aboutsummaryrefslogtreecommitdiff
path: root/src/core/CL/cl_kernels/nchw/pooling_layer.cl
diff options
context:
space:
mode:
Diffstat (limited to 'src/core/CL/cl_kernels/nchw/pooling_layer.cl')
-rw-r--r--src/core/CL/cl_kernels/nchw/pooling_layer.cl285
1 files changed, 285 insertions, 0 deletions
diff --git a/src/core/CL/cl_kernels/nchw/pooling_layer.cl b/src/core/CL/cl_kernels/nchw/pooling_layer.cl
new file mode 100644
index 0000000000..15ad116289
--- /dev/null
+++ b/src/core/CL/cl_kernels/nchw/pooling_layer.cl
@@ -0,0 +1,285 @@
+/*
+ * Copyright (c) 2017-2021 Arm Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "helpers.h"
+
+#if defined(POOL_AVG) || defined(POOL_L2)
+#define POOL_OP(x, y) ((x) + (y))
+#else /* defined(POOL_AVG) || defined(POOL_L2) */
+#if defined(QUANTIZED)
+#define POOL_OP(x, y) (max((x), (y)))
+#else // defined(QUANTIZED)
+#define POOL_OP(x, y) (fmax((x), (y)))
+#endif // defined(QUANTIZED)
+#endif /* defined(POOL_AVG) || defined(POOL_L2) */
+
+#if defined(POOL_L2)
+#define POW2_OP(x, vec_size) ((x) * (x))
+#else /* defined(POOL_L2) */
+#define POW2_OP(x, vec_size) (x)
+#endif /* defined(POOL_L2) */
+
+#define DIV_OP(x, y) (x * (1.f / y))
+#define SQRT_OP(x) sqrt((x))
+
+#if defined(FP_MIXED_PRECISION) || defined(QUANTIZED)
+#define CONVERT_TO_ACC_DATA_TYPE(x, n) CONVERT(x, VEC_DATA_TYPE(ACC_DATA_TYPE, n))
+#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) CONVERT_TO_ACC_DATA_TYPE(vload##n(offset, ptr), n)
+#else /* defined(FP_MIXED_PRECISION) || defined(QUANTIZED)*/
+#define VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(n, offset, ptr) vload##n(offset, ptr)
+#endif /* defined(FP_MIXED_PRECISION) || defined(QUANTIZED)*/
+
+ACC_DATA_TYPE calculate_avg_scale(const int pool_size_x, const int pool_size_y, const int upper_bound_w, const int upper_bound_h,
+ const int pad_x, const int pad_y, const int stride_x, const int stride_y)
+{
+ int start_x = get_global_id(0) * stride_x - pad_x;
+ int start_y = get_global_id(1) * stride_y - pad_y;
+ const int end_x = min(start_x + pool_size_x, upper_bound_w);
+ const int end_y = min(start_y + pool_size_y, upper_bound_h);
+#if defined(EXCLUDE_PADDING)
+ start_x = max(0, start_x);
+ start_y = max(0, start_y);
+#endif /* defined(EXCLUDE_PADDING) */
+ return ((end_y - start_y) * (end_x - start_x));
+}
+
+#if defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
+
+/** Performs a pooling function of pool size equal to N (NCHW)
+ *
+ * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=float. Supported data types are F16/F32/QASYMM8;
+ * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
+ * @note In case of average pooling the following information must be passed at compile time:
+ * -DPOOL_AVG must be provided otherwise max pooling will be performed.
+ * -DMAX_WIDTH and -DMAX_HEIGHT which are the maximum accessible indeces in x and y dimensions (width + pad)
+ * -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
+ * -DPAD_X and -DPAD_Y which are the pooling paddings in x and y dimension
+ * @note The initial value for the pooling operation must be passed at compile time using -DINITIAL_VALUE e.g. -DINITIAL_VALUE=0
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32/QASYMM8
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ */
+__kernel void pooling_layer_MxN_nchw(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst))
+{
+ int id0 = get_global_id(0);
+ int id1 = get_global_id(1);
+ int id2 = get_global_id(2);
+
+ int x_coords = (id0 * STRIDE_X) - PAD_X;
+ int y_coords = (id1 * STRIDE_Y) - PAD_Y;
+
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + y_coords * (int)src_stride_y + id2 * src_stride_z;
+
+ VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
+ vdata = INITIAL_VALUE;
+ ACC_DATA_TYPE sdata = INITIAL_VALUE;
+
+ const int end_x = min((int)POOL_SIZE_X, (int)(SRC_WIDTH - x_coords));
+ const int end_y = min((int)POOL_SIZE_Y, (int)(SRC_HEIGHT - y_coords));
+
+ // Load data
+ for(int y = 0; y < end_y; ++y)
+ {
+ if((y_coords + y) >= 0)
+ {
+ int x = 0;
+ for(; x <= (end_x - 8); x += 8)
+ {
+ int8 src_x = (int8)(x_coords + x) + VEC_OFFS(int, 8);
+#if defined(POOL_AVG) || defined(POOL_L2)
+ SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
+ cond_x = CONVERT(src_x < 0, SELECT_VEC_DATA_TYPE(ACC_DATA_TYPE, 8));
+ src_x = clamp(src_x, (int8)0, (int8)(SRC_WIDTH - 1));
+ VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
+ data0 = select(VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)(src_addr + src_x.s0 * sizeof(DATA_TYPE) + y * src_stride_y)), (VEC_DATA_TYPE(ACC_DATA_TYPE, 8))0, REVERSE(cond_x, 8));
+#else // defined(POOL_AVG) || defined(POOL_L2)
+ src_x = clamp(src_x, 0, SRC_WIDTH - 1);
+ VEC_DATA_TYPE(ACC_DATA_TYPE, 8)
+ data0 = VLOAD_AND_CONVERT_TO_ACC_DATA_TYPE(8, 0, (__global DATA_TYPE *)(src_addr + src_x.s0 * sizeof(DATA_TYPE) + y * src_stride_y));
+#endif // defined(POOL_AVG) || defined(POOL_L2
+
+#if defined(POOL_L2)
+ // Raise to power of 2 for L2 Pooling
+ data0 *= data0;
+#endif /* defined(POOL_L2) */
+
+ vdata = POOL_OP(vdata, data0);
+ }
+
+ // Leftover
+ for(; x < end_x; ++x)
+ {
+ int src_x = x_coords + x;
+#if defined(POOL_AVG) || defined(POOL_L2)
+ SELECT_DATA_TYPE(ACC_DATA_TYPE)
+ cond_x = (src_x < 0);
+ src_x = clamp(src_x, 0, SRC_WIDTH - 1);
+ ACC_DATA_TYPE data0 = select((ACC_DATA_TYPE)(*((__global DATA_TYPE *)(src_addr + src_x * sizeof(DATA_TYPE) + y * src_stride_y))), (ACC_DATA_TYPE)0, cond_x);
+#else // defined(POOL_AVG) || defined(POOL_L2)
+ src_x = clamp(src_x, 0, SRC_WIDTH - 1);
+ ACC_DATA_TYPE data0 = (ACC_DATA_TYPE)(*((__global DATA_TYPE *)(src_addr + src_x * sizeof(DATA_TYPE) + y * src_stride_y)));
+#endif // defined(POOL_AVG) || defined(POOL_L2)
+
+#if defined(POOL_L2)
+ // Raise to power of 2 for L2 Pooling
+ data0 *= data0;
+#endif /* defined(POOL_L2) */
+
+ sdata = POOL_OP(sdata, data0);
+ }
+ }
+ }
+
+ // Reduce result
+ VEC_DATA_TYPE(ACC_DATA_TYPE, 4)
+ reduce4 = POOL_OP(vdata.s0123, vdata.s4567);
+ VEC_DATA_TYPE(ACC_DATA_TYPE, 2)
+ reduce2 = POOL_OP(reduce4.s01, reduce4.s23);
+ ACC_DATA_TYPE res = POOL_OP(reduce2.s0, reduce2.s1);
+ res = POOL_OP(res, sdata);
+
+#if defined(POOL_AVG) || defined(POOL_L2)
+ // Divide by pool region in case of average pooling
+ res = DIV_OP(res, calculate_avg_scale(POOL_SIZE_X, POOL_SIZE_Y, MAX_WIDTH, MAX_HEIGHT, PAD_X, PAD_Y, STRIDE_X, STRIDE_Y));
+#endif /* defined(POOL_AVG) || defined(POOL_L2) */
+
+#if defined(QUANTIZED)
+
+ DATA_TYPE result_q8 = CONVERT(res, DATA_TYPE);
+
+#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
+
+ const float result_f32 = convert_float(result_q8);
+ const float input_offset = (float)OFFSET_IN1;
+ const float input_scale = (float)SCALE_IN1;
+ const float scale_out = (float)SCALE_OUT;
+ const float offset_out = (float)OFFSET_OUT;
+ const float in_f32 = (result_f32 - input_offset) * input_scale;
+ const float out_f32 = in_f32 / scale_out + offset_out;
+ result_q8 = CONVERT_SAT(convert_int_rte(out_f32), DATA_TYPE);
+
+#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
+
+ *(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = result_q8;
+
+#else // defined(QUANTIZED)
+
+#if defined(POOL_L2)
+ // Take square root of the result in L2 pooling
+ res = SQRT_OP(res);
+#endif /* defined(POOL_L2) */
+
+ // Store result
+ *(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = (DATA_TYPE)res;
+#endif // defined(QUANTIZED)
+}
+#endif // defined(POOL_SIZE_X) && defined(POOL_SIZE_Y)
+
+/** Performs a MAX pooling of pool size equal to 2, and record max value indices for NCHW.
+ *
+ * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=half. Supported data types are F32
+ * @note Pool sizes must be passed using -DPOOL_SIZE_X and -DPOOL_SIZE_Y e.g. -DPOOL_SIZE_X=13;
+ * @note Tensors width and height must be passed at compile time using -DMAX_WIDTH and -DMAX_HEIGHT
+ * @note Pool strides must be passed at compile time using -DSTRIDE_X and -DSTRIDE_Y which are the steps of the window along the x and y directions
+ *
+ * @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
+ * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
+ * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
+ * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
+ * @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
+ * @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
+ * @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
+ * @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
+ * @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
+ * @param[in] indices_ptr Pointer to the indices tensor. Supported data types: U32
+ * @param[in] indices_stride_x Stride of the indices tensor in X dimension (in bytes)
+ * @param[in] indices_step_x indices_stride_x * number of elements along X processed per workitem(in bytes)
+ * @param[in] indices_stride_y Stride of the indices tensor in Y dimension (in bytes)
+ * @param[in] indices_step_y indices_stride_y * number of elements along Y processed per workitem(in bytes)
+ * @param[in] indices_stride_z Stride of the indices tensor in Z dimension (in bytes)
+ * @param[in] indices_step_z indices_stride_z * number of elements along Z processed per workitem(in bytes)
+ * @param[in] indices_offset_first_element_in_bytes The offset of the first element in the indices tensor
+ */
+__kernel void pooling_layer_2_nchw_indices(
+ TENSOR3D_DECLARATION(src),
+ TENSOR3D_DECLARATION(dst),
+ TENSOR3D_DECLARATION(indices))
+{
+ int id0 = get_global_id(0);
+ int id1 = get_global_id(1);
+ int id2 = get_global_id(2);
+
+ int2 x_coords = clamp((int2)((id0 * STRIDE_X) - PAD_X), (int2)0, (int2)(SRC_WIDTH - 1));
+ int2 y_coords = clamp((int2)((id1 * STRIDE_Y) - PAD_Y) + VEC_OFFS(int, 2), (int2)0, (int2)(SRC_HEIGHT - 1));
+
+ __global uchar *src_addr = src_ptr + src_offset_first_element_in_bytes + id2 * src_stride_z;
+
+ // Load data
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ data0 = VLOAD(2)(0, (__global DATA_TYPE *)(src_addr + x_coords.s0 * sizeof(DATA_TYPE) + y_coords.s0 * (int)src_stride_y));
+ VEC_DATA_TYPE(DATA_TYPE, 2)
+ data1 = VLOAD(2)(0, (__global DATA_TYPE *)(src_addr + x_coords.s1 * sizeof(DATA_TYPE) + y_coords.s1 * (int)src_stride_y));
+
+ // Perform calculations
+ DATA_TYPE data0_max = POOL_OP(data0.s0, data0.s1);
+ DATA_TYPE data1_max = POOL_OP(data1.s0, data1.s1);
+ DATA_TYPE res = POOL_OP(data0_max, data1_max);
+ // Store result
+ *(__global DATA_TYPE *)(dst_ptr + dst_offset_first_element_in_bytes + id0 * sizeof(DATA_TYPE) + id1 * dst_stride_y + id2 * dst_stride_z) = res;
+
+#if defined(SRC_BATCH)
+
+ uint offset_top = (x_coords.s0 + y_coords.s0 * SRC_WIDTH + id2 * (SRC_WIDTH * SRC_HEIGHT)) % SRC_BATCH;
+ uint offset_bottom = offset_top + SRC_WIDTH;
+
+ uint index0 = select(offset_top + 1, offset_top, isgreaterequal(data0.s0, data0.s1));
+ uint index1 = select(offset_bottom + 1, offset_bottom, isgreaterequal(data1.s0, data1.s1));
+ uint index = select(index1, index0, isgreaterequal(data0_max, data1_max));
+
+ *(__global uint *)(indices_ptr + indices_offset_first_element_in_bytes + id0 * sizeof(uint) + id1 * indices_stride_y + id2 * indices_stride_z) = index;
+
+#endif // defined(SRC_BATCH)
+} \ No newline at end of file