) + (in3 * a0 * a1)
+ // (in4 * b2 * b3) + (in5 * a2 * b3) + (in6 * b2 * a3) + (in7 * a2 * a3)
+ // (in8 * b4 * b5) + (in9 * a4 * b5) + (in10 * b4 * a5) + (in11 * a4 * a5)
+ // (in12 * b6 * b7) + (in13 * a6 * b7) + (in14 * b6 * a7) + (in15 * a6 * a7)
+ LOOP_UNROLLING(int, i, 0, 1, VEC_SIZE,
+ {
+ out_vals[0].s[i] = (in_vals[0].s[i * 4 + 0] * b[0].s[i * 2] * b[0].s[i * 2 + 1]) + (in_vals[0].s[i * 4 + 1] * a[0].s[i * 2] * b[0].s[i * 2 + 1]) + (in_vals[0].s[i * 4 + 2] * b[0].s[i * 2] * a[0].s[i * 2 + 1]) + (in_vals[0].s[i * 4 + 3] * a[0].s[i * 2] * a[0].s[i * 2 + 1]);
+ })
+#endif // defined(OFFSET) && defined(SCALE)
+
+ __global uchar *out_addr = out_ptr + out_offset_first_element_in_bytes + x * out_step_x + y * out_stride_y;
+
+ if(x == get_global_size(0) - 1)
+ {
+#if VEC_SIZE == 1
+ VSTORE_PARTIAL(VEC_SIZE, VEC_SIZE_LEFTOVER)
+ (out_vals[0].s[0], 0, (__global DATA_TYPE *)out_addr);
+#else // VEC_SIZE == 1
+ VSTORE_PARTIAL(VEC_SIZE, VEC_SIZE_LEFTOVER)
+ (out_vals[0].v, 0, (__global DATA_TYPE *)out_addr);
+#endif // VEC_SIZE == 1
+ }
+ else
+ {
+#if VEC_SIZE == 1
+ VSTORE(VEC_SIZE)
+ (out_vals[0].s[0], 0, (__global DATA_TYPE *)out_addr);
+#else // VEC_SIZE == 1
+ VSTORE(VEC_SIZE)
+ (out_vals[0].v, 0, (__global DATA_TYPE *)out_addr);
+#endif // VEC_SIZE == 1
+ }
+} \ No newline at end of file